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1. Introduction

The present paper seeks to present the modeling process, extremely useful for
hydrograph prediction despite the several acknowledged limiations caused by the
measurement techniques and the limited of data temporal for a certain basin. Hence the
existing models offer the possibility of extrapolation on the basis of available measurements
for small ungauged basins resulting in hydrograph computation and the formulation of
predictions (Beven, 2006).

As the European Directive 2007/60/EC has been passed, the flooding risk needs to be
evaluated. The final result would consist of maps highlighting the flood risk areas as the
natural flooding phenomenon are causing yearly, in Romania and in the world death cases and
economic disasters.

Flash-floods occur are a consequence of torrential rain that spans for maximum
duration of 3 hours, on a basin area up to 200 km?, a basin travel time smaller than 6 hours
and a torrential rain of 100 mm (Drobot, 2007).

Hydrologic models help the understanding of natural phenomena, such as the flash-
floods, through simulation. The spatial representation of the generating process, the rainfall
and that of the hydrological parameters that influence the runoff patterns make it possible to

estimate the peak hydrograph for different sections in the basin.

Main research study objectives
The main objectives of the present study are the identification and application of a
hydrograph estimation technique for the 100, 50 and 10 year return periods on the small
gauged rivers in the Zarandului and Savarsinului mountains, a second methodology of
simulating flash-floods in the small and ungauged basins and third, the elaborating of
floodplain maps that are not available in Romania and neither for the study area.
Hence the main working stages were set:
» Probable Maximum Precipitation depths for different return periods and their
frequency analysis;
» The building of Intensity-Frequency-Duration Curves for the area of the small
Petris, Troas and Monorostia basins;
» The GIS mapping of the study area and the indirect computation of hydrologic

parameters necessary for the simulations;



» The building of representative models for the ten basins (out of which seven are
ungauged);

» Flash-flood simulation for 100, 50, 10-year return period generated on the basis of
the maximum probable precipitation and the SCS method, generated on the gauged
basins;

» Simulating flash-floods on ungauged basins using the Cluj Model

» Floodplain delineation for pluvial generated flash-floods with 100, 50, 10 year
return periods on the three monitorised basins, by the use of a hydraulic model.

Geographic location and characterization of the study area

The present paper focuses on 10 basins situated in the Zarandului and Savarsinului
mountains (Fig.1.1 ) out of which:
» 3 gauged (Petris, Troas si Monorostia);
» 7 ungauged (Radna, Milova, Conop, Barzava, Julita, Vinesti, Toc).
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Fig.1.1 Geographic localization of teh 10 study basisns.

Their corresponding drainage areas span from 10 km? up to 110 km?, hence belonging
to the small basins’ category (Haidu, 1993). These river are tributaries to the main river in the
area, the Mures River and are situated in the Zarandului and Savarsinului mountains (Fig.1.1).

On their territory a series 0 human settlements exists as well as a hydrometric and



meteorologic network that is offering information on discharge and meteorological

conditions:

2. Characteristics of the rainfall-runoff process in small basins

The rainfall-runoff model is investigated at the level of the ten small basins in the
study area by the use of hydrologic and hydraulic modeling. These models have the rational
and SCS methods implemented in order to represent the unit hydrograph. Hence the present
chapter presents the models at the basis of the simulations and follows the evolution of the
manner of work in hydrology , the shift that occurred form estimating the effective rainfall

quantity to the unit hydrograph estimation using more and more complex models.

3. Frequency analysis, it’s role in computing rainfall depth
generating flash-floods and Intensity-Duration-Frequency

curves for small basins

Frequency analysis of the maximum probable precipitation depths corresponding to
different durations will result in input data inserted at the level of the meteorological method
in the rainfall-runoff model applied for flash-flood modelling in the small Petris, Troas and
Monorostia basins.

At another stage of the study, the frequency analysis is applied to the registered
discharge value series (1988-2009) at the hydrometric posts, making use of these results at the
calibration stage.

Hydrologic processes need to be explained and analyzed in a probabilistic manner due
to their randomness. The hydrologist has to make use of the of the statistical methods at hand
so as to organize, present and compress the observed data to a form that facilitates their

interpretation and evaluation.

Probability theory and theoretical elements
A fist hypothesis of the frequency analysis is the independant character of data,
stipulating that the magnitude of an event in the future does not depend on the magnitude of

former events.



The possible changing of the rainfall patterns, suggesting a change has occurred in the
basin or in the regional climate, needs to be taken into account as well. Hence it is only the
rainfall quantitative methods of time series analysis that can determine with certainty whether
or not non-stationarity applies to the data.

Another aspect that needs to be taken into account is the (in)existence of two or more
causing mechanisms for the time series data, termed as a mixed population. For example
flash-floods can be rainfall generated, snow generated, or both. In the latter of the cases
frequency analysis is run on both the types of data series. (Bedient, 2002).

Moments of a distribution and their estimation. Applicability to

rainfall analysis and surface runoff

The concept of moments is well known in mechanics engineering. A probability
density function or probability mass function is a functional form whose moments are
connected to its parameters. Hence by finding the moments, generally the distribution
parameters can be found. It is the moments that indicate the form of the distribution.

Determining the moments of annual maximum data series. The Petris River
example

Taking as an example the maximum annual series series of rainfall generated
discharges on the Petris River, on the basis of the equations presented in the preceding
sections, the moments can be computed. For the present applications all these computations

have been made automatically via the HYFRAN software. (Tabel 3.3)

Tabel. 3.3 The computed moments for the maximum rainfall induced discharges on the Petris River

(1988-2009)

Total values 22
Minimum 0.796
Maximum 60.6
Mean 154
Median 6.74
Standard deviation 16.8
Coefficient of variation 1.09
Skewness coefficient 1.35




Return period or reccurence interval
The most used method of indicating the probability of an event in hydrology is
through the return period or the recurrence interval,
The exceedance probability (p) and the return period (T) are related as follows
(McCuen, 1982):
1
P
(24)

Mostly used probabilistic models

In hydrologic studies a large variety of discrete probability mass functions and
continuous probability density functions are being employed. Nonetheless among the mostly
used are the Normal distribution, Log-normal distribution, Gamma (Pearson type III)
distribution, and Log-gamma (Log Pearson type I11) (Bedinet, 2002).

Haidu (2002) mentions as well the Gumbel distribution as being among the most
suitable for the maximum data series description and the Log Pearson Type Ill as giving

good results on the Romanian territory

Frequency analysis of generating precipitation of flash-floods

registered on the Petris, Troas, Monorostia rivers

The first step in frequency analysis is the data series constitution (Musy, Higy, 1998,
Maidment, 1993).

In the present study the data series is composed of the annual 24 hour maximum
precipitation on the three rivers, with their values registered during April-October, when the
mean temperature is positive and the registered flash-floods in the mentioned interval are
pluvial in nature.

In our country Diaconu, Serban, 1994, established a manner of computing the
maximum probable precipitation of various durations. In order to do this, the 24 hour
precipitations have been used, the method being also presented by Drobot, 2007, as still valid
for the stations where only daily data exist, such as in the case of the present river basins.

The data series have undergone the non-parametric tests in the HYFRAN software for
all of the 5 min, 15 min, 1 h, 2, h, 3 h, 6 h, 12 h, 24 h durations, on all of the three rivers:

-the Wald-Wolfowitz independence test;

- the Kendall stationarity test;



- the homogeneity test.

All of the above tests have been accepted.

Subsequently all of the different probable maximum precipitation durations have been
a subject of the frequency analysis for the 1%, 2% and 10% for Petris, Troas si Monorostia.

The choosing of the distribution that describes best the data is facilitated by the
graphical interface. In the example in (fig.3.12) for the 5 minute probable maximum
precipitation at Petris it can be seen that all the distributions (Gumbel; Log Pearson type I11)
describe sufficiently well the data series, but the best representation belongs to Gumbel,
Maximum Likelihood Method.

. Fetrig_rr 5 min .

P 1 . heeoooeee :

24 1---1 Observationg ----- r --------- r --------- r --------- r ; .
221...] #1EVAIMYL b
20]-... #2 EVUMN A . bt . 1 I A
el | #3LP3/SAg T
#4 LP3MN : : 5 5 ;
— 161---1  |em---- o PSS ST e PSSR ST R RTEeSn s
E Moo R A R AR, AR R
£ 124--meeeeeeees e boeonees e boemmee :
10 ------------ R Pooomeooe- boeneoees Pooomeooe- g
R booeneaoes oo ooes beoenes e :
= Ly L
= ] [n7]
= = @
o L} o

o o o o o
Mon-exceedance probability (Mormal paper /Weibull)

Fig. 3.12.Graphical representation of the probabilistic distributions for the 5 minute probable maximum rainfall

duration at the Petris hydrometric post.

In tabels 3.8, 3.9, 3.10 the maximum probable precipitation for different durations are

given for all of the three rivers.

Tabel 3.8 Probable Maximum Precipitation Petris. Gumbel Distribution.

p T(ani) 5min 15 min 1h 2h 3h 6h 12h 24 h
(mm) (mm)  (mm) (mm) (mm) (mm) (mm) (mm)
1% 100 15.3 26.9 43.4 50.1 53.1 58.4 65.8 74.8
2% 50 13.8 243 39.3 453 48 52.8 59.5 67.6
10% 10 10.2 18.3 29.5 34 36 39.6 44.7 50.7



Tabel 3.9 Probable Maximum Precipitation Troas. Gumbel Distribution.

p T(ani) 5min 15 min 1h 2h 3h 6h 12h 24 h
(mm)  (mm)  (mm) (mm) (mm) (mm) (mm) (mm)
1% 100 15.6 28.1 452 523 55.4 60.8 68.6 78
2% 50 14.4 25.9 417 48.1 51 56 63.2 71.9
10% 10 114 20.6 33.2 383 40.6 44.6 50.3 57.2

Tabel3.10 Probable Maximum Precipitation Gumbel Distribution.

p T 5min 15 min 1h 2h 3h 6h 12h 24 h
(ani)
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
1% 100 13.5 29.3 47 54.3 56.7 62.4 70.3 79.9
2% 50 12.5 26.7 429 496 51.8 56.9 64.2 73
10% 10 10.2 20.6 33.2 38.3 40.1 44.1 49.7 56.5

These values are essential in the simulation of different exceedance flash-floods
simulations, in the intensity calculation of rainfall events and the building of Intensity-
Duration-Frequency Curves (Fig. 3.14, 3.15, 3.16). Other examples of building the curves
that have been taken into account in the documentation stage of the present work are those of
Eman Ahmed Hassan El-Sayed, 2011, Boucher, 2009, WRC Engeneering, 2008, Wolfe, 2006.

Intensity-Duration-Frequency Curves for the small rivers: Petris,

Troas, Monorostia
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Fig. 3.14 Intensity-Duration-Frequency Curves at the hydrometric post of Petris (Gydri et al., 2013).
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Fig. 3.16 Intensity-Duration-Frequency Curves at the hydrometric post of Monorostia.
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4. The modeling of probabilistic flash-floods. Application on the

Petris, Troas, Monorostia rivers

Short introduction in the methodology and general presentation of
the study basins

The 10, 50 and 100 year return periods are generated on the basis of maximum
probable storms of different durations. Thismethod constitutes an alternative that allowed the
generation of flash-floods with the HEC-HMS model even though no hourly data was
available at the hydrometric posts.

The rainfall-runoff model used has been created in order to simulate the production
and transfer functions of runoff in dendritic basins, the energy and mass flux in the water
cycle at the basin level being represented by a mathematical mode. The model has a wide
applicability, being used for balance applications on large watersheds, flood studies, runoff
estimation on small watersheds in the urban area and in basins that keep their natural
characteristics.

The three case studies are the Petris, Troas and Monorostia rivers.
Building the database needed for modeling surface runoff

Automatic identification of rivers, basins and subbasins with the ArcHydro
model
In order to determine the river courses and their basins, the ArcHydro functions have

been used.

CN (Curve Number) parameter

The CN parameter is computed by taking into account the basin characteristics that
generate runoff such as soil type, landuse soil surface conditions and antecedent moisture
conditions. The CN is the main parameter on the basis of which the SCS method can be
applied (Ponce, Hawkins, 1996).

According to the landuse, for the Romanian territory the CN functions have been set
by Chendes, (2007)

In a first stage, the index for normal moisture conditions (CN Il) are used so that later
they are adjusted to the antecedent conditions (AMC I, AMC Il AMC 1I).

12



GIS Methodology of determining the CN parameter of the basins in the
Zdarandului and Savarsinului mountains

For a basin composed of different soil and land use types, a weighted value of the CN
can be computed according to formula (31), taking into account the AMC II:

XA;CN;
CN igh = L L
ted

weighte T4

(31)
-unde:  CNyeigntea= Weighted CN used in the volume
computation in the rainfall-runoff model
i = index of all subdivisions having the same types of
soil and landuse
CN;= CN belonging to the ,,i” subdivision
A;= drainage surface of the i subdivision ,,i” (USACE,
2000).
The resulted CN (Tabel 4.5) is a weighted value representing the totality of possible
combinations between the soil groups and land use types in a sub basin (Gyéri et al., 2013).
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Fig 4.11 CNII Petris and Troas basins (adapted after Gydri et al., 2013)
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Tabel 4.5. CN weighted for all on the subbasins of the three rivers.

Petris Troas Monorostia
Subbabsin CN Subbasin CN Subbasin CN
W690 78.498 W880 71.18 W 1090 66
W590 79.314 W870 75.88 W 1160 67.95
W580 78.814 W850 79.61 W 1270 68.347
W740 68.126 W840 70.882 W 1360 67.642
W650 73.949 W3830 74.734 W1500 74.603
W760 72.506 W810 72.924 W1530 72.985
W810 74.020 W800 68.858 W1360 67.642
W820 70.879 W780 77.194 W1490 75.028
W800 77.363 W70 79.839 W1830 76.646
W870 67.939 W760 59.958 W1710 72.449
W900 73.166 W750 76.902 W1170 71.449
W920 76.240 W740 69.137 W1780 79
W730 68.172 W1740 79
W710 73.418 W1820 78.156
W660 72.790 W1810 79.111
W640 68.087 W1670 75.486
W630 69.517 W1920 80.536
W620 74.127 W2040 80.867
W600 70 W1380 76.287
W550 72.221 W2110 80.004
W590 72.465
W500 72.861

Time of concentration and Time lag

Once with the apparition of GIS and the possibility of processing spatial data, DEMs
and TINSs, there has appeared as well the possibility to estimate these two parameters. These
determination methods are based on empirical equations and generally need the basin area,
medium slope and river length, parameters extracted on the basis of geographic data in a GIS
software (Green, Nelson, 2002, USACE,2011, 2008)

For the ungauged basins the SCS suggests that the correlation of the lag time (T ag) and

the time of concentration (T.) can be correlated:

Tiqg = 0.6 X T,
(33)
Tabelul 4.6. The Ti,q and T.. (adapted after Gydri et al., 2013)

Tc (h) Tlag Tc (h) TIalg Tc (h) Tlag

(h) (h) (h)

Petris 52 3.2 Troas 5.3 3.2 Monorostia 2.9 1.74

Subbabzin Subbazin Subbazin

W690 1.77 1.06 W850 0.82 0.49 W 1090 0.72 0.43

14



Te(h) Tiag T, (h) Tiag T, (h) Tiag

(h) (h) (h)
W590 1.07 0.64 W3870 0.96 0.57 W 1160 0.94 0.56
W580 1.33 0.80 W880 71.18 131 W 1270 0.79 0.47
W740 1.02 0.61 W840 0.76 0.48 W 1360 0.88 0.53
W650 1.76 1.05 W830 0.86 0.5 W1500 0.65 0.39
W760 1.65 0.99 W3810 0.96 0.58 W1530 0.62 0.37
W810 1.14 0.68 W800 1.16 0.7 W1490 0.93 0.56
W820 1.04 0.63 W780 0.75 0.45 W1830 0.86 0.52
W800 2.07 1.24 WT770 0.97 0.58 W1710 0.89 0.54
W870 1.27 0.76 W760 1.67 1 W1170 1.4 0.84
W900 1.85 1.11 W750 1.40 0.84 W1780 0.32 0.19
W920 1.68 1.01 W740 1.34 0.8 W1740 0.22 0.13
W730 1.58 0.95 W1820 0.64 0.38
W710 2.05 1.23 W1810 0.48 0.29
W660 0.76 0.45 W1670 0.56 0.34
W640 1.4 0.83 W1920 0.81 0.49
W630 1.17 0.7 W2040 0.64 0.39
W620 1.95 1.17 W1380 1.75 1.05
W600 0.3 0.18 W2110 1.22 0.73

W550 1.97 1.18

W590 1.11 0.66

W500 1.55 0.93

Modeling the unit hydrograph using the hydrological modeling
system HEC-HMS

The modeling performed for the three hydrological models of the basins Petris, Troas
and Monorostia using HEC-HMS consists of five components each:
» the basin model;
» the meteorological model;
» control specifications;
» temporal data series.
The unit hydrograph is the model of the direct flow that allows the identification of
1%, 2%, 10% exceedance probability flash-floods that can afterwards be used to evaluate the

floodplain areas and to produce the risk maps.

The hydrological model

The physical representation of the basins Petris (fig. 4.18), Troas and Monorostia was
obtained by using the hydrological modeling system HEC-HMS, where, by the use of the
component “basin model”, the individual hydrological elements can be connected in a
network that follows the structure of the hydrological basin. The physical processes specific
to each element are included in itself by the use of mathematical models (Razi et al., 2010,
Kafle et. al., 2010, Katani Mehdi, 2011).

15
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Fig. 4.18 View of the basin model in HEC-HMS for the Petris basin.

Meteorological model

This component can be used to model the rain and evapotranspiration. For the
simulation and modeling of short duration rainfall-runoff events, the evapotranspiration is
often neglected.

For this study the method “Frequency storm” was used in order to generate a rain
event based on the statistical data obtained from the SGA Arad. This method identifies the
rainfall depth for different rainfall durations (5 min, 10 min, 15 min etc.) and their different
exceedance probability.

Using the available data from the three gauging stations Petris, Troas and Monorostia
(1988-2009), the maximum probable precipitation of different durations were calculated, in

order to determine their frequency afterwards.

16



Calculating the maximum probable precipitation

Maximum probable precipitation of different duration and frequency were calculated
based on the precipitation data for the period 1988-2009 and the transformation coefficients,
according to the methodology established by Diaconu and Serban, 1994, Tabel 3.36, p.251.

The methodology also appears in Drobot, 2007, but it can only be applied for the
weather or gauging stations where daily precipitation values are available, as is the case of the
gauging stations present on the studied rivers.

The geographic position of the weather stations and gauging stations is depicted in
figure 4.19
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Fig. 4.19 The geographic position of the gauging and weather stations existing in the study area and the

surroundings.

The different exceedance probabilities for the maximum probable precipitation were
calculated with Hyfran for the three previously mentioned basins. The results were used as

input data for the meteorological model.
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Loss method

For the hydrological model used, all the water that is collected in a hydrological basin
is considered to be reaching a surface that can be pervious or impervious. The precipitation
falling on a permeable surface is subjected to some losses (USACE, 2001) that are calculated
by a component specific to the hydrological model that is called Loss component.

For this study, a method that can solve the equations linked to the water losses was

chosen, that being the SCS Curve Number.

Direct runoff model

In the HEC-HMS model applied to this study, the excessive precipitation is
transformed into direct flow by using the method SCS Unit Hydrograph.

Therefore, the hydrological model uses all the parameters calculated for all the basins
using GIS, but also meteorological data. The parameters were initially calculated for every
subbasin of the three basins of the right side tributaries of Mures river and stored in feature
classes River and Subbasin.

The discharge values of the rain based flash-floods occurring in the three gauged
basins of the right side tributaries of Mures river located in the Zarand Mountains, are
mentioned in figures 4.22 to 4.30.

The maximum discharge of the 100 year-return-period flash-flood in the Petris basin is
59,6 m*/s, while the value for the 50 year-return-period flash-flood is 49.9 m%/s, and for the 10
year-return-period flash-flood the discharge reaches 32.5 m®/s. The discharge values for the
tributaries of Petris river, were also calculated, for example those for Valea Santeasca and
Corbeasca are mentioned, the rivers crossing some settlements.

The results can be viewed in different ways. Figures 4.22, 4.23, 4.24 illustrate the
hydrographs of flash-floods as they can be seen in HEC-HMS software. USACE also
developed a dedicated software HEC-DSS Vue (USACE, 2009), that allows data to be
exported in tables (discharge, precipitation and infiltration process data for this study). Thus,
the comparison of discharges for the subbasins Corbeasca and Santeasca and Petris river can
be easily made in Excel. Discharge values corresponding to different return periods for the

rivers crossing the settlements in Petris basin are displayed in fig. 4.27.
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Fig. 4.20 The hydrological parameters of a basin in the basin model component of HEC-HMS, example for
Petris basin (Gydri et al., 2013).
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Fig. 4.22 Hyetograph and hydrograph of the 10 year-return-period flash-flood for the subbasin Santeasca (W
800), tributary of Petris river.
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Fig. 4.23 Hydrograph of the 10 year-return-period flash-flood for the junction (J 125) of S&nteasca and

Corbeasca, tributaries of Petris river.
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Fig.4.24 The 10 year-return-period flash-flood on Petris river (Outlet1).
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Tabel. 4.14 Exceedance probability discharges of rivers Petris, Troas and Monorostia.

River Return perios (T)
100 years 50 years 10 years
Statistical SGA Statistical SGA Statistical SGA
analysis analysis analysis
Q |a Q q Q q Q | Q q Q |qg
m¥s | lstkm | m¥s | Uslk | m¥s | U/s’km? | m3/ | l/s/k | m¥s | s/ | m¥ | I/s/km?
2 m? s m’ km? | s

Petris 58.2 | 541.4 | 119 | 1107 | 50.6 |470.7 |94 |874.4|32.6. {303 |39 |362.8
Troas 23.7 | 311.8 | 120 | 1579 | 20.7 | 2724 |97 | 1276 |13.6 |179 |50 | 657.9
Mono- | 27.4 | 913.3 | 130 | 4333 | 23.9 | 796.7 | 105 | 3500 | 15.5 |517 |54 | 1800
rostia

The discharge values mentioned previously are for rain based flash-floods, therefore

they are smaller than the exceedance probability discharges calculated by the SGA Arad. The

exceedance probability discharges estimated by the SGA Arad for the gauging stations and

the year 2007 are in table 4.14, those estimated for 2011 being even greater. The values of the

SGA result from analysis that also includes flash-floods of combined factors. The fact that

this study focuses on rain based flash-floods explains the difference in values, although the
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discharge values obtained from the statistical analysis of registered discharges (1988-2009)
are very similar to those calculated by the SGA.

The maximum discharge of the 100 year-return-period flash-flood in the Troas basin
is 19.6 m*/s, while the value for the 50 year-return-period flash-flood is 17.5 m*/s, and for the
10 year-return-period flash-flood the discharge reaches 8.5 m*/s (Fig. 4.29). The values for
Monorostia river are of 25.9 m*/s, for the 100 year-return-period flash-flood, 23 m*/s for the
50 year return period flash-flood, while the 10 year return period flash-flood the discharge
reaches 16.7 m/s (Fig. 4.30). The discharge values for the tributaries of Troas and
Monorostia rivers that cross settlements can be found in the Appendix.
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Fig. 4.28 Hyetograph and hydrograph of the 50 year-return-period flash-flood for the river Raiou (W 620),
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Fig. 4.29 The hydrographs of 100, 50 and 10 year-return-period flash-floods on Troas river.
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Fig. 4.30 The hydrographs of 100, 50 and 10 year-return-period flash-floods on Monorostia river.

Model calibration
The model calibration can be made either manually or automatically, as it was
performed here, the parameters undergoing an iterative process of adjustment of the values
until the selected function offers the smallest of values (Cunderlik, Simonovic 2004, Oceanit,
2008, Sinclair, 2009, Yener et al.,).
There are four functions that can be used in the hydrological model:
» The least square method (36) gives a larger weight to the errors close to the

maximum discharge of the flash-flood

; b
z= {N_lg‘[f(QO ()-gs (i))z(qo D a5 (mean)ﬂ}

o 2q,(mean)

Z=the function
NQ= number of calculated hydrographs
gs(t)= data series calculated according to the parameters
Jo(peak)= Qmax Of the observed flash-flood
go(mean)= mean value of the observed discharges
gs= Qmax Of the calculated flash-flood
For the hydrological model used, the calibration was performed by the use of Peak-
weighted RMS Error.

23



=/
8|

[Z] Optimization Trial "Trial 1" ; I [=

Hydrograph Comparison

(o]

]
1

e

B
/
[
J

f

l

(]
o
1

Flow {cms)
jective Function End

—
o
1

T T T T T T
06:00 08:00 10:00 12:00 14:00 16:00

29Apr1995
Legend (Compute Time: 145ep2013, 18:42:21)

Opt: Trial 1 Element: OUTLET1 Result: Outflow
— Opt.TRIAL 1 Element. OUTLET1 Resutt: Ohserved Flow

Fig. 4.31 Calibration of a 10 year-return-period flash-flood on Petris river (Gydri et al.,
2013).

Tabel. 4.15 Simulated and observed discharges on Petris river. Flash-flood of 29.04.1995.

Petris Petris
River River
Time| Qmds Qmds
(h) | (simulated) | (observed)
5:00 24 15.3
6:00 32.2 31.2
7:00 32.2 31.2
8:00 26.9 31.2
9:00 25 29
10:00 24.4 26.7
11:00 24.1 25.12
12:00 24 23.55
13:00 24 21.98
14:00 24 20.4
15:00 24 18.1
16:00 24 15.8
17:00 24 13.5

In the calibration process a RMSE value of 4,8 m*/s was obtained for the Petris river
(fig.4.31). Therefore the simulated estimation of the discharge is of 99% (Tabel 4.15). A

small overestimation of the simulated hydrograph peak can be observed, as well as an earlier
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onset of the time to peak that can be caused by a small underestimation of the basin’s time
lag.

The calibration was made between a simulated flash-flood and an observed flash-
flood, both pertaining to the same return period as calculated in the statistical analysis of
discharges.

The values obtained for the calibration of flash-floods on Troas and Monorostia (tabel

4.16) indicate a good correlation between the simulated and statistical discharge values.

Tabel.4.16 Maximum simulated and statistical discharge values for the rivers Petris, Troas and Monorostia.

Probability Petris river Troas river Monorostia river
Q md/s Q md/s % Q md/s Qmis | % | Qmds Q md/s %
simulated | statistical simulated | statistical simulated | statistical
1% 59.6 58.2 | 102 19.6 23.7 |83 25.9 27.4 95
2% 49.9 50.6 99 17.5 20.7 | 85 21.5 23.9 90
10% 32.2 32.6 99 8.5 13.6 |63 16.7 155 | 108

5. Flash-flood modeling on the small rivers- gauged and ungauged-

in the Zarandului and Savarsinului mountains

The Cluj model has been developed by the research team from the Faculty of
Georgraphy in order to estimate the flash-flood hydrograph and its peak flow, on the small
basins where no measurements exist.

It is an event-based simulation model composed of four conceptual models designed
with ArcGIS Model Builder and five Python scripts which need to be run in MATLAB.

In the present study we have used the conceptual models designed by using ArcGIS
(fig. 5.5, 5.6, 5.8, 5.10) and which can be accessed with ArcToolbox, and after we have run
the scripts in MATLAB.

The initial database necessary for flash-flood modeling on ungauged
basins

It is necessary to extract a series of primary entry data (fig. 5.2) through the GIS

product in order to run the four conceptual models (Haidu et al., 2007-2010):
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Fig.5.2 Entry data for the Cluj Model.

The Runoff Module
In order to determine the runoff module (mm) we have used in ArcGIS Model Builder
the well-known version of the formula SCS-CN. Its different variants, its usage and the

applicability as well as its limitations have been discussed in Chapter 2.

Map Algebra expression:
POW (P-la ,2)/(P-la+S)

Output raster:
Qmm

Input raster or feature data:
S
P-la

! h%
Agebra (6)

sE”

Fig.5.5 The integration of the SCS-CN formula in the Runoff module
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The runoff coefficient module

The runoff coefficient module (noted with ,,a” or ,,c”) results from the division of the
runoff water quantity drained in a certain amount of time and the quantity of precipitations
fallen in the reception area which generated the runoff (Diaconu, Serban, 1994) (fig. 5.6).

Divide i

Fig.5.6 Runoff Coefficient Module

Travel Time Module

This model is the third out of the four models which compose the Cluj Model, and
calculates the time required by the water particle to get to the outlet point.

The entry data (fig. 5.8) is composed of the speed layer and the DEM. The layer
representing the speed was created in SAGA GIS by running the following functions: Sink
Removal, Flow Direction, Flow Accumulation, Catchment Delineation and Variable
Isochrones Speed. The last operation helps to identify the speed of the water for each

isochrones, and for the travel time. This can be done only by using SAGA GIS database.
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Fig. 5.8 Travel Time model of the basin

By using the velocity raster, the travel time for each cell can be estimated as a ratio
between the distance traversed inside a cell and the time needed for it. The travel time for
each cell on the drainage path can be calculated by adding the travel time reaction of each

cell. This operation implies as well a reclassification of the raster in 1-minute intervals.

Discharge module

All the previous results can be obtained by running one of the previous modules.
Nonetheless the user can choose to insert all entry data and run the Discharge module so as to
compute all the parameters that are incorporated in this module as well.

This model has embedded the rational method at a cell level in order to calculate the
discharge, a formula which is widely used by the Romanian scientific community (Diaconu,
Serban, 1994).

Once that the drainage area of an isochrones is computed, the discharge for the
respective isochrones results by summing up all the discharge in those cells. The generated
values are saved into a table that represents the final result of the model, the Zonal
Statistics.dbf

In order to transform the tabular discharge data into a hydrograph, the scripts written
by M. Domnita, 2012 need to be run (Haidu et al., 2007-2010). The resulted hydrographs
based on linear routing have been simulated for the 10 (fig. 5.11, 5.12).
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Fig. 5.10 The Discharge Module

In fig.5.11 and 5.12 the resulted runoff hydrographs are shown. To obtain the
hydrograph all the parameters shown in fig. 5.1 have been modeled. The result is for the
simulation of the 03.07.2001. The discharge has been reached and the time to peak
corresponds to measured data. Hence the maximum peak flows can be considered valued

when modeling ungauged rivers.
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Fig.5.11 Simulated hydrographs for the Zarandului mountains by the use of the Cluj Model.
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Exemplification of the stages for the hydrograph modeling by using
the Cluj Model

Validation of the flash-flood on the Troas River, 03.07.2001

6. Floodplain area delimitation on the basis of probabilistic events.
Case study the small rives in the Zarandului and Savarsinului

mountains

The present chapter presents a methodology for floodplain areas at different return
periods on the Petris, Troas and Valea Monorostia rivers (Haidu, Gyori, Humbert, 2014).

In the last years such studies have been in the center of attention due to their socio-
economic relevance and the role they occupy in the risk management to floods, hence there is
a wide variety of hydraulic modeling possibilities.

So as to determine the impact of flooding the MIKE 11 modeling system was used.

The model was built by the Danish Hydraulic Institute and for the three gauged rivers
the 1D method was used.

The following steps have been undertaken:

» DEM analysis, river axes and transversal sections establisment in the
minor floodplain.

In the minor floodplain the transversal sections have been drawn at every 100
m in a perpendicular position on the river course.

» Building the hydrodynamic model, preliminary estimations of the initial
conditions of discharge and water level, preliminary running of the model
and the solving of all its resulted instability.

The boundary conditions at open-ends elements or point source of the
modeled network are now set. For the upper stream boundary conditions the

hydrographs obtained in the hydrologic model are used.
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Fig. 6.4 Network schema for the Petris, Troas and Valea Monorostia.

Indentifying the inundation areas of small rivers on the basis of
hydraulic models
Once the data base was set, the model was run for :
» A 100 year return period event;
» A 50 year return period event;
» A 10 year return period event
It is the Mike View application that allows access to the graphical and tabelar data on
the basis of which the user can extract discharges or water levels at several locations or even
see the profiles of the water table. (Table 6.2). It can easily be seen that the discharges
computed with the hydraulic model at the hydrometric post correspond to those computed by
the hydrologic model HEC-HMS.
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Tabel.6.2 Computed discharges at the entry and exit of the settlements on the area of the three basins. (Haidu,

Gyori, Humbert, 2014).

Petris
Settlement Q (m%/s) entry point Q (m¥s) exit point
Q1% Q2% Q10% Q1% Q2% Q10%
Rosia Noui = = - 27,2 24.9 14.4
Corbesti 29.3 26.3 154 39.4 35.6 22.6
Petris 40.5 36.7 23.6 52.8 44.8 28.8
Seliste 52.8 44.8 28.8 55.2 46.7 30.1
Hydrometric post Q1% Q2% Q10%
59.6 50 32.4
Paraul Troas
Settlement Q (m%/s) entry point Q (m¥s) exit point
Q1% Q2% Q10% Q1% Q2% Q10%
Troas 6.3 5.6 2.5 10.8 9.6 4.7
Temesesti 15 13.6 6.6 16 14.6 7.1
Savarsin 17.3 15.9 7.8 19.4 17.8 8.8
Hydrometric postc Q1% Q2% Q10%
18.9 17.4 8.6
Valea Monorostia
Settlement Q (m%/s) entry point Q (m¥s) exit point
Q 1% Q2% Q10% Q1% Q2%  Q10%
Monorostia 17.5 15.6 11.8 27.2 24.2 17.7
Hydrometric post Q1% Q2% Q10%
21.6 19.3 14.5
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Fig.6.5 Longitudinal profile for the de 10, 2 and 1% exceedance- Petris.
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Fig. 6.10 Flood plain map- 1, 2, 10 % exceedance probability on the Petris (adapted after Haidu, Gydri,
Humbert, 2014).
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Fig. 6.15 Flood plain map- 1, 2, 10 % exceedance probability on the Monorostia Detail Monorostia Settlement
(Haidu, Gydri, Humbert, 2014).
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7. Conclusion
A good correspondance between the genberated hydrograph through the hydrologic
model and the hydraulic model as compared with the statistical discharges can be seen at the
hydrometric postsHence the hydraulic model made it possible to generate the floodplain maps

higly necessary for a good managemnt in case of emergency situations.
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