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Introduction

Geometric functions theory is the branch of complex analysis which deals with

geometric properties of analytic functions. This theory is based on the notion of

conformal representation in which univalent functions play an essential role. A

remarcable result in this sense is the Riemann mapping theorem. The first important

papers in this branch appeared in the early twentieth century, due to P. Koebe [46]

in 1907, T. H. Gronwall [28] in 1914, J.W. Alexander [1] in 1915, L. Bieberbach [10]

in 1916. The Bieberbach conjecture, solved by Louis de Branges in 1984, determined

various approaches and directions of studies in the geometric functions theory, one

of these directions was defining new subclasses of univalent functions for which

the conjecture could be verified. Therewith appeared and developed new research

methods such as Löwner parametric method and integral representation method

introduced by Herglotz.

It is worth mentioning that romanian mathematicians brought valuable contri-

bution in developing this area of mathematics. G. Călugăreanu obtained in 1931

necessary and sufficient condition for univalence in the open unit disk. Continu-

ing the work of G. Călugăreanu, P.T. Mocanu obtained importand results in the

field: introduced α-convex functions; obtained univalence criteria for non-analytic

functions; developed, in collaboration with S.S. Miller, the method of differential

subordinations and superordinations.

This thesis consists of five chapters. Chapter 1 is structured in nine sections

in which are presented some fundamental definitions and results which constitutes

the backgrounds for the remaining chapters. Therefore, are given important results

regarding univalent functions, functions with positive real part, starlike functions,

convex functions, close-to-starlike and close-to-convex functions, spirallike functions

and also results regarding harmonic mappings.

Chapter 2 deals with differential subordinations problems. In first section we
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give some definitions and results concerning differential subordinations and briefly

present the method of admisible functions. The next two sections of the chapter

contains original results presented in [87] and [43]. In the second section we provide

some examples of subordinations involving the disk and the half-plane by apply-

ing the admisibility conditions introduced in previous section. In the last section

we study differential subordinations involving harmonic means of the expresions

p(z), p(z)+zp′(z) and p(z)+
zp′(z)

p(z)
, when p is an analytic function in the unit disk,

such that p(0) = 1, p(z) 6≡ 1, and present some applications in geometric functions

theory.

In Chapter 3 we define four new subclasses of bi-univalent functions for which

we obtain estimates of coefficients a2 and a3. A function f is said to be bi-univalent

in U if both f and its inverse are univalent in U . The results in this chapter are

original and are presented in [86] and [88].

In Chapter 4 we define and study new classes of functions defined by means of

certain operators. The results in this chapter are original and are contained in the

papers: [85], [89], [90], [19] and [91]. In first section we define a new class of analytic

function by means of Carlson-Shaffer and Cho-Srivastava operators. We provide

sufficient condition for a function to be in this function class and we find some

angular estimates. In the next section we define and study a subclass of harmonic

univalent and sense preserving functions also connected with a generalized operator.

We determine neccesary and sufficient condition for a function to be in this class,

extreme points, distorsion bounds and also an inclusion result related to convolution.

In the third section we define and study a new class of analytic functions connected

with Sălăgean integral operator. In particular, we derive an inclusion property, a

subordination result, extreme points and coefficient bounds for this function class. In

Section 4.4, by means of Sălăgean integral operator, we introduce two new subclasses

of analytic functions involving λ-spirallikeness of order α. For this function classes

we establish some inclusion results. In the last section of this chapter we introduce a

new class of generalized close-to-starlike functions connected with Srivastava-Attiya

operator. For this class we provide inclusion results, coefficient bounds and we give

an integral representation. Also, we will show that this function class is closed under

the convolution operation by convex functions.

In Chapter 5 we present Löwner chains and their utility in obtaining new uni-

valence criteria. In first section we present the general Löwner chain theory and in
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the second and the third chapter we present some original results, [92], where we

obtain new condition for univalence by applying this subordination chains method.

The bibliography contains 91 titles, 9 signed by the author, two of them in

collaboration.
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Chapter 1

Preliminary Results

1.1 Definitions and notations

In this section are presented basic notions about complex functions, analytic

continuation and extreme points.

We use the following notations:

• Unit disk: U = {z ∈ C : |z| < 1},

• Ur = {z ∈ C : |z| < r},

• Ū = {z ∈ C : |z| ≤ r},

• ∂U {z ∈ C : |z| = r}.

Let H(U) be the set of holomorphic functions in U . For a ∈ C and n ∈ N∗ denote

• H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + · · · },

• An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + · · · } , (A1 = A).

A function f ∈ A has the following Taylor series expansion:

f(z) = z +
∞∑
n=2

anz
n. (1.1)
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1.2 Univalent functions

Definition 1.2.1. [20] A single-valued function f is said to be univalent (or schlicht)

in a domain D ⊂ C if it never takes the same value twice; that is, if f(z1) 6= f(z2)

for all points z1 and z2 in D with z1 6= z2.

We denote by S the class of univalent function in the unit disk U normalized

by the conditions f(0) = 0 and f ′(0) = 1. Thus each function in the class S has a

Taylor series expansion of the form

f(z) = z + a2z
2 + · · · , z ∈ U.

Theorem 1.2.1 (Koebe One-Quarter Theorem). [20] The range of every func-

tion of class S contains the disk
{
w : |w| < 1

4

}
.

In 1916, Bieberbach [10] formulated the following conjecture:

Theorem 1.2.2 (Bieberbach Conjecture). The coefficients of each function f ∈
S satisfy |an| ≤ n for n = 2, 3, · · · . Strict inquality holds for all n unless f is the

Koebe function or one of its rotations.

1.3 Functions with positive real part

The class of Caratheodory functions is denoted by

P = {p ∈ H(U) : p(0) = 1, <p(z) > 0, z ∈ U} .

Theorem 1.3.1. [65] Let p ∈ P. Then

|pn| ≤ 2, n ≥ 1,

∣∣∣∣p2 − p21
2

∣∣∣∣ ≤ 2− |p1|
2

2
.

(1.2)

1.4 Starlike functions

Definition 1.4.1. [57] A function f ∈ H(U) is said to be starlike if it is univalent

and f(U) is a starlike domain.
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The following theorem gives an analytic characterisation of starlike functions:

Theorem 1.4.1. [57] A function f ∈ H(U) is starlike if and only if f(0) =

0, f ′(0) 6= 0 and

<zf
′(z)

f(z)
> 0, z ∈ U.

The class of starlike functions is denoted by S∗ and consists of the sets of all f

in S for which f(U) is starlike.

S∗ =

{
f ∈ A : <zf

′(z)

f(z)
> 0

}
. (1.3)

Theorem 1.4.2. [26] If f(z) = z + a2z
2 + a3z

3 + · · · is in S∗ then

|an| ≤ n, n = 2, 3, · · · .

Equality takes place if and only if f is Koebe function.

1.5 Close-to-starlike functions

Definition 1.5.1. [67] A function f ∈ A is close-to-starlike if and only if there

exists a function g ∈ S∗ such that

<
(
f(z)

g(z)

)
≥ 0, z ∈ U.

We denote by CS∗ the class of close-to-starlike functions.

Theorem 1.5.1. [67] If f ∈ A is close-to-starlike then the coefficients satisfy the

inequality

|an| ≤ n2, n = 2, 3, · · · ,

with the equality for the Robertson functions starlike in one direction [70].

1.6 Convex functions

Definition 1.6.1. [57] A function f ∈ H(U) is said to be convex if it is univalent

and f(U) is a convex domain.
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Theorem 1.6.1. [57] A function f ∈ H(U) is convex if and only if f ′(0) 6= 0 and

<
[
zf ′′(z)

f ′(z)
+ 1

]
> 0, z ∈ U.

The class of convex functions is denoted by K and consists of the sets of all f in

S for which f(U) is convex.

An analytic description of K is given by:

K =

{
f ∈ A : <

[
zf ′′(z)

f ′(z)
+ 1

]
> 0

}
. (1.4)

Theorem 1.6.2. [26] If f(z) = z + a2z
2 + a3z

3 + · · · is in K then

|an| ≤ 1, n = 2, 3, · · · .

Equality takes place if and only if f has the following form:

f(z) =
z

1 + eiσz
, σ ∈ R.

1.7 Close-to-convex functions

Definition 1.7.1. [67] A function f ∈ A is close-to-convex if and only if there

exists a function g ∈ K such that

<
(
f ′(z)

g′(z)

)
≥ 0, z ∈ U.

We denote by CK the class of close-to-convex functions.

Theorem 1.7.1. [67] If f ∈ A is close-to-convex then the coefficients satisfy the

inequality

|an| ≤ n, n = 2, 3, · · · .
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1.8 Spirallike functions

Theorem 1.8.1. [65] A function f ∈ A is said to be λ- spirallike,
(
−π

2
< λ <

π

2

)
if and only if

<
[
eiλ
zf ′(z)

f(z)

]
> 0, z ∈ U.

In 1967, R. Libera [52] extended the definition to functions λ-spirallike of order

α.

Definition 1.8.1. For 0 ≤ α < 1 and |λ| < π/2, a function f ∈ A is said to be

λ-spirallike of order α in U if

<
[
eiλ
zf ′(z)

f(z)

]
> α cosλ, z ∈ U. (1.5)

1.9 Harmonic mappings

In this section we present some basic notions and properties related to harmonic

functions. These functions are closely connected to holomorphic functions since the

real and the imaginary parts of any holomorphic function are harmonic functions

and every harmonic function on a simply connected domain D in C is the real

(imaginary) part of a holomorphic function in D.

Definition 1.9.1. [21] Let D ⊆ C be a region. A real valued function u(x, y) is

harmonic in D if it satisfies Laplace’s equation

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0.

Proposition 1.9.1. [21] Let f = u + iv be a holomorphic function in D. Then u

and v are harmonic functions in D.

Remark 1.9.1. The converse of Proposition 1.9.1 is also true but only if D is a

simply connected domain, i.e. when every path between two points in D can be

continuously transformed, staying within D, into any other path while presetving the

two endpoints in question.

Theorem 1.9.1. [21] Suppose u is harmonic on the simply connected domain D.

Then there exists a harmonic function v such that f = u+ iv is holomorphic in D.
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Remark 1.9.2. The function v is called a harmonic conjugate of u.

Theorem 1.9.2 (the mean value property). [21] Let u be a harmonic real-valued

function on a open set D. If D contains a closed disk of radius r centered at z0 then

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ)dθ.

Theorem 1.9.3 (the maximum principle). [21] Let u be a harmonic real-valued

function on a open connected set D. If u attains its maximum value at some point

z0 ∈ D then u is constant.

The next theorem allows to recover values of a harmonic function in a disk from

its values on the disk boundary. The result is an analogue of the Cauchy integral

formula for holomorphic functions.

Theorem 1.9.4 (Poisson integral formula). [21] Let r > 0 and u : Ū(0, r)→ R
a harmonic function in U(0, r) and continuous in barU(0,r). Then

u(ρeiϕ) =
1

2π

∫ 2π

0

r2 − ρ2

r2 − 2ρ cos(θ − ϕ) + ρ2
u(reiθ)dθ,

for all ρ ∈ [0, r) and ϕ ∈ R.



Chapter 2

Differential subordinations

In [56] and [58], S.S. Miller and P.T. Mocanu extended the study of differen-

tial inequalities for real-valued functions to complex-valued functions defined in the

unit disk. They developed a new method in geometric theory of analytic functions

known as the method of differential subordinations or the method of admisible func-

tions. This method proved to be very effective in obtaining new results in geometric

functions theory or proving, in a simple manner, several results already known.

2.1 Basic definitions and results

Definition 2.1.1. [65] If f and g are two functions analytic in U , we say that f is

subordinate to g, written as

f ≺ g or f(z) ≺ g(z),

if there exists a Schwarz function ω (i.e. analytic in U , with ω(0) = 0 and |ω(z)| < 1,

for all z ∈ U) such that

f(z) = g(ω(z)), z ∈ U.

Theorem 2.1.1. [65] Let f, g ∈ H(U) and let g be univalent in U . Then f ≺ g if

and only if f(0) = g(0) and f(U) ⊆ g(U).

Let Ω,∆ ⊂ C, p ∈ H(U) with p(0) = a, a ∈ C and let ψ : C3 × U → C. The

method of differential subordinations (or the method of admisible functions) deals

13
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with generalizations of the following implication:{
ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U

}
⊂ Ω⇒ p(U) ⊂ ∆. (2.1)

Definition 2.1.2. Let ψ : C3×U → C and let h be univalent in U . If p is analytic

in U and satisfies the (second-order) differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (2.2)

then p is called a solution of the differential subordination.

The univalent function q is called a dominant of the solution of the differential

subordination, or more simply a dominant, if p ≺ q for all p satisfying (2.2).

A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (2.2) is said to be the

best dominant of (2.2). (Note that the best dominant is unique up to a rotation of

U).

Definition 2.1.3. [57] Denote by Q the set of functions q that are analytic and

injective on Ū \ E(q), where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) =∞

}
,

such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

If q ∈ Q then ∆ = q(U) is a simply connected domain.

Lemma 2.1.1. [57] Let q ∈ Q, with q(0) = a, and let p(z) = a + anz
n + · · · be

analytic in U with p(z) 6≡ a and n ≥ 1. If p is not subordinate to q then there

exist points z0 = r0e
iθ0 ∈ U and ζ0 ∈ ∂U \ E(q) and an m ≥ n ≥ 1 for which

p(Ur0) ⊂ q(U),

i) p(z0) = q(ζ0),

ii) z0p
′(z0) = mζ0q

′(ζ0),

iii) <z0p
′′(z0)

p′(z0)
+ 1 ≥ m<

[
ζ0q
′′(ζ0)

q′(ζ0)
+ 1

]
.

Next, we define the class of admisible functions:
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Definition 2.1.4. [57] Let Ω be a set in C, q ∈ Q and n be a positive integer. The

class of admisible fuctions Ψn[Ω, q] consists of those functions ψ : C3 × U → C that

satisfy the admisibility condition
ψ(r, s, t; z) /∈ Ω, whenever

r = q(ζ), s = mζq′(ζ), <
(

1 +
t

s

)
≥ m<

(
1 +

ζq′′(ζ)

q′(ζ)

)
,

ζ ∈ ∂U \ E(q), z ∈ U, m ≥ n.

Theorem 2.1.2. [57] Let ψ ∈ Ψn[Ω, q] with q(0) = a.

If p ∈ H[a, n] and ψ(p(z), zp′(z), z2p′′(z); z) analytic in U then

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω⇒ p(z) ≺ q(z).

Definition 2.1.5. [57] Let h be an univalent function in U with h(0) = a and let

p ∈ H[a, n] satisfy

p(z) +
zp′(z)

βp(z) + δ
≺ h(z).

The first-order differential subordination is called Briot-Bouquet differential subor-

dination.

Remark 2.1.1. The name of Briot-Bouquet subordination derives from the fact that

a differential equation of the form

p(z) +
zp′(z)

βp(z) + δ
= h(z)

is called a differential equation of Briot-Bouquet type [32].

Lemma 2.1.2. [57] Let h be a convex function in U with <[βh(z) + δ] > 0, z ∈ U.
If q is an analytic function in U such that q(0) = h(0) and

q(z) +
zq′(z)

βq(z) + δ
≺ h(z),

then q(z) ≺ h(z).
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2.2 Examples

In this section we present some examples of subordinations involving the disk

and the half-plane by applying the admisibility conditions introduced in previous

section.

In our first three examples we consider different conditions for functions A,B,C

such that

<[A(z)p(z) +B(z)zp′(z) + C(z)z2p′′(z)] > 0⇒ Rep(z) > 0, z ∈ U.

Example 2.2.1. [87] Let A,B : U → C, C : U → R such that =A(z) ≤ 1 and

<B(z) ≤ 1 + C(z), z ∈ U . If p(z) = 1 + a1z + · · · then

<[A(z)p(z) +B(z)zp′(z) + C(z)z2p′′(z)] > 0⇒ Rep(z) > 0, z ∈ U.

Example 2.2.2. [87] Let A,B : U → C, C : U → R such that <A(z) > 0, <B(z) ≤
<A(z)+C(z), C(z) > 0 and =2A(z) ≤ <2A(z), z ∈ U . If p(z) = 1+a1z+ · · · then

<[A(z)p(z) +B(z)zp′(z) + C(z)z2p′′(z)] > 0⇒ Rep(z) > 0, z ∈ U.

Example 2.2.3. [87] Let A,B,C : U → C such that =C(z) < 0, <B(z) =

<C(z), <C(z) > 0 and =2A(z) ≤ =2C(z), z ∈ U . If p(z) = 1 + a1z + · · · then

<[A(z)p(z) +B(z)zp′(z) + C(z)z2p′′(z)] > 0⇒ Rep(z) > 0, z ∈ U.

In the next three examples we consider different conditions for functions A,B,C

such that∣∣A(z)p(z) +B(z)zp′(z) + C(z)z2p′′(z)
∣∣ < 1⇒ |p(z)| < 1, z ∈ U.

Example 2.2.4. [87] Let A,B : U → C, C : U → R such that C(z) ≥ 1, <A(z) ≥
1 + =A(z) and (<B(z)− 1)2 ≤ 4=A(z), z ∈ U . If p ∈ H[0, n] then∣∣A(z)p(z) +B(z)zp′(z) + C(z)z2p′′(z)

∣∣⇒ |p(z)| < 1, z ∈ U.

Example 2.2.5. [87] Let A,B,C : U → C such that <C(z) = <B(z), <A(z) ≥
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1−<C(z) and <C(z) ≥ 0, z ∈ U . If p ∈ H[0, n] then∣∣A(z)p(z) +B(z)zp′(z) + C(z)z2p′′(z)
∣∣⇒ |p(z)| < 1, z ∈ U.

Example 2.2.6. [87] Let A,B,C : U → C such that <C(z) = <B(z) − 2<A(z),

<B(z) ≥ 1 + 2<A(z) and <A(z) ≥ 1 + <2A(z), z ∈ U . If p ∈ H[0, n] then∣∣A(z)p(z) +B(z)zp′(z) + C(z)z2p′′(z)
∣∣⇒ |p(z)| < 1, z ∈ U.
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2.3 Differential subordinations involving harmonic

mean

In this section we study the harmonic mean, as a suplementary to the well known

arithmetics and geometric Pythagorean means. In addition, a new mean brings

along a wide range of new possibilities for exploiting harmonic ideas in connection

of several quantities or functionals in the geometric function theory.

Theorem 2.3.1. [43] Let p(z) = 1+a1z+ · · · be analytic in U with p(z) 6≡ 1. Then

<
{

2p(z) [p(z) + zp′(z)]

2p(z) + zp′(z)

}
> 0⇒ <p(z) > 0. (2.3)

Remark 2.3.1. We only note that the expression of the left hand side of (2.3) is

of the harmonic form of two elements x1 = p(z) and x2 = p(z) + zp′(z) (z ∈ U).

Setting p(z) =
f(z)

z
in the previous theorem we obtain the following corollary:

Corollary 2.3.1. [43] Let f(z) = z + a2z
2 + · · · be analytic in U . Then

< 2f(z)f ′(z)

f(z) + zf ′(z)
> 0⇒ <f(z)

z
> 0.

Theorem 2.3.2. [43] Let p(z) = 1+a1z+ · · · be analytic in U with p(z) 6≡ 1. Then

<
[

2p(z) + 2zp′(z)

1 + p2(z) + zp(z)p′(z)

]
> 0⇒ <p(z) > 0.

Setting p(z) =
f(z)

z
we obtain:

Corollary 2.3.2. [43] Let f(z) = z + a2z
2 + · · · be analytic in U . Then

<

 2
z

f(z)
f ′(z)

z

f(z)
+ f ′(z)

 > 0⇒ <f(z)

z
> 0.
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Theorem 2.3.3. [43] Let p(z) = 1+a1z+ · · · be analytic in U with p(z) 6≡ 1. Then

<


2

[
p(z) +

zp′(z)

p(z)

]
2 +

zp′(z)

p2(z)

 > 0⇒ <p(z) > 0.

Setting p(z) =
zf ′(z)

f(z)
we obtain:

Corollary 2.3.3. [43] Let f(z) = z + a2z
2 + · · · be analytic in U . Then

<


2
zf ′(z)

f(z)

[
1 +

zf ′′(z)

f ′(z)

]
1 +

zf ′(z)

f(z)
+
zf ′′(z)

f ′(z)

 > 0⇒ <zf
′(z)

f(z)
> 0.

Theorem 2.3.4. [43] Let p(z) = 1+a1z+ · · · be analytic in U with p(z) 6≡ 1. Then

<


2

[
p(z) +

zp′(z)

p(z)

]
1 + p2(z) + zp′(z)

 > 0⇒ <p(z) > 0.

Setting p(z) =
zf ′(z)

f(z)
we obtain:

Corollary 2.3.4. [43] Let f(z) = z + a2z
2 + · · · be analytic in U . Then

<


2
f(z)

zf ′(z)

[
1 +

zf ′′(z)

f ′(z)

]
1 +

f(z)

zf ′(z)
+
zf ′′(z)

f ′(z)

 > 0⇒ <zf
′(z)

f(z)
> 0.

Theorem 2.3.5. [43] Let p(z) = 1+a1z+a2z
2 + · · · be analytic in U with p(z) 6≡ 1,

and let 0 < M < 1
3
. Then∣∣∣∣2p(z) [p(z) + zp′(z)]

2p(z) + zp′(z)
− 1

∣∣∣∣ < M ⇒ |p(z)− 1| < M. (2.4)

Let p(z) =
f(z)

z
. Then the previous theorem reduces o the following corollary:
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Corollary 2.3.5. [43] Let f(z) = z+a2z
2+ · · · be analytic in U and let 0 < M < 1

3
.

Then ∣∣∣∣∣∣∣∣
2f ′(z)

2 +
zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ < M ⇒
∣∣∣∣f(z)

z
− 1

∣∣∣∣ < M.

For the case when p(z) = f ′(z), Theorem (2.3.5) gives:

Corollary 2.3.6. [43] Let f(z) = z+a2z
2+ · · · be analytic in U and let 0 < M < 1

3
.

Then ∣∣∣∣∣∣∣∣
2(f ′(z) + zf ′′(z))

2 +
zf ′′(z)

f ′(z)

− 1

∣∣∣∣∣∣∣∣ < M ⇒ |f ′(z)− 1| < M.

Also, letting p(z) =
zf ′(z)

f(z)
in Theorem (2.3.5), we conclude:

Corollary 2.3.7. [43] Let f(z) = z+a2z
2+ · · · be analytic in U and let 0 < M < 1

3
.

Then ∣∣∣∣∣∣∣∣
2
zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
3 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ < M ⇒
∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < M.

Theorem 2.3.6. [43] Let p(z) = 1 + a1z + · · · be analytic in U with p(z) 6≡ 1 and

let γ ∈ (0, 1]. Then∣∣∣∣arg
2p(z) [p(z) + zp′(z)]

2p(z) + zp′(z)

∣∣∣∣ < γ
π

2
⇒ |arg p(z)| < γ

π

2
. (2.5)

Setting p(z) =
f(z)

z
we obtain the following corollary:

Corollary 2.3.8. [43] Let f(z) = z + a2z
2 + · · · be analytic in U . Then∣∣∣∣arg

2f(z)f ′(z)

f(z) + zf ′(z)

∣∣∣∣ < γ
π

2
⇒
∣∣∣∣arg

f(z)

z

∣∣∣∣ < γ
π

2
.

Also, letting p(z) =
zf ′(z)

f(z)
in Theorem (2.3.6), we conclude:
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Corollary 2.3.9. Let f(z) = z + a2z
2 + · · · be analytic in U . Then∣∣∣∣∣∣∣∣arg

2
zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
3 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣∣∣∣∣ < γ
π

2
⇒
∣∣∣∣arg

zf ′(z)

f(z)

∣∣∣∣ < γ
π

2
.

Theorem 2.3.7. [43] Let p(z) = 1 + a1z + · · · be analytic in U with p(z) 6≡ 1 and

let γ ∈ (0, 1]. Then∣∣∣∣∣∣∣∣arg

2

[
p(z) +

zp′(z)

p(z)

]
2 +

zp′(z)

p2(z)

∣∣∣∣∣∣∣∣ < γ
π

2
⇒ |arg p(z)| < γ

π

2
.

Setting p(z) =
zf ′(z)

f(z)
we obtain:

Corollary 2.3.10. [43] Let f(z) = z + a2z
2 + · · · be analytic in U . Then∣∣∣∣∣∣∣∣arg

2
zf ′(z)

f(z)

[
1 +

zf ′′(z)

f ′(z)

]
1 +

zf ′(z)

f(z)
+
zf ′′(z)

f ′(z)

∣∣∣∣∣∣∣∣ < γ
π

2
⇒
∣∣∣∣arg

zf ′(z)

f(z)

∣∣∣∣ < γ
π

2
.



Chapter 3

Bi-univalent functions

3.1 Coefficient bounds for the class Rτ
γ,σ(ϕ)

Definition 3.1.1. [86] A function f , given by (1.1) is said to be in the class Rτ
γ,σ(ϕ)

(0 ≤ γ ≤ 1, τ ∈ C \ {0}) if satisfies the following conditions:

f ∈ σ and 1 +
1

τ
(f ′(z) + γzf ′′(z)− 1) ≺ ϕ(z)

and 1 +
1

τ
(g′(w) + γwg′′(w)− 1) ≺ ϕ(w),

where g is the extension of f−1 to U .

If we set ϕ(z) =
1 + Az

1 +Bz
, −1 ≤ B < A ≤ 1, z ∈ U we will obtain the subclass

Rτ
γ,σ(A,B) of functions f which satisfies:

f ∈ σ and

∣∣∣∣ f ′(z) + γzf ′′(z)− 1

τ(A−B)−B (f ′(z) + γzf ′′(z)− 1)

∣∣∣∣ < 1,

and

∣∣∣∣ g′(w) + γwg′′(w)− 1

τ(A−B)−B (g′(w) + γwg′′(w)− 1)

∣∣∣∣ < 1.

The class Rτ
γ(ϕ) of analytic functions which satisfies the condition

1 +
1

τ
(f ′(z) + γzf ′′(z)− 1) ≺ ϕ(z)

22
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was introduced by Bansal in [7].

Theorem 3.1.1. [86] If f ∈ Rτ
γ,σ(ϕ) is given by (1.1) then

|a2| ≤
|τ |B1

√
B1√∣∣3τB2

1(1 + 2γ)− 4(B2 −B1)(1 + γ)2
∣∣ (3.1)

and

|a3| ≤
B1|τ |

3(1 + 2γ)
+

B2
1 |τ |2

4(1 + γ)2
. (3.2)

If we choose, in Theorem 3.1.1, τ = 1 and γ = 0 we obtain the result proved by

Ali et al. [5, Th. 2.1].

For A = 1 and B = −1 in corollary 3.1.1 and for τ = 1 and γ = 0, we obtain

the following estimations for a2 and a3

|a2| ≤
√

2

3
and |a3| ≤

5

3
.

Setting ϕ(z) =

(
1 + z

1− z

)α
, 0 < α ≤ 1 we will obtain the following corollary:

Corollary 3.1.1. [86] If f ∈ Rτ
γ,σ

((
1 + z

1− z

)α)
, then

|a2| ≤
2|τ |α

√
α√

|6τα2(1 + 2γ)− 4α(α− 1)(1 + γ)2|

and

|a3| ≤
|τ |

1 + 2γ

(
2α

3
+

α2|τ |2

(1 + γ)2

)
.

If we set τ = 1 and γ = 0, corollary 3.1.1 reduces to the result in [81, Th. 1].

3.2 Coefficient bounds for the class Mα,λ,σ(ϕ)

Motivated by the class M(α, λ, ρ) of analytic functions [29, Def. 1.1], we define

a new subclass of bi-univalent functions, as follows:
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Definition 3.2.1. [86] A function f , given by (1.1) is said to be in the class

Mα,λ,σ(ϕ), (α ≥ 0, λ ≥ 0) if satisfies the following conditions:

f ∈ σ

and

{
zf ′(z)

f(z)

(
f(z)

z

)α
+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
≺ ϕ(z)

and

{
wg′(w)

g(w)

(
g(w)

w

)α
+ λ

[
1 +

wg′′(w)

g′(w)
− wg′(w)

g(w)
+ α

(
wg′(w)

g(w)
− 1

)]}
≺ ϕ(w),

where g is the extension of f−1 to U .

Theorem 3.2.1. [86] If f ∈Mα,λ,σ(ϕ) is given by (1.1) then

|a2| ≤
B1

√
B1√∣∣∣∣12B2

1(α + 1)(α + 2λ+ 2) + (1 + α)2(1 + λ)2(B1 −B2)

∣∣∣∣
(3.3)

and

|a3| ≤
2 (B1 + |B2 −B1|)

(α + 1)(α + 2λ+ 2)
. (3.4)

For α = 0 and λ = 0 we obtain coefficient estimates for bi-starlike functions

and for α = 0 and λ = 1 we obtain the following coefficient estimates for bi-convex

functions.

For α = 1 and λ = 0 we obtain the following coefficient estimates for the class

Hσ(ϕ), introduced by Ali et al. in [5]:

Corollary 3.2.1. Let f be in the class M1,0,σ(ϕ). Then

|a2| ≤
B1

√
B1√

|3B2
1 + 4B1 − 4B2|

and

|a3| ≤
1

3
(B1 + |B2 −B1|).

We observe that the estimate for coefficient a3 in corollary 3.2.1 is improved (see

[5, Th. 2.1]).
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3.3 Coefficient bounds for the class CKσ(ϕ)

Definition 3.3.1. [88] A function f , given by (1.1), is said to be in the class CKσ(ϕ)

if satisfies the following conditions:

f ∈ σ and there exist a function φ ∈ K such that
f ′(z)

φ′(z)
≺ ϕ(z) and

g′(w)

φ′(w)
≺ ϕ(w),

where g is the extension of f−1 to U .

Theorem 3.3.1. [88] If f ∈ CKσ(ϕ) is given by (1.1) then

|a2| ≤ min

{√
B2

1(B1 + 1) + 4 |B2 −B1|
|3B2

1 − 4(B2 −B1)|
,
B1

2

}
(3.5)

and

|a3| ≤ B1 +
B2

1

4
+

4

3

|B2 −B1|
B1

. (3.6)

Setting ϕ(z) =

(
1 + z

1− z

)α
, 0 < α ≤ 1 we will obtain the following corollary:

Corollary 3.3.1. If f ∈ CKσ
((

1 + z

1− z

)α)
is given by (1.1) then

|a2| ≤
√

2α2 − α + 2

α + 2

and

|a3| ≤ α2 +
2

3
α +

4

3
.
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3.4 Coefficient bounds for the class CS∗σ(ϕ)

Definition 3.4.1. [88] A function f , given by (1.1), is said to be in the class CS∗σ(ϕ)

if satisfies the following conditions:

f ∈ σ and there exist a function h ∈ S∗ such that
f(z)

h(z)
≺ ϕ(z) and

g(w)

h(w)
≺ ϕ(w).

where g is the extension of f−1 to U .

Theorem 3.4.1. [88] If f ∈ CS∗σ(ϕ) is given by (1.1) then

|a2| ≤ min

{√
B3

1 +B2
1 + 4 |B2 −B1|

|B2
1 −B2 +B1|

, B1

}
(3.7)

and

|a3| ≤ 3B1 +B2
1 +

8|B2 −B1|
B1

. (3.8)

Setting ϕ(z) =

(
1 + z

1− z

)α
, 0 < α ≤ 1 we will obtain the following corollary:

Corollary 3.4.1. If f ∈ CS∗σ
((

1 + z

1− z

)α)
is given by (1.1) then

|a2| ≤
√

4α2 − 2α + 4

α + 1

and

|a3| ≤ 4α2 − 2α + 8.



Chapter 4

Classes of functions defined by

operators

In this chapter we introduce and investigate new classes of analytic functions

defined by means of several well-known operators which are presented below:

• Sălăgean differential operator:

For a function f ∈ A Sălăgean (see [76]) introduced the operator Dn defined

by

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z),
...

Dnf(z) = D(Dn−1f(z)), n = 1, 2, · · · , z ∈ U.

(4.1)

• Sălăgean integral operator:

For a function f ∈ A Sălăgean (see [76]) introduced the integral operator In

defined by

I0f(z) = f(z),

I1f(z) = If(z) =

∫ z

0

f(t)t−1dt,

...

Inf(z) = I(In−1f(z)), n = 1, 2, · · · , z ∈ U.

(4.2)

27
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• Ruscheweyh derivative:

For a function f ∈ A Ruscheweyh (see [73]) introduced the operator Rλ : A →
A defined by

Rλf(z) =
1

(1− z)λ+1
∗ f(z), λ > −1, z ∈ U.

In particular, for λ = n, we have

Rn(z) =
z

n!

dn

dzn
{
zn−1f(z)

}
, n ∈ N, z ∈ U. (4.3)

• Carlson-Shaffer operator:

Let the function φ(a, c; z) be given by

φ(a, c; z) :=
∞∑
k=0

(a)k
(c)k

zk+1 (c 6= 0,−1,−2, ...; z ∈ U)

where (x)k is the Pochhammer symbol defined by

(x)k :=

{
1, k = 0

x(x+ 1)(x+ 2)...(x+ k − 1), k ∈ N∗

Carlson and Shaffer [15] introduced a linear operator L(a, c), corresponding to

the function φ(a, c; z), defined by the following Hadamard product:

L(a, c) := φ(a, c; z) ∗ f(z) = z +
∞∑
k=1

(a)k
(c)k

ak+1z
k+1. (4.4)

• Cho-Srivastava operator:

In [17], N.E. Cho and H.M. Srivastava introduced a linear operator of the form:

I(m, l)f(z) = z +
∞∑
k=2

(
l + k

l + 1

)m
akz

k, m ∈ Z, l ≥ 0. (4.5)

• Srivastava-Attiya operator:
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Srivastava and Attiya (see [82]) introduced the linear operator

Js,b : A → A

defined by

Js,b(f)(z) := Gs,b(z) ∗ f(z), z ∈ U, b ∈ C− Z−0 , s ∈ C, (4.6)

where

Gs,b(z) := (1 + b)s

[
∞∑
n=0

zn

(n+ b)s
− b−s

]
, z ∈ U. (4.7)

4.1 A new class of analytic functions connected

with a generalized operator

Let L(m, l, a, c, λ) be the operator defined by:

L(m, l, a, c, λ)f(z) = λI(m, l)f(z) + (1− λ)L(a, c)f(z) (4.8)

where I(m, l)f(z) is of the form (4.4) and L(a, c)f(z) is of the form (4.5).

For λ = 0 we obtain Carlson-Shaffer operator introduced in [15], for λ = 1 we obtain

linear operator in [17] and for a = m+1, c = 1, l = 0 we obtain generalized Sălăgean

and Ruscheweyh operator studied by A. Alb Lupaş in [3].

For c = 1 and a = n+ 1 we have

L(m, l, n, α)f(z) = z +
∞∑
k=2

[
α

(
l + k

l + 1

)m
+ (1− α)Cn

n+k−1

]
akz

k, (4.9)

By means of operator L(m, l, a, c, λ) we introduce the following subclass of ana-

lytic functions:

Definition 4.1.1. [85] We say that a function f ∈ An is in the class BL(m, l, a, c, µ, α, λ),

n,m ∈ N, l, µ, λ ≥ 0, α ∈ [0, 1) if∣∣∣∣L(m+ 1, l, a+ 1, c, λ)f(z)

z

(
z

L(m, l, a, c, λ)f(z)

)µ
− 1

∣∣∣∣ < 1− α, z ∈ U. (4.10)
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Remark 4.1.1. [85] The class BL(m, l, a, c, µ, α, λ) includes various classes of an-

alytic univalent functions, such as:

• BL(0, 0, a, c, 1, α, 1) ≡ S∗(α)

• BL(1, 0, a, c, 1, α, 1) ≡ K(α)

• BL(0, 0, a, c, 0, α, 1) ≡ R(α)

• BL(0, 0, a, c, 2, α, 1) ≡ B(α) introduced by Frasin and Darus in [24]

• BL(0, 0, a, c, µ, α, 1) ≡ B(µ, α) introduced by Frasin and Jahangiri in [23]

• BL(m, 0, a, c, µ, α, 1) ≡ BS(m,µ, α) introduced by A. Alb Lupaş and A. Cătaş

in [4]

• BL(m, 0,m + 1, 1, µ, α, 0) ≡ BR(m,µ, α) introduced by A. Alb Lupaş and A.

Cătaş in [3]

• BL(m, 0,m+1, 1, µ, α, λ) ≡ BL(m,µ, α, λ) introduced by A. Alb Lupaş and A.

Cătaş in [2]

In the first theorem we provide sufficient condition for functions to be in the

class BL(m, l, a, c, µ, α, λ).

Theorem 4.1.1. [85] Let f ∈ An, n,m ∈ N, l, µ, λ ≥ 0, α ∈ [1/2, 1). If

λ
(l + 1)I(m+ 2, l)f(z)− lI(m+ 1, l)f(z)

L(m+ 1, l, a+ 1, c, λ)

+(1− λ)
(a+ 1)L(a+ 2, c)f(z)− aL(a+ 1, c)f(z)

L(m+ 1, l, a+ 1, c, λ)

−µλ(l + 1)I(m+ 1, l)f(z)− lI(m, l)f(z)

L(m, l, a, c, λ)

+µ(1− λ)
aL(a+ 1, c)f(z)− (a− 1)L(a, c)f(z)

L(m, l, a, c, λ)

+µ ≺ 1 +
3α− 1

2α
z, z ∈ U, (4.11)

then f ∈ BL(m, l, a, c, µ, α, λ).
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If we take a = l in Theorem 4.1.1, we obtain the following corollary:

Corollary 4.1.1. [85] Let f ∈ An, n,m ∈ N, l, µ, λ ≥ 0, α ∈ [1/2, 1). If

(l + 1)L(m+ 2, l, a+ 2, c, λ)

L(m+ 1, l, a+ 1, c, λ)
− µ(l + 1)L(m+ 1, l, a+ 1, c, λ)

L(m, l, a, c, λ)

−l + µ(l + 1) ≺ 1 +
3α− 1

2α
z, z ∈ U,

then f ∈ BL(m, l, a, c, µ, α, λ).

Next, we prove the following theorem:

Theorem 4.1.2. [85] Let f(z) ∈ A. If f(z) ∈ BL(m, l, l + 1, c, µ, α, λ), then∣∣∣∣arg
L(m, l, l + 1, c, λ)

z

∣∣∣∣ < π

2
α,

for 0 < α ≤ 1 and 2/π tan−1 (α/(l + 1))− α(µ− 1) = 1.

If we get, in Theorem 4.1.2, m = l = 0, µ = 2 and λ = 1, we obtain the following

corollary, proved by B. A. Frasin and M. Darus in [24]:

Corollary 4.1.2. [24] Let f(z) ∈ A. If f(z) ∈ B(α), then∣∣∣∣arg

(
f(z)

z

)∣∣∣∣ < π

2
α, z ∈ U,

for some α(0 < α < 1) and (2/π) tan−1 α− α = 1.

4.2 A subclass of harmonic functions

Let

f(z) = z +
∞∑
k=2

akz
k +

∞∑
k=1

bkzk, |b1| < 1. (4.12)

We note that the family SH reduces to the well known class S of normalized univalent

functions if the co-analytic part of f = h + g is identically zero (g ≡ 0). Silverman
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[77] introduced the subclass of SH, denoted by SH, which contains functions of the

form f = h+ g where

h(z) = z −
∞∑
k=2

|ak|zk and

g(z) =
∞∑
k=1

|bk|zk, |b1| < 1.

(4.13)

For f = h + g given by (4.12), we define the modified operator L(m, l, n, α) of

harmonic univalent function f as

L(m, l, n, α)f(z) = L(m, l, n, α)h(z) + L(m, l, n, α)g(z), (4.14)

where

L(m, l, n, α)h(z) = z +
∞∑
k=2

[
α

(
l + k

l + 1

)m
+ (1− α)Cn

n+k−1

]
akz

k

and

L(m, l, n, α)g(z) =
∞∑
k=1

[
α

(
l + k

l + 1

)n
+ (1− α)Cn

n+k−1

]
bkz

k, |b1| < 1.

We denote by HL(m, l, n, α, γ) the class of harmonic functions f of the form (4.12),

such that

<
[
z (L(m, l, n, α)f(z))′

L(m, l, n, α)f(z)

]
≥ γ, 0 ≤ γ < 1.

For n = l, we obtain the class HL(m, l, α, γ)

<
[

(l + 1)L(m+ 1, l, l + 1, α)f(z)

L(m, l, l, α)f(z)
− l
]
≥ γ, (4.15)

where L(m, l, n, α) is defined by (4.14).

Also, we denote byHL(m, l, α, γ) the class of functions f = h+g inHL(m, l, α, γ),

where h and g are of the form (4.13).

First we determine a sufficient coefficient bound for functions in HL(m, l, α, γ).
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Theorem 4.2.1. [89] Let f = h+ g be given by (4.12). If

∞∑
k=2

(k − γ)

[
α

(
l + k

l + 1

)m
+ (1− α)C l

l+k−1

]
(|ak|+ |bk|) + |b1| ≤ 1− γ, (4.16)

where l,m ≥ 0, a1 = 1, α, γ ∈ [0, 1), then f(z) is harmonic univalent, sense

preserving in U and f(z) ∈ HL(m, l, α, γ).

If we take m, l, γ = 0 and α = 1 in the previous theorem, we obtain the following

theorem, proved by Jahangiry and Silverman in [37].

Corollary 4.2.1. Let f = h+ g given by (4.12). If

∞∑
k=2

k(|ak|+ |bk|) ≤ 1− |b1|,

then f is sense-preserving, harmonic univalent in U and f ∈ S∗H (the functions in

SH which are starlike in U).

The harmonic function

f(z) = z +
∞∑
k=2

1− γ
(k − γ)Ak

xkz
k +

∞∑
k=1

2(1− γ)

[(1− γ + k) + |1 + γ − k|]Ak
ykzk, (4.17)

where

Ak =

[
α

(
l + k

l + 1

)m
+ (1− α)C l

l+k−1

]
.

∞∑
k=2

|xk|+
∞∑
k=1

|yk| = 1

shows that the coefficient bound given by (4.16) is sharp.
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The functions of the form (4.17) are in HL(n, l, α, γ) because

∞∑
k=2

(k − γ)Ak(|ak|+ |bk|) + |b1|

=
∞∑
k=2

(k − γ)Ak|ak|+
∞∑
k=1

(1− γ + k) + |1 + γ − k|
2

Ak|bk|

= (1− γ)

(
∞∑
k=2

|xk|+
∞∑
k=1

|yk|

)
= 1− γ.

In the next theorem we will prove the necessity of condition (4.16) for functions of

the form f = h+ g, where h and g are of the form (4.13).

Theorem 4.2.2. [89] Let f = h+ g be given by (4.13). Then f ∈ HL(m, l, α, γ) if

and only if

∞∑
k=2

(k − γ)

[
α

(
l + k

l + 1

)m
+ (1− α)C l

l+k−1

]
(|ak|+ |bk|) + |b1| ≤ 1− γ. (4.18)

Theorem 4.2.3. [89] Let f be given by 4.13. Then f ∈ HL(m, l, α, γ) if and only

if

f(z) =
∞∑
k=1

(Xkhk(z) + Ykgk(z)) , (4.19)

where

h1(z) = z, hk(z) = z − 1− γ
(k − γ)Ak

zk, k ≥ 2,

gk(z) = z +
2(1− γ)

((1− γ + k) + |1 + γ − k|)Ak
zk, k ≥ 1,

∞∑
k=1

(Xk + Yk) = 1, Xk ≥ 0, Yk ≥ 0.

The following theorem gives the distortion bounds for functions in the class
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HL(m, l, α, γ).

Theorem 4.2.4. [89] Let f ∈ HL(m, l, α, γ). Then, for |z| = r < 1, we have

|f(z)| ≤ (1 + |b1|)r +
1

α

(
l + 2

l + 1

)m
+ (1− α)(l + 1)

(
1− γ
2− γ

− 1

2− γ
|b1|
)
r2

and

|f(z)| ≥ (1− |b1|)r −
1

α

(
l + 2

l + 1

)m
+ (1− α)(l + 1)

(
1− γ
2− γ

− 1

2− γ
|b1|
)
r2.

Theorem 4.2.5. [89] Let f(z) ∈ HL(m, l, α, γ) and F (z) ∈ HL(m, l, α, δ), for

0 ≤ δ ≤ γ < 1. Then f(z) ∗ F (z) ∈ HL(m, l, α, γ) ⊂ HL(m, l, α, δ).

4.3 A new class of analytic functions connected

with Sălăgean integral operator

In this section we provide an investigation of a new class of analytic functions,

Lnα,β. In particular, we derive an inclusion property, a subordination result, extreme

points and coefficient bounds for this function class.

Definition 4.3.1. [90] For α ∈ (−π, π], β ∈ (0, 1] and n ∈ N, let

Lnα,β :=

{
f ∈ A :

∣∣∣∣arg

(
(Inf(z))′ +

1 + eiα

2
z(Inf(z))′′

)∣∣∣∣ < β
π

2
, z ∈ U

}
(4.20)

We observe that for β = 1 and n = 0 L0
α,1 := Lα.

In our first theorem we obtain an inclusion result for the function class Lnα,β:

Theorem 4.3.1. [90] Assume that there exists a function ω(z) such that

(In+1f(z))′ +
1 + eiα

2
z(In+1f(z))′′ =

(
1 + ω(z)

1− ω(z)

)β
, (4.21)
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where ω(0) = 0. Then

Lnα,β ⊂ Ln+1
α,β , for each n ∈ N, α ∈ (−π, π], and β ∈ (0, 1].

Theorem 4.3.2. [90] Let α ∈ (−π, π), β ∈ (0, 1] and n ∈ N. If f ∈ Lnα,β then

(Inf(z))′ ≺ q(z) =
c

zc

∫ z

0

tc−1
(

1 + t

1− t

)β
dt, z ∈ U,

where c =
2

1 + eiα
.

The function q is the best dominant.

In the next theorem we will find the extreme points of the class Lnα,β.

Theorem 4.3.3. [90] Let α ∈ (−π, π), β ∈ (0, 1] and n ∈ N. The extreme points

of Lnα,β are

fx(z) = z + 2
∞∑
k=2

λk−1k
n−1

eiα(k − 1) + (k + 1)
xk−1zk, (4.22)

where |x| = 1, z ∈ U ,

λk =


∞∑
j=0

(
β

j

)(
−β
k − j

)
(−1)k−j 0 < β < 1,

(−2)k−1 β = 1.

(4.23)

and (
β

j

)
=


β(β − 1) . . . (β − j + 1)

j!
j = 1, . . . , k,

1 j = 0.

Finally, we present upper bounds on coefficients in Lnα,β. The result is sharp in

the case k = 2.

Theorem 4.3.4. [90] Let f(z) = z+
∞∑
k=2

akz
k ∈ Lnα,β, where α ∈ (−π, π], β ∈ (0, 1]

and n ∈ N. Then

|ak| ≤
2
√

2βkn−1√
k2 + 1 + (k2 − 1) cosα

, k = 2, 3, . . . . (4.24)
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In the case k = 2 the result is sharp, the equality holds for the function fx given in

(4.22)

4.4 A subclass of analytic functions involving λ-

spirallikeness of order α

In this section, using Sălăgean integral operator, we introduce two subclasses

of analytic functions involving λ-spirallikeness of order α and study some inclusion

properties for these classes.

First, we consider the integral operator Lc, introduced by Bernardi in [9].

For f(z) ∈ A and c ∈ N, define the integral operator Lcf(z) of the form

Lcf(z) =
c+ 1

zc

∫ z

0

f(t)tc−1dt. (4.25)

Considering the integral operator In defined in [76], of the form (4.2), we intro-

duce the following subclasses of analytic functions:

Sλn(α) = {f ∈ A | Inf(z) ∈ Sλ(α)},

F λ
n (α) = {f ∈ A | Inf(z) ∈ F λ(α)}.

It is easy to see that f(z) ∈ F λ
n (α) if and only if zf ′(z) ∈ Sλn(α). Also, Sλ0 (α) =

Sλ(α) and F λ
0 (α) = F λ(α).

Theorem 4.4.1. [19] For all n ∈ N,

Sλn(α) ⊂ Sλn+1(α),

where λ ∈ (−π/2, π/2) and α ∈ [0, 1).

Theorem 4.4.2. [19] For all n ∈ N,

F λ
n (α) ⊂ F λ

n+1(α),

where λ ∈ (−π/2, π/2) and α ∈ [0, 1).
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Theorem 4.4.3. [19] Let c ∈ N, λ ∈ (−π/2, π/2), α ∈ [0, 1). If f(z) ∈ Sλn(α) then

Lcf(z) ∈ Sλn(α), for all z ∈ U.

Theorem 4.4.4. [19] Let c ∈ N, λ ∈ (−π/2, π/2), α ∈ [0, 1). If f(z) ∈ F λ
n (α) then

Lcf(z) ∈ F λ
n (α), for all z ∈ U.

4.5 A new class of generalized close-to-starlike

functions

In this section we derive some properties for the class CS∗s,b(α) such as inclusion

results, coefficient inequalities and integral representation.

Definition 4.5.1. [91] A function f ∈ A is in the class CS∗s,b(α), α ∈ [0, 1] if

the function F (f)(z) = (1 − α)Js,b(f)(z) + αzJ ′s,b(f)(z) is close-to-starlike, that is∫ θ2

θ1

<
(
zF ′(f)(z)

F (f)(z)

)
dθ > −π, z = reiθ, 0 < r < 1.

The above condition is equivalent to

∫ θ2

θ1

<

(
zJ ′s,b(f)(z) + αz2J ′′s,b(f)(z)

(1− α)Js,b(f)(z) + αzJ ′s,b(f)(z)

)
dθ > −π, z = reiθ, 0 < r < 1. (4.26)

In view of Definition 1.5.1, we can give an equivalent form of Definition 4.5.1:

Definition 4.5.2. [91] A function f is in the class CS∗s,b(α) if and only if there exist

a function g ∈ S∗ such that

<
[
F (f)(z)

g(z)

]
> 0, z ∈ U. (4.27)

First, we give an inclusion result for the class CS∗s,b(α).

Theorem 4.5.1. [91] For α ∈ (0, 1], CS∗s,b(α) ⊂ CS∗s,b.

Theorem 4.5.2. [91] If the function f of the form f(z) = z +
∞∑
n=2

anz
n is in the

class CS∗s,b(α), then

|an| ≤
n2

1− α + αn

∣∣∣∣(n+ b

1 + b

)s∣∣∣∣ , n ∈ N \ {1} .
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The result is sharp.

Next, we will show that the class CS∗s,b(α) is closed under the convolution oper-

ation by convex functions.

Theorem 4.5.3. [91] Let φ ∈ K and f ∈ CS∗s,b(α). Then φ ∗ f ∈ CS∗s,b(α).

Finally, we give an integral representation for functions in the class CS∗s,b(α)

Theorem 4.5.4. [91] If the function f is in the class CS∗s,b(α), then

f(z) = hs,b(z) ∗ 1

αz1/α−1

∫ z

0

t1/α−2g(t)p(t)dt,

where g ∈ S∗, p ∈ P and

hs,b(z) = z +
∞∑
n=2

(
n+ b

1 + b

)s
zn.



Chapter 5

Univalence criteria

5.1 Löwner chains. Basic definitions and nota-

tions

Definition 5.1.1. A function L(z, t) : U × [0,∞)→ C is said to be a Löwner chain

if it satisfies the following conditions:

i) L(z, t) is analytic and univalent in U for all t ∈ [0,∞),

ii) L(z, s) ≺ L(z, t) for all 0 ≤ s ≤ t <∞,

where the symbol ′ ≺′ stands for subordination.

5.2 Univalence criteria connected with Sălăgean

operator

Theorem 5.2.1. [92] Let f ∈ A and p an analytic function with p(0) = 1. If the

inequalities ∣∣∣∣ 2

p(z) + 1
· zf ′(z)

Dn+1f(z)
− 1

∣∣∣∣ ≤ 1 (5.1)

and∣∣∣∣( 2

p(z) + 1
· zf ′(z)

Dn+1f(z)
− 1

)
|z|2 + (1− |z|2)

(
Dn+2f(z)

Dn+1f(z)
− 1 +

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

(5.2)

40
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holds true for z ∈ U , then the function f is univalent in U .

By setting n = 0 in Theorem 5.2.1 we obtain the corollary due to Lewandowski

[49].

For p ≡ 1 the following criterion reduces to a well-known criterion found by

Becker [8] and Duren et al. [22].

For n = 1, Theorem 5.2.1 yields

Corollary 5.2.1. [92] Let f ∈ A and p an analytic function with p(0) = 1. If the

inequalities ∣∣∣∣ 2

p(z) + 1
· f ′(z)

f ′(z) + zf ′′(z)
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· f ′(z)

f ′(z) + zf ′′(z)
− 1

)
|z|2

+ (1− |z|2)
(

2zf ′′(z) + z2f ′′′(z)

f ′(z) + zf ′′(z)
+

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

holds true for z ∈ U then f ∈ S.

For the Löwner chain

L(z, t) := f(e−tz) + (etz − e−tz) · p(e
−tz) + 1

2
· D

n+1f(e−tz)

Dnf(e−tz)
, z ∈ U, t ∈ [0,∞),

following the same steps as in the proof of Theorem 5.2.1, we obtain:

Theorem 5.2.2. [92] Let f ∈ A and p an analytic function with p(0) = 1. If the

inequalities ∣∣∣∣ 2

p(z) + 1
· f ′(z)

Dnf(z)

Dn+1f(z)
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· f ′(z)

Dnf(z)

Dn+1f(z)
− 1

)
|z|2

+(1− |z|2)
(
Dn+2f(z)

Dn+1f(z)
− Dn+1f(z)

Dnf(z)
+

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .

Setting n = 0 in previous theorem we obtain the following result:
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Corollary 5.2.2. Let f ∈ A and p an analytic function with p(0) = 1. If the

inequalities ∣∣∣∣ 2

p(z) + 1
· f(z)

z
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· f(z)

z
− 1

)
|z|2

+(1− |z|2)
(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .

For p ≡ 1 in previous corollary we obtain Corollary 3.5 due to Kanas and Lecko

[42].

Setting p(z) =
f(z)

z
we obtain:

Corollary 5.2.3. [92] Let f ∈ A with <f(z)

z
> 0 . If the inequality

∣∣∣∣(f(z)

z
− 1

)
|z|2 + (1− |z|2)

[
1 +

zf ′′(z)

f ′(z)

(
f(z)

z
+ 1

)
− zf ′(z)

f(z)

]∣∣∣∣ ≤ ∣∣∣∣f(z)

z
+ 1

∣∣∣∣
holds true for z ∈ U , then the function f is univalent in U .

Now, setting p(z) =
zf ′(z)

f(z)
in Corollary 5.2.2, we obtain the following result:

Corollary 5.2.4. Let f ∈ A. If the inequalities∣∣∣∣2f(z)

z
− zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ ∣∣∣∣1 +
zf ′(z)

f(z)

∣∣∣∣
and ∣∣∣∣(2

f(z)

z
− zf ′(z)

f(z)
− 1

)
|z|2

+(1− |z|2)
(

2
zf ′(z)

f(z) + 1

)(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ ≤ ∣∣∣∣1 +
zf ′(z)

f(z)

∣∣∣∣
holds true for z ∈ U , then the function f is univalent in U .
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5.3 Univalence criteria connected with Ruscheweyh

operator

Theorem 5.3.1. [92] Let f ∈ A and let p be an analytic function with p(0) = 1. If

the inequalities ∣∣∣∣ 2

p(z) + 1
· zf ′(z)

(n+ 1)Rn+1f(z)− nRnf(z)
− 1

∣∣∣∣ ≤ 1 (5.3)

and ∣∣∣∣( 2

p(z) + 1
· zf ′(z)

(n+ 1)Rn+1f(z)− nRnf(z)
− 1

)
|z|2

+(1− |z|2)
[
(n+ 1)

(
(n+ 2)Rn+2f(z)− (n+ 1)Rn+1f(z)

(n+ 1)Rn+1f(z)− nRnf(z)
− 1

)
+

zp′(z)

p(z) + 1

]∣∣∣∣ ≤ 1

(5.4)

holds true for z ∈ U , then the function f is univalent in U .

For n = 0 in Theorem 5.3.1 we obtain the result due to Lewandowski [49] and

for n = 0 and p = 1 we obtain the result due to Becker [8].

By setting n = 1 in Theorem 5.3.1, we have

Corollary 5.3.1. [92] Let f ∈ A and let p be an analytic function with p(0) = 1.

If the inequalities ∣∣∣∣ 2

p(z) + 1
· zf ′(z)

zf ′(z) + z2f ′′(z)
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· zf ′(z)

zf ′(z) + z2f ′′(z)
− 1

)
|z|2

+(1− |z|2)
[
zp′(z)

p(z) + 1
+

2zf ′(z) + 4z2f ′′(z) + z3f ′′′(z)

zf ′(z) + z2f ′′(z)
− 2

]∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .

Theorem 5.3.2. [92] Let f ∈ A and let p be an analytic function with p(0) = 1. If

the inequalities ∣∣∣∣ 2

p(z) + 1
· f ′(z)

Rnf(z)

Rn+1f(z)
− 1

∣∣∣∣ ≤ 1
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and ∣∣∣∣( 2

p(z) + 1
· f ′(z)

Rnf(z)

Rn+1f(z)
− 1

)
|z|2

+(1− |z|2)
(

(n+ 2)
Rn+2f(z)

Rn+1f(z)
− (n+ 1)

Rn+1f(z)

Rnf(z)
− 1 +

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .

For n = 0 we obtain the result in Corollary 5.2.2.
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[10] L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine

schlichte Abbildung des Einheitskreises vermitteln, Preuss. Akad. Wiss.

Sitzungsb.,(1916), 940-955.

[11] D. Blezu and N.N. Pascu, Integral of univalent functions, Mathematica(Cluj),

46(1981), 5-8.

[12] L.D. Branges, A proof of the Bieberbach conjecture, Acta Math. 154(1985),

137-152.l

[13] D.A. Brannan, J.G. Clunie and W.E. Kirwan, Coefficient estimates for a class

of starlike functions, Canad. J. Math. 22(1970), 476-485.

[14] D.A. Brannan, J.G. Clunie and W.E. Kirwan, On the coefficient problem for

functions of bounded boundary rotation, Ann. Acad. Sci. fenn. Al 532(1972),

18 pp.

[15] B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric func-

tions, SIAM J. Math. Anal., 15(1984), no. 4, 737-745.

[16] P.N. Chichra, Regular functions f(z) for which zf ′(z) is α-spiral-like, Proc.

Amer. Math. Soc., 49(1975), no. 1, 151-160.

[17] N.E. Cho and H.M. Srivastava, Argument estimates for certain analytic func-

tions defined by a class of multiplier transformation, Math. Comput Modelling,

37(1-2)(2003), 39-49.

[18] J. Clunie, T. Scheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn.

Ser. A. I. Math, 9(1984), 2-25.
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conditions, Bull. Soc. Sci. Lett.  Lódź 47, Ser. Rech. Deform. 24(1997), 73-82.

[41] S. Kanas and A. Lecko , Univalence criteria connected with arithmetic and

geometric means, II, Folia Sci. Univ. Tech. Resov. 20(1996), 49-59.

[42] S. Kanas and A. Lecko , Univalence criteria connected with arithmetic and

geometric means, II, Proceedings of the Second Int. Workshop of Transform

Methods and Special Functions, Varna ’96, Bulgar. Acad. Sci. (Sofia)(1996),

201-209.

[43] S. Kanas and A. E. Tudor Differential subordinations and harmonic means, The

Scientific World Journal, Submitted.

[44] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1(1952), 169-

185.

[45] Y. Ch. Kim and A. Lecko , On differential subordinations related to convex

functions, J. Math. Anal. Appl. 235(1999), 130 – 141.
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