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Thesis outline

The present thesis is structured in four main parts.
In the first part, consisting of Chapter I and II we give a literature review

about the synchronization phenomena. In Chapter I (entitled Emerging syn-
chronization - general aspects) we present a historical review about the
problematics of spontaneous synchronization. In Chapter II (entitled Classi-
cal models of spontaneous synchronization) we describe the main models
which aim to explain spontaneous synchronization. We argue on the impor-
tance of these models, we present the Kuramoto, the integrate and fire and the
two-mode stochastic oscillator models.

In the second part, consisting of Chapter III (entitled Synchronization
of two mode stochastic oscillators) we present our research, related to
the two-mode stochastic oscillators. We present a new optimized algorithm
for simulating such systems, we introduce a novel type of two-mode stochastic
oscillators and investigate it’s behavior for different parameters. We describe
an experimental realization of the system and present results obtained with it.
Experimental and theoretical results are compared in a critical manner.

The third part contains Chapter IV and V. In Chapter IV (Synchroniza-
tion studies in globally coupled metronome systems) we investigate the
emergence of synchronization in a system composed of coupled metronomes. We
give a historical introduction to these kind of setups. and describe the system we
investigate experimentally. The system is modeled theoretically. By choosing
realistic model parameters we reproduce the experimental results. Finite size
effects are investigated by the theoretical model. In Chapter V (Exemplifying
the Kuramoto-type phase transition with metronomes) we reproduce
the Kuramoto-type phase transition with metronomes. We describe the used
experimental method, the obtained experimental results and the theoretical
model of the system. Experimental and theoretical results are compared and
discussed.

In the fourth part, consisting of Chapter VI (Summary), Chapter VII
(Relevant personal contributions) we summarize our results, discuss their
relevance and enumerate the personal contributions. The thesis end with a
Bibliography consisting of 44 titles.
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1 Emerging synchronization - general aspects

Spontaneous synchronization is a complex phenomena emerging in mechanical
systems (pendulum clocks [3, 1, 4], mechanically coupled metronomes [10, 15]),
biology (pacemaker cells [11], fireflies in south-east Asia [12]), and social systems
(menstrual cycles of women living together [6], human clapping [9]). Because of
the complexity and the variety of the systems in which synchronization emerges,
it attracted the interest of scientists for centuries and even nowadays it is still
an active research topic [14, 13].

The earliest scientifically documented work related to synchronization dates
back to a dutch physicist in XVII century, Christiaan Huygens. He observed the
synchronized motion of two of his pendulum clocks attached to the same wall,
and mentioned this ”sympathy of two clocks” to his father, in a letter dated on
26 February 1665 [3].

He performed several experiments to find the origin of coupling between
the pendulum clocks, and came to the conclusion, that the coupling is real-
ized through tiny vibrations in their common suspension. He summarized his
observations in a letter to the Royal Society of London [2].

Despite the fact, that Huygens made this discovery in the mid 17th cen-
tury, mathematical models aimed to describe this appeared just after 1960, and
surprisingly were elaborated by biologists.

Arthur Taylor Winfree in 1966 came to the conclusion that spontaneous
synchronization is governed by the coupling strength between the oscillators,
and appears as a genuine phase transition above a critical coupling value [16].
Kuramoto and Nishikawa[5] reformulated and simplified his model in order to
make it analytically solvable.

Charles S. Peskin modeled the synchronization of pacemaker cells with a
simple physical setup consisting of parallely coupled capacitors and resistors
[11]. Inspired by this model Mirollo and Strogatz made a more general model,
which was simple enough to allow for analytical results [7].

2 Classical models of spontaneous synchroniza-
tion

2.1 Introduction

Modeling and explaining such a fascinating and puzzling phenomena as emerging
synchronization was not an easy task. We will present the basic biologically
inspired models and we will introduce our novel modeling paradigm, which
could be relevant for understanding spontaneous synchronization in biological
or social systems.
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2.2 Kuramoto model

Starting from Winfree’s model, which could not be solved analytically, in the
1980s Yoshiki Kuramoto and Ikuko Nishikawa [5] developed the Kuramoto
model, which is a mathematical model for describing the collective behavior
of an ensemble of phase coupled non-identical rotators. In the best known for-
mulation every rotator has its own, intrinsic ωi frequency, which is distributed
according to a g(ωi) probability density. The coupling between the oscillators
is uniform and global. The evolution of the system is given by:

∂θi
∂t

= ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1....N. (1)

where N is the number of the oscillators, K is the coupling constant, and θi is
the phase of unit i. In order to characterize the level of the synchronization in
the system it is crucial to work with a proper order parameter. Kuramoto et.
al. came to the conclusion that a suitable order parameter, r, for their system
would be:

r exp(iψ) =
1

N

∑
j=1

N exp(iθj), (2)

where ψ represents a kind of collective phase of the synchronized state.
The Equations can be solved exactly, and one can find a Kc critical value,

above which synchronization appears.

Figure 1: Results for the order-parameter of the Kuramoto model.

If K < Kc the system will be in a disordered phase, where the units are not
synchronized, and r = 0. The transition from the unsynchronized state to the
synchronized one appears as a second order phase-transition (as it is sketched
in Figure 1.)

2.3 Integrate and fire type oscillators

The disadvantage of the Kuramoto model is that the interactions between the
oscillators are continuously acting. In biological systems, however, it is more
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relevant to have pulse-like interactions, i.e. the interaction is present only for a
limited part of the period. Starting from Charles S. Peskin model[11] in 1990
Mirollo and Strogatz developed a more general theoretical model [7].

They considered a globally coupled oscillator ensemble with pulse-like in-
teractions. They associated a Φ phase parameter to each oscillator When the
oscillator reaches the maximum Φ value, will emit a pulse (will fire) and the
value of the parameter will become 0, after which the cycle starts again. They
also associated an energy type parameter, E, to the oscillator which is linked to
the phase parameter through a monotonic function: E = f(Φ). If one oscillator
fires, the effect of the emitted pulse on the other oscillators will be, that their
energy parameter will be instantaneously increased by a σ value. By increasing
the value of E, the value of Φ will increase consecutively, shortening the time
until the oscillator fires. If we illustrate the oscillators as points moving along
the f function then we can observe their dynamics on Figure 2.

Figure 2: The dynamics of two integrate and fire type oscillator. a) Oscillator
1 is at the maximum phase value, oscillator 2 is below b.) oscillator 1 fires, and
raises the energy of oscillator 2 with a σ value.

If we imagine the oscillators as an interacting ensemble and not just individ-
ual specimens, then we will immediately come to the conclusion, that the firing
of one oscillator can trigger an avalanche of firings, until all the oscillators will
fire in unison (similar to the fireflies, or the pacemaker cells). Depending on
the difference between the oscillators, there is a critical σc coupling constant. If
σ > σc the oscillators will synchronize.

Both the Kuramoto model and the integrate and fire oscillator models have
a built-in phase minimizing mechanism, so the appearance of spontaneous syn-
chronization is an expected phenomenon.

2.4 Two-mode stochastic oscillators

In complex biological and sociological systems we do not know whether syn-
chronization is the primary aim of the participating specimens, or appears only
as a co-product of a hidden optimization mechanism. With the hope of better
understanding this issue, Nikitin, Vicsek and Néda [8] introduced and investi-
gated a new type of oscillator ensemble, the pulse coupled two mode stochastic
oscillator system.

They have considered a quite general oscillator family, where the oscillator
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periodically cycles between three possible phases, A, B, and C. The first phase
(A) is a stochastic state. The remaining two states (B and C) are deterministic.
The B state is a waiting period, which in the case of neurons corresponds to a
relaxation and recombination process. State C is the pulse emitting phase, here
the oscillators fire, or emit a pulse. They denoted with τA, τB and τC the time
periods which the oscillator spent in the respective states.

The emitting state is state C. Here the oscillator will emit a constant pulse
of intensity 1

N , where N is the number of oscillators. The total output of the
system is:

f =

N∑
i=1

fi, (3)

where fi is the output of oscillator i, which has the following values:

fi =

{
0 if the oscillator is in state A or B
1
N if the oscillator is in state C

Every oscillator detects the pulses emitted by the others, so they are globally
coupled. The governing dynamics is simple: the oscillators try to maintain the
total output of the system, f , around a given f∗ value. In order to achieve this,
the oscillators can play with two different modes by manipulating the emitted
pulses. This pulse manipulation can be done in two different ways: either with
variable waiting periods, or variable emitting periods. In both scenarios, for
certain parameter intervals a partial synchronization will emerge.

3 Synchronization of two mode stochastic oscil-
lators

3.1 Novel simulations for variable waiting periods (model
I)

As a first exercise we have tried to reproduce with optimized computer simu-
lation the results published in the work of Nikitin, Vicsek and Néda in 2003.
Fixing the appropriate parameters (τB| = 0.8 s, τB|| = 0.4 s, τc = 0.1 s and
τ∗ = 0.2 s) we ran simulations for different oscillator numbers and f∗ values.
We calculated the equilibrium synchronization level and averaged the results
for 100 runs, each with different initial conditions. The overall results for the
synchronization order parameter as a function of f∗ is plotted in Figure 3.

Our results suggests that as a function of f∗ the system will go from an
unsynchronized state to a synchronized one, and then back again to an un-
synchronized state. The sudden change in the order parameter indicates two
phase-transition like phenomena, which becomes more evident, as the number
of oscillators are increased. The obtained results are in very good agreement
with the ones obtained in the previous studies by Nikitin, Vicsek and Néda,
giving thus confidence in the optimized numerical code in further studies.
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Figure 3: Simulation results for the two mode stochastic oscillators with a) two
possible waiting periods. b) variable emitting periods

3.2 Results for the modified model (model II) with vari-
able emitting periods

To prove that synchronization through optimization is a more general concept,
and it does not appear only in the very strict model used previously, we con-
sidered another variant of the model. The dynamics of these new oscillators is
similar to the previous case, but instead of variable waiting periods, we have
two possible emitting periods. We have chosen parameter values close to our
previous model, and fixed: τB = 0.4 s, τCI

= 0.1 s, τCII
= 0.2 s and τ∗ = 0.2

s. We ran multiple simulations, and calculated the order parameter, averaging
the results over several runs. The averaged results can be seen on Figure 3.

We investigated the dependence of the oscillator numbers on the detected
synchronization level, considering up to N = 5000 oscillators. The obtained
results are presented on Figure 4. Although there is a fluctuation in the order
parameter, we have a very clear trend: by increasing the number of oscillators,
the synchronization level rises.

0 1000 2000 3000
N

0

5

10

15

20

25

p/p
1

a.)

0 0.1 0.2 0.3 0.4 0.5 0.6

f
*

0

0.2

0.4

0.6

0.8

1

p/p
max

24 neighbors, 1D
48 neigbors, 1D
24 neighbors, 2D
48 neigbors, 2D
global 

b.)

Figure 4: Simulation results for the two mode stochastic oscillators with variable
emitting periods. a) for different numbers of oscillators, the black line is the raw
result, the red one is an averaging on a moving window with length ∆N = 50.
f∗ = 0.15 s and τ∗ = 0.2 s) b)Results for 1D and 2D square lattice and local
coupling (N=2500, τA = 0.08s, τB = 0.8s, τCI

= 0.2s, τCII
= 0.4s).
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We also studied how the topology of the coupling influences the synchroniza-
tion level. Instead of the global coupling, we considered a local coupling with
a lattice topology. Synchronization may emerge under certain f∗ intervals, for
high number of interacting neighbors. For low number of interacting neighbors
synchronization will not appear. On Figure 4 we present results in such a case,
using N = 2500 oscillators.

3.3 Experimental realization of the two-mode stochastic
oscillator system

Here we consider an experimental realization of the two-mode stochastic oscilla-
tor system. To accomplish our goal we designed a new type of oscillator, and we
named them as “electronic fireflies”. The oscillators and the computer interface
for measurements was designed, built and programmed by Dr. Arthúr Tunyagi.
These electronic fireflies have three main properties:

1. they can emit a light pulse with a Light Emitting Diode (LED)

2. they can detect the light intensity through a photo-resistor.

3. the dynamical behavior of the firefly is governed by an Atmega8 micro-
controller

On Figure 5 we present the circuit board with the electronic fireflies on it
and the computer interface powered by a power supply.

Figure 5: The circuit board with the electronic fireflies and the computer inter-
face.

We investigated both types of oscillators with this experimental setup: os-
cillators with variable waiting periods and oscillators with variable emitting
periods. By shifting between these variable periods (between the waiting peri-
ods in the first model, and between the emitting periods in the second model)
the oscillators try to maintain the total output of the system around a given
threshold value. As a co-product of this simple optimization rule a nontrivial
synchronization emerged for certain parameter intervals.
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3.4 Experimental results for the first model

The order parameter was calculated in the same manner as in simulations. The
obtained order parameter as a function of the reference voltage, U (having the
role of the f∗ parameter), for different numbers of fireflies is plotted in Figure
6.
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Figure 6: Processed experimental results for the detected synchronization level
a) for the first model b) for the second model

Similarly with the results obtained in the simulations, we can observe an
emerging synchronization, and by increasing the number of electronic fireflies,
the level of synchronization rises. The appearance and disappearance of the
synchronization suggests a phase transition, which is more evident as the size
of the system is increased.

3.5 Experimental results for the second model

In this case we slightly modified the program governing the dynamics of the
fireflies, and burned the program into the fireflies EEPROM. Similarly to the
previous case, we processed the obtained data, and calculated the order param-
eter. The obtained order parameter as a function of the U threshold value for
the used 16 fireflies can be seen on Figure 6.

The trend in the order parameter suggests that the system undergoes two
transitions: one from an unsynchronized state to a synchronized one, and an-
other one from a synchronized to an unsynchronized one, as we increase the
reference voltage. The sharp change observable in the variation of the order
parameter as a function of U suggests a phase transition.

4 Synchronization studies in globally coupled
metronome systems

4.1 Introduction

Since Huygens many scientists revisited Huygens original experiment ([1], [4]
etc.)
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The most complete analysis for Huygens’ clocks was made by Kapitaniak
et. al. [4]. They also confirmed, that the anti-phase synchronization is the
dominant collective behavior [4].

Inspired by Huygens’s pendulum clock system, Panteleone [10] proposed
a simple mechanical setup for exemplifying the Kuramoto model. Instead of
pendulum clocks, his setup was composed by two metronomes placed on a light,
easily movable platform.

Pantaleone monitored the metronomes by recording their sound. Pantale-
one found just in-phase synchronization for the metronomes and derived also
approximate equations of motion for the time-evolution of the metronome en-
semble.

Ulrichs et. al. [15] reconsidered theoretically Pantaleone’s experiment and
considered larger metronome numbers. They also confirmed the absence of
anti-phase synchronization for metronomes.

We considered a similar setup, but instead of a light wooden platform placed
on two cylinders we used a rotating disk shaped platform.

4.2 Experimental setup

Our setup consist of metronomes uniformly distributed on the perimeter of a
rotating disk. es.

Figure 7: The experimental setup.

To monitor the movement of the metronomes’ bobs we considered a simple
and cheap solution, by mounting Kingbright KTIR 0611 S photo-cell detectors
in their trajectory.

In order to numerically characterize the synchronization level we used the
Kuramoto order parameter [5]:

r exp(iφ) =
1

N

∑
j

exp(iθj). (4)
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4.3 Synchronization of coupled metronome systems

In this section we will experimentally and theoretically investigate the conditions
favoring synchronization in our setup.

4.3.1 Experimental Results

Starting from 160 BPM’s, we have scanned all the nominal frequency values up
to 208 BPM (168, 176, 184, 192 and 208 BPM’s). We considered 10 independent
measurement for each frequency, calculated the Kuramoto order parameter, and
averaged the values obtained for the same frequency. The obtained results are
presented in Figure 8a.
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Figure 8: Evolution of the averaged Kuramoto order parameter for a) different
natural frequencies and N = 7 metronomes. b) different metronome number
and for ω0 = 192 BPM .

The results suggest that the obtained degree of synchronization increases as
the metronomes’ natural frequency increases. To investigate whether this is due
to a change in the standard deviation of the metronomes’ frequencies, we also
measured the standard deviation between the metronomes’ natural frequencies
but we came up with roughly constant values. So we can affirm, that the
monotonically increasing trend of the synchronization level, as a function of
the nominal frequency of the metronomes, is not due to the changes in the
metronomes’ natural frequencies standard deviation.

Secondly we investigated how the metronomes number influences the syn-
chronization level in the system. We proceed in a similar manner as in the pre-
vious case, with the sole difference that now we fixed the frequency (ω0 = 192
BPM) and after performing the 10 measurements we consecutively removed one
metronome from the platform. The averaged results are plotted in Figure 8.
We can see, that by increasing the number of metronomes, the level of the
synchronization will monotonically decrease.

We calculated again the standard deviation of the metronomes’ natural fre-
quencies in this case and there was not a clear trend as a function of the number
of metronomes, N , so we can affirm that the decreasing trend of the synchroniza-
tion level as a function of the metronomes’ number is not due to the variation
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in the dispersion of the metronomes’ frequencies.

4.3.2 A theoretical model

In order to study such systems in a more flexible manner, we developed a realistic
theoretical model. We considered a simple mechanical model, which takes into
consideration only the essential parts of the system. The starting elements are:
a rotating platform and physical pendulums attached to its perimeter.

For such a simple mechanical setup it is easy to write the Lagrange function,
which will be:

L =
J

2
φ̇2 +

N∑
i=1

Jiω
2
i

2
+

N∑
i=1

mi

2

{[ d
dt

(
xi + hi sin θi

)]2
+

+
[ d
dt

(
hi cos θi

)]2}
−

N∑
i=1

mighi(1− cos θi)

(5)

In the Lagrangian we have used the following notations: the index i denotes
the pendulums, J is the moment of inertia of the platform with the metronomes
on it - taken relative to the vertical rotation axes, φ is the angular displacement
of the platform, Ji is the moment of inertia of the pendulum relative to its center
of mass, ωi is the angular velocity of the rotation of the pendulum relative to

its center of mass, mi is the total mass of the pendulum (mi ≈ W
(i)
1 + W

(i)
2 ,

neglecting the mass of the rod), xi is the horizontal displacement of the center
of mass of the pendulums due to the rotation of the platform, hi is the distance
between the center of mass and the suspension point of the pendulum and θi is
the displacement of the i-th pendulum’s center of mass, in radians. For further
simplifications we assumed, that the weights suspended on the metronomes’

bobs are identical (W
(i)
1 = w1, W

(i)
2 = w2, and mi = m), and we disregarded

the mighi constant term which will disappear after the derivation. Taking in
consideration, that xi = Rφ̇ and ωi = θ̇i, the Euler-Lagrange equations will be:

(J +NmR2)φ̈+mR
∑
i

hi[θ̈i cos θi − θ̇2i sin θi] = 0

[mh2i + Ji]θ̈i +mRφ̈hi cos θi +mghi sin θi = 0.

(6)

Adding now friction and driving terms, the Euler-Lagrange equations will
yield:

(J +NmR2)φ̈+ mR
∑
i

hi[θ̈i cos θi − θ̇2i sin θi]+

+cφφ̇+
∑
i

Mi = 0
(7)

[mh2i + Ji]θ̈i +mRφ̈hi cos θi+

+mghi sin θi + cθ θ̇i = Mi.
(8)
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Here cφ is the friction coefficient for the rotation of the platform and cθ the
friction coefficient characterizing the pendulums movement. The Mi term is the
driving, for which we used the following form:

Mi = Mδ(θi)θ̇i, (9)

where δ denotes the Dirac function and M is a fixed parameter characterizing
the driving mechanism of the metronomes.

In order to model the deviations in the metronomes’ natural frequency we
added a Gaussian noise in the L2 terms, and considered the L1 distances fixed
and identical for all the metronomes.

4.3.3 Realistic metronome parameters

A challenge in this research was to find the realistic model parameters for the
metronomes. First we determined the measurable ones with a help of an ana-
lytical balance (w1 = 0.025 kg, w2 = 0.0069 kg), and a caliper (L1 = 0.0358
m, L2 ∈ [0.019, 0.049]m depending on the chosen natural frequency, R = 0.27
m) and calculated J ∈ [0.0729, 0.25515]kg m2 depending on the number of
metronomes placed on the platform. By adjusting in our simulations the value
of the excitation and the friction coefficients until the same amplitudes are ob-
tained for the pendulums and for the platform as in the experiments we found
the realistic parameters. (cθ = 5 · 10−5 kg m2/s, cφ = 1 · 10−5 kg m2/s and
M = 6 · 10−4 Nm/s. )

4.3.4 Validation of the model

We numerically integrated the equations of motion (7),(8) with a velocity Verlet-
type algorithm. For getting accurate results we considered a time-step of dt =
0.01 s, and the simulations were performed up to a t = 4000 s. We considered
the same setup as in the experiments, and for the sake of better accuracy we
considered 100 simulations with different initial conditions for each case, and
averaged the results. The averaged results are presented in Figure 9a.

We can observe, that the obtained simulation trends are in good agreement
with the experimental results presented earlier (Figure 8).

As a second validation step we studied the time-evolution of the order param-
eter for different numbers of pendulums, setting the same ω0 = 192 BPM natural
frequency as in the experiments. We averaged the results for 100 independent
simulations. The obtained curves are plotted in Figure 9. The simulated trend
is again similar to the experimental one: increasing the number of metronomes
results in a decrease in the observed synchronization level.

The simulation results suggest that our model with realistic model param-
eters describes well the dynamics of the coupled metronome system. Now we
can investigate several interesting cases that are not feasible experimentally.
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Figure 9: Simulation results for the dynamics of the averaged Kuramoto order-
parameter for: a) the same ω as the ones used in the experiments, for N = 7
metronomes. b) a fixed ω0 = 192 BPM and same number of pendulums that
were used in the experiments.

4.3.5 Synchronization of two metronomes

In all our experiments only in-phase synchronization appeared, and we felt the
necessity to argue why this synchronization form is dominant in these kind of
setups. We considered three different cases, 1. without driving and damping,
2. with a small driving and damping and 3. with realistic friction and excita-
tion values. As one would naturally expect, for the friction-free and undriven
case synchronization occurs only if the metronomes start either in completely
in-phase or completely anti-phase configurations. If we add dissipation and driv-
ing, than for small dissipation and driving values the in-phase and anti-phase
regions will be equally probable, but for realistic parameters the anti-phase
synchronization will disappear, and will occur only in the case when the two
metronomes are started exactly in anti-phases, yielding an unstable fix-point of
the system.

4.4 Further theoretical analysis

Using our model we can consider a higher number of metronomes or investigate
the system for more values of the metronomes’ natural frequencies. The aver-
aged results for a wide range of the number of metronomes, N , are presented in
Figure 10 a.

It is easy to observe from Figure 10 that, in the N → ∞ limit, a clear
phase-transition like phenomenon emerges. In the neighborhood of the critical
value of ωc = 185 BPM the order parameter exhibits a sharp increase, which
becomes sharper and sharper as the number of metronomes are increased. This
is a clear sign of phase-transition like behavior. To prove this, we also plotted
the standard deviation of the order parameter values obtained from different
simulations (Figure 10 b). We can see the characteristic peak around the ωc =
185 BPM value.
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Figure 10: Simulation results for the Kuramoto order parameter (a) and its
standard deviation, σr, for the 100 computational experiments (b) as a function
of the ω0 frequency.

4.5 Exemplifying the Kuramoto-type phase transition
with metronomes

In the previous chapter we investigated experimental conditions favoring syn-
chronization of the metronomes. In this section we want to investigate the
influence of coupling between the metronomes, and we will try to reproduce in
a pedagogical manner the Kuramoto-type phase transition using this system.

4.5.1 Experimental setup and results

We considered the very same setup as in the previous set of experiments, with
three small changes:

1. a needle is mounted on the bottom of the metronomes, perpendicular to
the pendulums swinging plane

2. on the platform where the metronomes are placed different orientation
angles are marked with a step of 15 degrees from 0 to 180

3. metronomes are rotated by α angle in respect to the radial direction of
the disk.

The main source of coupling in our system are the pulses given by the driv-
ing mechanism of the metronomes. The pulses can be easily decomposed in two
components, a parallel one to the radial direction on the disk (p||) and a per-
pendicular one to this direction (p⊥). By rotating the metronomes in respect to
the radial direction of the disk, we will be able to decrease the p⊥ terms which
in turn will decrease the coupling.

We carried out experiments for 2, 3 and 6 metronomes for different rotation
angles starting from α = 0 to α = 180 with a step of 15 degrees (360 experiments
overall). We computed the Kuramoto order parameter and averaged the results.
The averaged results are illustrated on Figure 11.
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Figure 11: Experimental results for the equilibrium synchronization level of the
system for different orientation of the metronomes on the rotating platform.

The curves suggests an order-disorder type phase-transition around α ≈ 500

and another transition around α ≈ 1500. The first transition from the partially
synchronized state to an unsynchronized one appears as a result of the decreased
coupling strength. The asymmetric nature of the curve is due to the fact, that
for α > 900 the metronomes bob gets closer to the rotation axis of the disk,
leading to a decrease in the torque produced by the p⊥ pulse. In agreement
with the expected finite-size effects, by increasing the metronomes number on
the disk, sharper and sharper transition curves are observable.

4.5.2 Theoretical model

By modifying the model to incorporate the rotation of the metronomes the
Lagrangian of the system without driving and damping will write as

L =
J

2
φ̇2 +

N∑
i=1

mi

2

{[ d
dt

(xi cosαi + hi sin θi)
]2

+
[ d
dt

(xi sinαi)
]2

+

+
[ d
dt

(hi cos θi)
]2}

+
N∑
i=1

Jiω
2
i

2
−

N∑
i=1

mighi(1− cos θi), (9)

where α is the rotation angle. After incorporating again the dissipation and
driving, the equations of motion will become:

φ̈ =
mr cos(α)

∑
i hiθ̇

2
i sin θi − cφφ̇− cos(α)

∑
iMi +A+B − C

D
, (10)

θ̈i =
Mi −mr cos(α)φ̈hi cos θi −mghi sin θi − cθ θ̇i

mh2i + Ji
(11)
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where

A = m2gr cos(α)
∑
i
h2
i sin θi cos θi
mh2

i+Ji
,

B = mrcθ cos(α)
∑
i
hiθ̇i cos θi
mh2

i+Ji
,

C = mr cos(α)
∑
i
hiMi cos θi
mh2

i+Ji
,

D =
[
J +NmR2 −m2r2 cos2(α)

∑
i
h2
i cos2 θi
mh2

i+Ji

]
.

4.5.3 Numerical results

For solving Equations 10, 11 we used our previously written C program which
uses velocity Verlet integration method with a dt = 0.01 s time-step. We carried
out simulations for α values between 00 and 1800, varying α with a step of 10.
For each value of α we performed 100 program runs, computed the Kuramoto
order parameter and averaged the results. The obtained graph in comparison
to the experimental results can be seen in Fig 12.

0 50 100 150
α (degrees)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

N=2, sim
N=3, sim
N=6, sim
N=2, exp

N=3, exp

N=6, exp

Figure 12: Comparison between the experimental and simulated results for the
Kuramoto order parameter. The continuous lines correspond to the simulated
results, and different symbols correspond to the experimental results.

When the number of metronomes are even (N = 2, N = 6), the experimental
and theoretical results are in a good agreement. The differences for N = 3 case,
is due to the fact that for α ∈ [900, 1800] the experiments have shown that one
metronome will shift continuously between two states. In one state it will be in
phase with the other two and in the other it will be in anti-phase with the other
two. This phenomenon is less frequently reproduced in the simulations, leading
to a higher order parameter value.

After this validation of the model, our aim was to investigate the system
for larger number of metronomes (up to N = 100). To illustrate the increased
fluctuations in the neighborhood of the critical α value (the phase-transition
point) we also calculated and plotted the standard deviation σr of the r order
parameter for the 100 individual runs. The obtained results can be seen in
Figure 13.
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Figure 13: Simulation results for larger metronome ensembles. (a) The synchro-
nization order parameter as a function of the metronomes orientation. (b) The
fluctuation of the order parameter as a function of the metronomes orientation
on the disk.

As we would expect, the transitions for larger systems are sharper and
sharper, and the peak in the fluctuation of the order parameter also narrows for
larger system size.

5 Summary

The dynamics of two different type of systems showing emergent synchronization
was investigated by simple experiments and with computer simulations.

First a system composed from pulse emitting stochastic oscillators with two
possible modes and a simple optimization dynamics was investigated. To prove
the generality of synchronization models based on optimization, we considered
two similar models: one with two possible waiting periods and one with two
possible emitting periods. Here there is no explicitly built-in interaction which
favors synchronization. Instead of this, there is a simple optimization rule gov-
erning the oscillators behavior, which tries to maintain the total output of the
system, f around a certain f∗ value. As a co-product of this simple opti-
mization rule, synchronization emerges for certain f∗ intervals. This nontrivial
spontaneous synchronization appeared in both models studied by us, and the
appearance and disappearance of spontaneous synchronization closely resembles
a phase-transition. An experimental realization of this system was also consid-
ered. Even though our research is more a theoretical one, there could be several
practical applications of it, like building oscillators with better period stability,
or globally coupled CNN type computers.

As a second line of studies in the field of spontaneous synchronization, the
collective behavior in a mechanical system composed from coupled metrono-
mes placed on a freely rotating platform was investigated both by experiments
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and computer simulations. In a first set of experiments we searched for the
conditions which are favoring such synchronization. We came to the conclusion,
that the obtained synchronization level will increase monotonically with the
natural frequency of the metronomes. From the experimental data we found,
that by increasing the number of metronomes in the system a decrease in the
synchronization level will be obtained.

In order to investigate the system more thoroughly, a realistic model was
built. We fixed the realistic model parameters and numerically integrated the
equations of motion. The results offered by the model described well the exper-
imental setup, and reproduced the experimentally observed results and trends.
Through this model we managed to show the importance of the damping and
driving in the appearance of the synchronization. From the simulations we came
to the conclusion, that for an ensemble of metronomes with a fixed standard
deviation of their natural frequencies, the order parameter increases as a func-
tion of the metronomes’ average frequency, ω0. This increase happens sharply
for large ensembles, closely resembling a phase-transition like phenomenon.

As a second set of experiments with this setup we investigated the influence of
the coupling on the synchronization level. By rotating the metronomes swinging
plane on the perimeter of the disk, the coupling strength can be finely tuned.
As a function of the coupling strength, the system will exhibit an order-disorder
type phase-transition, similar with the one known in the Kuramoto model. Our
theoretical model with a few adjustments could be used to describe the new
setup. The model reproduced well the experimental results and also allowed
the study of much larger ensembles. For larger ensembles the transition in the
order parameter becomes sharper in agreement with the expected trend for a
phase-transition.
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6 Relevant personal contributions

Personal contributions in the field of the two-mode stochastic oscillators:

1. I had written my own code for simulating the behavior of the oscillators
for the original model and for the modified model;

2. I run the simulations and constructed the graphs;

3. I modified the programming of the electronic fireflies and performed all
the experiments, as well had written codes to process the data. I also
processed all the experimental data;

4. I helped in the construction of the experimental device.

Personal contributions in the study of the metronome system:

1. I helped in the construction of the experimental setup: together with one
of my colleagues (B. Tyukodi) we mounted the light-gates and connected
it with the circuit board;

2. I performed all the experiments, and had written the needed programs to
interpret the results, processed the data and constructed the graphs;

3. Together with my supervisor we came up with two new models, and I had
written the simulation programs to solve the involved equations.
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sition with metronomes, accepted in European Journal of Physics (2013)
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