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Introduction

The fixed point theory for singlevalued and multivalued operators is a domain of the
nonlinear analysis with a dynamic development in the last decades, proofs being a lot
of monographs, proceedings and scientific articles appeared in these years.

In the existing literature on the fixed point theory, metric type conditions on the
operators play a vital role in proving the existence and uniqueness of a fixed point. The
Banach contraction theorem is a basic tool in functional analysis, nonlinear analysis
and differential equations.

Following the Banach contraction principle, in 1969 Nadler introduced the concept
of multivalued contraction and established that a multivalued contraction possesses a
fixed point in a complete metric space (see S. B. Nadler [83]). Subsequently many
authors generalized Nadler’s fixed point theorem in different way. Various fixed point
results for singlevalued contraction have been extended to multivalued operators, see
for instance Y. Feng and S. Liu [44], W. A. Kirk and B. Sims [65], D. Klim and D.
Wardowski [66], I. A. Rus [102], and references cited there in.

A generalization of Brouwer’s fixed point theorem, from 1912, was obtained by
Schauder in 1930. The situation is completely different when certain generalizations
are considered, in particular those concerning φ-contractive or condensing operators.
The degree of noncompactness of a set is measured utilizing functions µ called measures
of noncompactness. The first such measure was defined in 1930 by K. Kuratowski [67].
Later, other measures were defined by several authors, for instance I. Gohberg, L. S.
Gol’denshtein and A. S. Markus [54] and V. I. Istrăţescu [61].

On the other hand, the stability problem of functional equations originated from
a question of Stanislaw Ulam [124], posed in 1940, concerning the stability of group
homomorphisms. In the next year, Donald H. Hyers [56] gave a partial affirmative
answer to the question of Ulam in the context of Banach spaces, that was the first
significant breakthrough and a step toward more solutions in this area. Since then, a
large number of papers have been published in connection with various generalizations
of Ulam’s problem and Hyers’s theorem. Therefore this type of stability is called the
Ulam-Hyers stability. Concerning Ulam stability there are some results for differential
equations, integral equations, see T. P. Petru, A. Petruşel and J.-C. Yao [94], I. A.
Rus [110], I. A. Rus [111]. For other results in the case of fixed point problems and
coincidence point problems, see M. Bota and A. Petruşel [21], V. L. Lazăr [68], T. P.
Petru, A. Petruşel and J.-C. Yao [94], I. A. Rus [112], I. A. Rus [108], I.A. Rus, A.
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Petruşel and G. Petruşel [114]. For fixed point theory in metric spaces see Q. H. Ansari
[4], M. A. Khamsi and W. A. Kirk [64], W. A. Kirk and B. Sims [65], I. A. Rus [102].

From a mathematical point of view, many problems arising from diverse areas of
natural science involve the existence of solutions of nonlinear equations with the form

t(u) = s(u), u ∈M, (1)

where M is a nonempty subset of a Banach space X, and s, t : M → Y are nonlinear
operators taking values on another Banach space Y . The problem of finding a solution
for Equation (1) is known as a coincidence problem. Coincidence theory is a very
powerful technique especially in existence of solutions problems in nonlinear equations.
For instance, in R.F. Brown [25], A. Buică [29], T. Chen, W. Liu and Z. Hu [32], K.
Goebel [52], Y. Mao and J. Lee [73] several of such results are applied to solve boundary
value problems.

The coincidence problem can be considered as a generalization of the fixed point
problem since if t : M ⊆ X → X is an operator, to study the existence of a fixed point
for t is the same that to find a solution of the coincidence problem where s is the identity
operator on M . In this sense, R. Machuca [72] proved a coincidence theorem which is a
generalization of the well known Banach contraction principle. Generalizations of this
result can be found, for instance in J. Garcia-Falset and O. Mleşniţe [49], K. Goebel
[52], O. Mleşniţe [75]. On the other hand, R.E. Gaines and J.L. Mawhin [45] introduced
coincidence degree theory in 1970s in analyzing functional and differential equations.
The main goal in the coincidence degree theory is to search the existence of solutions
of Equation (1) in some bounded and open set M in some Banach space X for t being
a linear operator and s nonlinear operator using Leray-Schauder degree theory (see A.
Sirma and S. Sevgin [121] to find a sharpening results).

The following problem
S(x) ∩ T (x) 6= ∅, x ∈ X (2)

where X is a metric space and S, T : X → P (Y ) are two multivalued operators is called
a multivalued coincidence problem. For existence and Ulam-Hyers stability the solution
of this type of problems see V. Berinde [16], M. Bota and A. Petruşel [21], A. Buică
[29], O. Mleşniţe and A. Petruşel [76], A. Petruşel, C. Urs and O. Mleşniţe [93], T. P.
Petru, A. Petruşel and J.-C. Yao [94], I. A. Rus [102], [108].

This thesis is divided into four chapters, each chapter containing several sections.

Chapter 1: Preliminaries.
The aim of this chapter is to recall some notions and basic results which are necessary

in the presentation of the following chapters of this Ph.D. thesis. In writing this chapter,
we used the following bibliographical sources: J.-P. Aubin and H. Frankowska [12], J.
Dugundji and A. Granas [55], S. Hu and N. S. Papageorgiou [57], W.A. Kirk and B.
Sims [65], A. Petruşel [90], A. Petruşel [91], I.A. Rus [107], I. A. Rus [109], I.A. Rus,
A. Petruşel and G. Petruşel [114]. This chapter contains the following sections:
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§1 Metric spaces. Generalized metric spaces. In this section we recall the concept
of generalized metric space in the sense of Perov with some of their properties.

§2 Singlevalued weakly Picard operators. In this section we present a survey of known
results from singlevalued Picard operators theory. The concept of Picard operators
and weakly Picard operators were introduced by I. A. Rus in [102]. The theory of
weakly Picard operators is very useful to study some properties of the solutions of
those equations for which the method of successive approximation works. In terms of
a weakly Picard operators, some classical results take a very simple form.

§3 Multivalued weakly Picard operators. In this section we describe some basic con-
cepts and results for multivalued Picard operators. Some notions of continuity for
multivalued operators are also discussed. The first ideas of continuity for multival-
ued operators appear already in 1926-1927 in the works of mathematicians like W. A.
Wilson, L. S. Hill and W. Hurewicz. The notions about the continuity of multivalued
operators can be found in books and papers on multivalued analysis such as J.-P. Aubin
and A. Cellina [11], J.-P. Aubin and H. Frankowska [12], S. Hu and N. S. Papageorgiou
[57], W. A. Kirk and B. Sims [65], A. Petruşel [91].

Chapter 2: Coincidence theorems for singlevalued operators.
It is well know that a coincidence problem is, under appropriate conditions, equi-

valent to a fixed point problem for a singlevalued operators. Using this approach, we
present, in this chapter, some existence, uniqueness and Ulam-Hyers stability theorems
for coincidence problem mentioned above. We present also some extensions of our
results in generalized metric spaces. Some examples illustrating the main results of the
paper are also given. This chapter contains the following sections:

§1 Covering operators and Ulam-Hyers stability results for coincidence problems. In
this section we present some existence and Ulam-Hyers stability results for coincidence
point problems with singlevalued operators. The basic hypothesis in these results is the
property of covering operators. Our contributions in this section are: Theorem 2.1.1
which is an existence and Ulam-Hyers stability result for two singlevalued covering
operators; Theorem 2.1.2 which is an coincidence and Ulam-Hyers stability result for
two singlevalued covering operators with respect two sets. The scientific paper which
contain the original results of this section is: O. Mleşniţe [78].

§2 Existence and Ulam-Hyers stability results for coincidence problems. In this
section we present some existence and Ulam-Hyers stability results for coincidence pro-
blems with singlevalued operators. Our contributions in this section are: Lemma 2.2.1
which shows that a coincidence problem is, under appropriate conditions, equivalent to a
fixed point problem; Theorem 2.2.1 is a generalization of Banach’s contraction principle;
Theorems 2.2.3 and 2.2.4 are some data dependence results for the Ulam-Hyers stability
of coincidence problems of two pair of singlevalued operators; Theorem 2.2.5 is an Ulam-
Hyers stability result for a coincidence problem with respect two strongly equivalent
metrics. The scientific paper which contain the original results of this section are: O.
Mlesņiţe [74], [75].
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§3 Coincidence problems for generalized contractions. In this section we present
new existence, uniqueness and Ulam-Hyers stability theorems for coincidence problems
using generalized contractions and we generalize Goebel’s coincidence theorem given,
see K. Goebel [52]. Our contributions in this section are: Theorem 2.3.1 is a result on
Ulam-Hyers stability for the case of Goebel’s coincidence theorem; Theorem 2.3.2 is a
result which extends Goebel’s theorem by considering the condition of ϕ-contraction of
an operator with respect to an another operator; Theorems 2.3.3 and 2.3.4 are some
generalizations of Theorem 2.2.1 respectively Theorem 2.2.2 using generalized contrac-
tion; Theorem 2.3.5 is a generalization of Theorem 2.3.3; Corollary 2.3.2; Theorem 2.3.6
is an existence, uniqueness and generalized Ulam-Hyers stability result using separate
contractions. The scientific paper which contain the original results of this section are:
O. Mlesņiţe [74], [77], J. Garcia-Falset and O. Mleşniţe [49].

§4 Coincidence results by fixed point theorems in generalized metric spaces. In this
section we present some existence, uniqueness and Ulam-Hyers stability results for fixed
point and coincidence point problems with singlevalued operators in generalized metric
spaces. Our contributions in this section are: Theorem 2.4.1 is an extension of Perov’s
Theorem and a generalization to vector-valued metric spaces of the main theorem from
M. Berinde and V. Berinde [17]; Theorem 2.4.2 is an existence and uniqueness result for
coincidence problem with singlevalued operators in generalized metric spaces; Theorem
2.4.3 is an approximation and an error estimate for the solution of the coincidence
problem. The scientific paper which contain the original results of this section is: O.
Mleşniţe [75].

§5 A Leray-Schauder condition to the coincidence problems. In this section we obtain
several versions, without invoking degree theory, of the coincidence problems, where the
singlevalued operators can both become nonlinear. Our contributions in this section
are: Theorem 2.5.4 is an extension of Theorem 2.5.2; Theorem 2.5.5 is a sharpening of
Theorem 2.5.3 (see W. V. Petryshyn [95]); Corollary 2.5.2. The scientific paper which
contain the original results of this section is: J. Garcia-Falset, C. A. Hernández-Linares
and O. Mleşniţe [50].

Chapter 3: Coincidence theorems for multivalued operators.
The purpose of this chapter is to present some existence and Ulam-Hyers stability

results for fixed point and coincidence point problems. This approach is based on the
weakly Picard operators technique in the setting of generalized metric spaces in the
sense of Perov, i.e., spaces endowed with vector metrics d : X × X → Rm

+ . Using the
cartesian product technique for two multivalued operators, our result improve some
recent theorems in the literature, see M. Bota and A. Petruşel [21], T. P. Petru, A.
Petruşel and J.-C. Yao [94], I. A. Rus [108]. This chapter contains the following sections:

§1 Metric regularity and Ulam-Hyers stability results for coincidence problems. Open
covering and metric regularity are properties playing an important role in several topics
of modern variational analysis. In this paper, we will present some existence and Ulam-
Hyers stability results for coincidence point problems with multivalued operators. The
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basic hypothesis in these results is the property of metric regularity. Our contributions
in this section are: Lemma 3.1.1 which shows that a coincidence problem is, under
appropriate conditions, equivalent to a fixed point problem with multivalued operators;
Theorems 3.1.1 and 3.1.2 are some generalizations of the main theorems from A. V.
Blaga [19]. The scientific paper which contain the original results of this section is: O.
Mleşniţe [79].

§2 Existence and Ulam-Hyers stability results for coincidence problems. In this sec-
tion we present some existence and Ulam-Hyers stability results for coincidence prob-
lems with multivalued operators using the weakly Picard operators technique. Our
contributions in this section are: Theorem 3.2.1 is a generalization of Covitz-Nadler’s
fixed point theorem; Theorem 3.2.2 is a data dependence result for the Ulam-Hyers
stability of the multivalued coincidence problems. The scientific paper which contain
the original results of this section is: O. Mleşniţe and A. Petruşel [76].

§3 Coincidence results by fixed point theorems in generalized metric spaces. In this
section we present some existence and Ulam-Hyers stability results for coincidence point
problems with multivalued operators using the weakly Picard operator technique in
generalized metric spaces. Our contributions in this section are: Theorem 3.3.1 is a
generalization of Perov’s fixed point theorem. The scientific papers which contain the
original results of this section are: O. Mleşniţe and A. Petruşel [76], A. Petruşel, C. Urs
and O. Mleşniţe [93].

§4 A Leray-Schauder condition to the coincidence problems. In this section we
present some existence results for coincidence point problems with multivalued opera-
tors using Leray-Schauder type condition and Theorem 2.5.2. Our contributions in this
section are: Theorem 3.4.1 is an existence result for coincidence problem and a general-
ization of Theorem 2.5.2; Theorem 3.4.2 is an existence result for coincidence problem
with operators which are condensing but not necessarily k-set contractive; Corollary
3.4.2 and 3.4.3 are consequences of Theorem 3.4.2. The scientific paper which contain
the original results of this section is: J. Garcia-Falset, C. A. Hernández-Linares and O.
Mleşniţe [50].

Chapter 4: Applications.
The purpose of this chapter is to present some applications of the results presented in

this thesis. Firstly is given an application regarding Ulam-Hyers stability for differential
equations and operatorial inclusions and then we study the existence of classical and
strong solution to a diferential equation of first order and second order. Finally we
present the existence of solution for a Dirichlet problem. This chapter contains the
following sections:

§1 Ulam-Hyers stability for differential equations. In this section we establish some
new existence, uniqueness and Ulam-Hyers stability results for differential equations.
Our contributions in this section are: Application 1 for Theorem 2.3.4, it is an Ulam-
Hyers stability result for a differential equation; Application 2 for Theorem 2.3.2, it is
an Ulam-Hyers stability result for a differential equation using generalized contractions.
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The scientific papers which contain the original results of this section are: J. Garcia-
Falset and O. Mleşniţe [49], O. Mleşniţe [77].

§2 Ulam-Hyers stability for operatorial inclusions. In this section we prov an Ulam-
Hyers stability theorem for a multivalued Cauchy problem corresponding to a first order
differential inclusion. Our contribution in this section is: Theorem 4.2.1 is a result with
respect to the Ulam-Hyers stability of the Cauchy problem. The scientific paper which
contain the original results of this section is: O. Mlesņiţe [74].

§3 Existence of solution to a differential equation of first order. In this section,
we want to study the existence of strong solutions to a differential equation of first
order. Our contributions in this section are: Lemma 4.3.1, Lemma 4.3.2, Lemma 4.3.3,
Lemma 4.3.4, Lemma 4.3.5 and Theorem 4.3.1 representing the main result for existence
of strong solution to a differential equation of first order. For obtaining this existence
result we apply Corollary 2.5.2. The scientific paper which contain the original results
of this section is: J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50].

§4 Existence of solutions to a differential equation of second order. In this section,
we want to study the existence of classical and strong solutions to a differential equa-
tion with a non homogeneous Dirichlet conditions. Our contributions in this section
are: Lemma 4.4.1, Lemma 4.4.2, Lemma 4.4.3, Lemma 4.4.4, Theorem 4.4.1 and Theo-
rem 4.4.3 representing the main result for existence of classical solution to a differential
equation of second order, for obtaining this existence result we apply Theorem 2.3.3
and Corollary 3.4.2; Lemma 4.4.5, Lemma 4.4.6, Lemma 4.4.7 and Theorem 4.4.4 rep-
resenting the main result for existence of strong solutions to a differential equation of
second order, for obtaining this existence result we apply Corollary 3.4.3. The scien-
tific paper which contain the original results of this section is: J. Garcia-Falset, C. A.
Hernández-Linares and O. Mleşniţe [50].

§5 A nonlinear Dirichlet problem. In this section we obtain the existence of solution
for a Dirichlet problem using the results of coincidence problems. Our contributions in
this section is: Theorem 4.5.1 representing the main result the existence of a solution
for a Dirichlet problem. The scientific paper which contain the original results of this
section is: J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50].

The author’s contributions included in this thesis are also part of the following
scientific papers:

• O. Mlesņiţe, Ulam-Hyers stability for operatorial inclusions, Creat. Math. In-
form., 21 (2012), No. 1, 87-94 (MR2984982).

• O. Mleşniţe, Existence and Ulam-Hyers stability results for coincidence prob-
lems, J. Nonlinear Sci. Appl. 6 (2013), 108-116 (MR3017894).

• O. Mleşniţe and A. Petruşel, Existence and Ulam-Hyers stability results for
multivalued coincidence problems, Filomat, 26, 5 (2012), 965-976 (IF: 0.714).
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• A. Petruşel, C. Urs and O. Mleşniţe, Vector-valued Metrics in Fixed Point The-
ory, Contemporary Math. Series, Amer. Math. Soc., 2013.
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Napoca, Romania.

• The Fifth International Workshop-Constructive methods for non-linear boundary
value problems, 28 June-1 July, 2012, Tokaj, Hungary.

• The 10th International Conference on Fixed Point Theory and its Applications,
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Chapter 1

Preliminaries

The purpose of this chapter is to present the basic notions and results which are further
considered in the next chapters of this work, allowing us to present the results of this
thesis. Through this thesis we will use the classical notations and notions from Nonlinear
Analysis. For the fixed point theory in metric spaces see G. Allaire and S.M. Kaber [2],
Q. H. Ansari [4], A. Granas and J. Dugundji [55], M. A. Khamsi and W. A. Kirk [64],
W. A. Kirk and B. Sims [65], M. A. Khamsi and W. A. Kirk [64], G. Moţ, A. Petruşel
and G. Petruşel [82], A. Petruşel [90], I. A. Rus [101], I. A. Rus [102], I. A. Rus [107], I.
A. Rus [109], I.A. Rus, A. Petruşel and G. Petruşel [114], R. S. Varga [125] and others.

1.1 Metric spaces. Generalized metric spaces

In many branches of mathematics, it is convenient to have available a notion of distance
between elements of an abstract set. For example, the proofs of some of the theorems
in real analysis depends only on a few properties of the distance between points and
not on the fact that the points. When these properties of distance are abstracted, they
lead to the concept of a metric space. Our objective in this section is to define a metric
space and afterwards a generalized metric space with some of their properties.

In 1905 M. Frechet introduced the notion of metric space in order to study the
properties of functional spaces.

In the late of XX-th century and the beginning of XXI century appear works which
treat results where the vector metric takes values in an infinite dimensional space (see
W. A. J. Luxemburg and A. C. Zaanen [70], A.C. Zaanen [131]). Next we define the
notion of generalized metric space.

Definition 1.1.1 (A. I. Perov [87]). Let X be a nonempty set. A mapping d : X×X →
Rm is called a vector-valued metric on X if the following properties are satisfied:

• (i) d(x, y) ≥ O for all x, y ∈ X; if d(x, y) = O, then x = y; (where O :=
(0, 0, · · · , 0)︸ ︷︷ ︸

m−times

)

1



Chapter 1. Preliminaries

• (ii) d(x, y) = d(y, x) for all x, y ∈ X;

• (iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A nonempty set X endowed with a vector-valued metric d is called a generalized
metric space in the sense of Perov (in short a generalized metric space) and it will be
denote by (X, d).

Notice that the generalized metric space in the sense of Perov is a particular case of
Riesz spaces (see W. A. J. Luxemburg and A. C. Zaanen [70], A. C. Zaanen [131]).

1.2 Singlevalued weakly Picard operators

The method of successive approximations is one of the basic tool in the theory of
operatorial equations, especially in the fixed point theory. The theory of weakly Picard
operators is very useful to study some properties of the solutions of those equations
for which the method of successive approximation works. In term a weakly Picard
operators, some classical results take a very simple form. Throughout this section we
follow the terminologies and the notations in I. A. Rus [102] and I.A. Rus [104], A.
Petruşel and G. Petruşel [114].

Let X be a nonempty set and f : X → X an operator. We will use the notation:

Fix(f) := {x ∈ X | f(x) = x} − for the fixed point set of the operator f.

Let (X, d), (Y, ρ) be two metric spaces and let f : X → Y be an operator.

(a) f is called a Lipschitz if there exists a constant k ≥ 0 such that

ρ(f(x), f(y)) ≤ k · d(x, y), for each x, y ∈ X.

If k ∈ [0, 1) then f is called contraction.

If k = 1, then f is called nonexpansive.

(b) f is a dilatation if there exists a constant h > 1 such that

ρ(f(x), f(y)) ≥ h · d(x, y), for each x, y ∈ X.

If h = 1, then f is said to be expansive.

(c) f is contractive if

ρ(f(x), f(y)) < d(x, y), for each x, y ∈ X with x 6= y.

Main result for self contractions on generalized metric spaces is Perovs fixed point
theorem, see A. I. Perov [87].
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Chapter 1. Preliminaries

Theorem 1.2.1 (A. I. Perov [87]). Let (X, d) be a complete generalized metric space
and the operator f : X → X with the property that there exists a matrix A ∈Mm,m(R)
such that

d(f(x), f(y)) ≤ Ad(x, y) for all x, y ∈ X.

If A is a matrix convergent towards zero, then:

1) Fix(f) = {x∗};

2) the sequence of successive approximations (xn)n∈N, xn = fn(x0) is convergent and
it has the limit x∗, for all x0 ∈ X;

3) one has the following estimation

d(xn, x
∗) ≤ An(I − A)−1d(x0, x1);

4) If g : X → X is an operator such that there exists y∗ ∈ Fix(g) and there exists
η := (η1, ..., ηm) ∈ Rm

+ with ηi > 0 for each i ∈ {1, 2, ...,m}, such that

d(f(x), g(y)) ≤ η, for all x ∈ X,

then

d(y∗, x∗) ≤ (I − A)−1η.

5) If g : X → X is an operator, yn = gn(x0) and there exists η := (η1, ..., ηm) ∈ Rm
+

with ηi > 0 for each i ∈ {1, 2, ...,m} such that

d(f(x), g(x)) ≤ η, for all x ∈ X,

we have the following estimation

d(yn, x
∗) ≤ (I − A)−1η + An(I − A)−1d(x0, x1).

1.3 Multivalued weakly Picard operators

In this section we describe some basic concepts and results for multivalued operators
such as the notions of continuity for multivalued operators (see J.-P. Aubin and A.
Cellina [11], J.-P. Aubin and H. Frankowska [12], W. A. Kirk and B. Sims [65], A.
Petruşel [91]) as well multivalued weakly Picard operators (A. Petruşel [90], I. A. Rus
[108], I. A. Rus [107], I.A. Rus, A. Petruşel and G. Petruşel [114]).

A point x ∈ X is called fixed point (respectively strict fixed point) for F if

x ∈ F (x) ( respectively {x} = F (x)).
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Chapter 1. Preliminaries

Note Fix(F ) (or SFix(F )) the fixed point set (respectively the strict fixed point set)
for the multivalued operator F , i. e.,

Fix(F ) := {x ∈ X | x ∈ F (x)} − the fixed point set of F ;

SFix(F ) := {x ∈ X | {x} = F (x)} − the strict fixed point set of F .

Definition 1.3.1. Let (X, d) and (Y, ρ) be two metric spaces and let F : X → Pcl(X)
be a multivalued operator. Then

(a) F is said to be k-Lipschitz if and only if k > 0 and

Hρ(F (x), F (y)) ≤ k · d(x, y), for all x, y ∈ X.

If F is k-Lipschitz with constant k < 1, then F is said to be a multivalued k-
contraction.

(b) F is said to be ϕ-contraction if ϕ : R+ → R+ is a strict comparison function and

Hρ(F (x), F (y)) ≤ ϕ(d(x, y)), for all x, y ∈ X.

The following result is known in the literature as Covitz-Nadler fixed point principle
(see H. Covitz and S. B. Nadler [35] and S. B. Nadler [83]).

Theorem 1.3.1 (H. Covitz and S. B. Nadler [35], S. B. Nadler [83]). Let (X, d) be a
complete metric space and x0 ∈ X be arbitrary. If F : X → Pcl(X) is a multivalued
k-contraction, then F has at least fixed point and there exists a sequence of successive
approximations of F starting from x0 which converges to a fixed point of F .

The next result, a generalization of Covitz-Nadler fixed point principle is known in
the literature as Wȩgrzyk’s fixed point theorem (see R. Wȩgrzyk [129]).

Theorem 1.3.2 (R. Wȩgrzyk [129]). Let (X, d) be a complete metric space and F :
X → Pcl(X) be a multivalued ϕ-contraction. Then F has at least fixed point and for
any x0 ∈ X there exists a sequence of successive approximations of F starting from x0
which converges to a fixed point of F .

4



Chapter 2

Coincidence theorems for
singlevalued operators

It is well know that a coincidence problem is, under appropriate conditions, equivalent
to a fixed point problem for a singlevalued operators generated by s and t. Using
this approach, we will present, in this chapter, some existence, uniqueness, covering
operators and Ulam-Hyers stability theorems for coincidence problems. We present also
some extensions of our results in generalized metric spaces. Some examples illustrating
the main results of the chapter are also given.

The references which were used to develop this chapter are: J. M. Ayerbe Toledano,
T. Domı́nguez-Benavides and G. Lopez Acedo [13], A. V. Arutyunov [7], A. Arutyunov,
E. Avakov, B. Gel’man, A. Dmitruk and V. Obukhovskii [10], A. V. Dmitruk [38], K.
Goebel [52], L. A. Lyusternik [71], O. Mleşniţe [78], [75], [74], [77], T. P. Petru, A.
Petruşel and J.-C. Yao [94], W. V. Petryshyn [95], I. A. Rus [108], [112].

Let X, Y be two nonempty sets and s, t : X → Y be two singlevalued operators.
Let us consider the following coincidence problem

find (x, y) ∈ X × Y such that s(x) = t(x) = y. (2.1)

We denote by C(s, t) the set of all coincidence points for s and t.
A solution of the coincidence problem (2.1) for s and t is a pair (x∗, y∗) ∈ X × Y

such that
s(x∗) = t(x∗) = y∗.

Denote by CP (s, t) ⊂ X × Y the set of all solution for the coincidence problem (2.1).

Ulam-Hyers stability for the coincidence problem (2.1):

Let (X, d), (Y, ρ) be two metric spaces and s, t : X → Y be two operators. The
coincidence problem (2.1) is called generalized Ulam-Hyers stable if and only if there
exists ψ : R+ → R+ increasing, continuous at 0 and ψ(0) = 0 such that for every ε > 0
and for each solution w∗ ∈ X of the approximative coincidence problem

ρ(s(w∗), t(w∗)) ≤ ε (2.2)

5



Chapter 2. Coincidence theorems for singlevalued operators

there exists a solution z∗ of (2.1) such that

d(w∗, z∗) ≤ ψ(ε). (2.3)

If there exists c > 0 such that ψ(t) = ct for each t ∈ R+ then the coincidence
problem (2.1) is said to be Ulam-Hyers stable.

For Ulam-Hyers stability results in the case of fixed point problems and coincidence
point problems for singlevalued operators see M. Bota and A. Petruşel [21], V. L. Lazăr
[68], T. P. Petru, A. Petruşel and J.-C. Yao [94], I. A. Rus [102], [108], [112], I.A. Rus,
A. Petruşel and G. Petruşel [114].

2.1 Covering operators and Ulam-Hyers stability

results for coincidence problems

In this section, we will present some existence and Ulam-Hyers stability results for
coincidence point problems with singlevalued operators. The basic hypothesis in these
results is the property of covering operators. These results generalize the fixed point
theorems given by A. V. Arutyunov [7], A. Arutyunov, E. Avakov, B. Gel’man, A.
Dmitruk and V. Obukhovskii [10].

Definition 2.1.1 (A. Arutyunov [7]). Let (X, d) and (Y, ρ) two metric spaces. For a
given α > 0, an operator f : X → Y is said to be α- covering if for all x ∈ X and r > 0
we have

BY (f(x), αr) ⊆ f(BX(x, r)). (2.4)

The supremum over all values α satisfying inclusion (2.4) is called modulus of covering
of f and denoted for short by cov(f) (instead of covX×Y (f)).
Notice that, due to the global validity of inclusion (2.4) one has

BY (f(x), cov(f)r) ⊆ f(BX(x, r)), for all x ∈ X, r > 0.

The properties of coverings operators were studied in A. Arutyunov [7], A. V.
Dmitruk, A. A. Milyutin, N. P. Osmolovskii [39], A. D. Ioffe [59], [60], B. S. Mor-
dukhovich and B. Wang [81].

Following the idea given in A. Uderzo [123] we have the following remark.

Remark 2.1.1. An operator f : X → Y fulfils Definition 2.1.1 if and only if there
exists k > 0 such that

d(x, f−1(y)) ≤ kρ(f(x), y), for all x ∈ X, y ∈ Y. (2.5)

We say that f is metrically regular on X.
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Chapter 2. Coincidence theorems for singlevalued operators

The infimum of all values k satisfying inequality (2.5) is called modulus of global
metric regularity of f and denoted by reg(f). The following relation between the
modulus of global covering and the modulus of global metric regularity is know to hold

reg(f) =
1

cov(f)
,

where the case reg(f) = ∞, coresponding to cov(f) = 0, is intended to mean the
absence of global open covering/ metric regularity for a given f .

Another characterization of covering/ metric regularity can be obtained in terms of
Lipschitz behavior of the inverse multivalued operator. In fact f covers on X if and
only if f−1 is Lipschitz continuous in Y and it holds

lip(f−1) =
1

cov(f)
.

Lemma 2.1.1 (A. Arutyunov, E. Avakov, B. Gel’man, A. Dmitruk, V. Obukhovskii
[10]). Let f : X → Y be an onto and k-Lypschitz operator with k > 0. The inverse
multivalued operator f−1 : Y → P(X), f−1(x) = {y ∈ P(X) : f(y) = x} is 1

k
-covering.

Remark 2.1.2. It should be mentioned that the converse is also true: if f−1 is 1
k
-

covering, then f is k-Lipschitz.

Let us consider a relative version of the α-covering property.

Definition 2.1.2 (A. Arutyunov, E. Avakov, B. Gel’man, A. Dmitruk, V. Obukhovskii
[10]). Let M ⊆ X and N ⊆ Y be any sets and α > 0. An operator f : X → Y is said
to be α-covering with respect to the sets M and N if for all x ∈M and r > 0 such that
BX(x, r) ⊆M we have

BY (f(x), αr) ∩N ⊆ f(BX(x, r)). (2.6)

If N = Y we say that f is α-covering on M .

Notice that other definitions of covering maps may be found, for example, in works
of A. D. Ioffe [59], [60], B. S. Mordukhovich [80].

Definition 2.1.3. Let M ⊆ X and N ⊆ Y be closed sets. An operator f : X → Y is
called closed with respect to M and N if the intersection of its graph with M × N is
closed.

Theorem 2.1.1 (O. Mleşniţe [78]). Let (X, d) be a complete metric space and (Y, ρ) be
a metric space. Suppose that:

(i) t : X → Y is open, bijective, and kt-Lipschitz operator, with constant kt > 0;

(ii) s : X → Y is a continuous and ks-covering operator and ks > kt;

7
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Then the coincidence problem (2.1) has at last one solution (i.e. there exists x∗ ∈ X
such that s(x∗) = t(x∗)) and we have

ρ(y0, t(x
∗)) ≤ kt

ks − kt
ρ(y0, s(t

−1(y0))), for all y0 ∈ t(X). (2.7)

If, additionally, t : X → Y is metrically regular on X with constant α > 0 then the
coincidence problem (2.1) is Ulam-Hyers stable.

Theorem 2.1.2 (O. Mleşniţe [78]). Let (X, d) be a complete metric space, (Y, ρ), x0 ∈
X and R1, R2 ∈ (0,∞]. Suppose that:

(i) t : X → Y is open, bijective and kt- Lipschitz operator, with constant kt > 1;

(ii) s : X → Y is a continuous and ks- covering operator with respect to the balls
BX(x0, R1) and BY (s(x0), ksR2) and ks > kt such that

ρ(s(x0), t(x0)) ≤
(
ks
kt
− 1

)
min{R1, R2}. (2.8)

Then the coincidence problem (2.1) has at last one solution (i.e. there exists x∗ ∈ X
such that s(x∗) = t(x∗)) and we have

ρ(y0, t(x
∗)) ≤ kt

ks − kt
ρ(y0, s(t

−1(y0))), for all y0 ∈ t(X). (2.9)

If, additionally, t : X → Y is metrically regular on X with constant α > 0 then the
coincidence problem (2.1) is Ulam-Hyers stable.

2.2 Existence and Ulam-Hyers stability results for

coincidence problems

The purpose of this section is to present some existence and Ulam- Hyers stability results
for coincidence problems with singlevalued operators. Using the cartesian product
technique for two singlevalued operators, these results are based on the following works
M. Bota and A. Petruşel [21], O. Mleşniţe [74], [75], I. A. Rus [108].

Let (X, d), (Y, ρ) be two metric spaces and s, t : X → Y be two operators such
that t is a injection. Then, t has a left inverse t−1l : t(X) → X. Suppose also that
s(X) ⊆ t(X). Consider f : X × t(X)→ X × t(X) defined by

f(x1, x2) = (t−1l (x2), s(x1)).

Lemma 2.2.1. Under the above mentioned conditions, we have CP (s, t) = Fix(f).

8
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Let (X, d), (Y, ρ) be two metric spaces, let dZ be the metric (generated by d and ρ)
on Z := X × Y defined by

d∗((x1, x2), (u1, u2)) = d(x1, u1) + ρ(x2, u2)

or
d∗((x1, x2), (u1, u2)) = max{d(x1, u1), ρ(x2, u2)}

for each (x1, x2), (u1, u2) ∈ Z and let s, t : X → Y be two operators. Let us consider
the coincidence problem (2.1).

Theorem 2.2.1 (O. Mleşniţe [75]). Let (X, d) and (Y, ρ) be two complete metric spaces.
Suppose that the operator t : X → Y is a dilatation with constant kt > 1, the operator s :
X → Y is a contraction with constant ks < 1 and s(X) ⊆ t(X). Then the coincidence
problem (2.1) for s and t has a unique solution.

Theorem 2.2.2 (O. Mleşniţe [75]). Let (X, d) and (Y, ρ) be two complete metric spaces.
Suppose that all the hypotheses of Theorem 2.2.1 hold and additionally suppose that
t : X → Y is metrically regular on X with constant α > 0. Then the coincidence
problem (2.1) is Ulam-Hyers stable.

Remark 2.2.1. Similar proofs for Theorem 2.2.1 and Theorem 2.2.2 are possible if we
consider on Z := X × t(X) the metric d∗ : Z × Z → R+ defined by

d∗((x1, x2), (u1, u2)) = max{d(x1, u1), ρ(x2, u2)}.

Next we prove some data dependence results for the Ulam-Hyers stability of coinci-
dence problems of two pair of singlevalued operators.

Theorem 2.2.3 (O. Mleşniţe [75]). Let (X, d) and (Y, ρ) be two metric spaces and fi, gi :
X → Y , i ∈ {1, 2} be four operators. Consider the following coincidence equations:

f1(x) = g1(x), x ∈ X, (2.10)

f2(x) = g2(x), x ∈ X. (2.11)

Let us consider the sets:

Ciε := {x ∈ X|ρ(fi(x), gi(x)) ≤ ε}, i ∈ {1, 2}.

If the following conditions are satisfied:
(i) C(f2, g2) ⊆ C(f1, g1);
(ii) the coincidence equation (2.11) is Ulam-Hyers stable;
(iii) C1ε ⊆ C2ε, for each ε > 0;

then the coincidence equation (2.10) is Ulam-Hyers stable.

In the particular case Y := X and g1 = g2 := 1X , we get the following Ulam-Hyers
stability result for a fixed point equation.
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Theorem 2.2.4 (O. Mleşniţe [75]). Let (X, d) be a metric space and f1, f2 : X → X
be two operators. Consider the following fixed point equations:

f1(x) = x, x ∈ X (2.12)

f2(x) = x, x ∈ X. (2.13)

Let us consider the sets:

Fiε := {x ∈ X|d(fi(x), x) ≤ ε}, i = {1, 2}.

If the following conditions are satisfied:
(i) Fix(f1) = Fix(f2);
(ii) the fixed point equation (2.13) is Ulam-Hyers stable;
(iii) F1ε ⊆ F2ε, for each ε > 0;

then, the fixed point equation (2.12) is Ulam-Hyers stable.

If we suppose that X = Y and ρ, d are two strongly equivalent metrics on X, then
we can obtain a Ulam-Hyers stability result for the coincidence equation (2.10).

Theorem 2.2.5 (O. Mleşniţe [75]). Let X be a nonempty set, ρ and d two strongly
equivalent metrics. If the coincidence equation (2.10) is Ulam-Hyers stable with respect
to metric d, then it is Ulam-Hyers stable with respect to metric ρ.

2.3 Coincidence problems for generalized contrac-

tions

In this section, we study the existence, uniqueness and Ulam-Hyers stability for the
coincidence problem and thus, we may extend most of the results given in O. Mleşniţe
[75], our techniques also allow us to give a generalization of Theorem 2.1 of T. Xiang
and R. Yuan [130].

In O. Mleşniţe [74] is presented the following result on Ulam-Hyers stability for the
case of Goebel’s coincidence theorem.

Theorem 2.3.1 (O. Mleşniţe [74]). Let X 6= ∅ be an arbitrary set and let (Y, ρ) be
a metric space. Let s, t : X → Y such that s(X) ⊂ t(X) and (t(X), ρ) is a complete
subspace of Y . Suppose that exists 0 ≤ k < 1 such that ρ(s(x), s(y)) ≤ kρ(t(x), t(y)),
for all x, y ∈ X. Then:

a) C(s, t) 6= ∅ (Goebel’s Theorem, see [52]);
b) If additionally:

ρ(y, s(t−1(y))) ≤ ρ(t(y), s(y)), for all y ∈ t(X), (2.14)

then the coincidence point problem (2.1) is Ulam-Hyers stable.
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In O. Mleşniţe [77] is presented the following result who extends Goebel’s theorem
(K. Goebel [52]) by considering the condition of ϕ-contraction of s with respect to t.

Theorem 2.3.2 (O. Mleşniţe [77]). Let X 6= ∅ be an arbitrary set and let (Y, ρ) be
a metric space. Let s, t : X → Y such that s(X) ⊆ t(X) and (t(X), ρ) is a complete
subspace of Y . Suppose that there exists a function ϕ : R+ → R+ increasing and
(ϕn(t))→ 0, n→∞, for all t ∈ R+ such that

ρ(s(x), s(y)) ≤ ϕ(ρ(t(x), t(y))), for all x, y ∈ X.

Then:
a) C(s, t) 6= ∅;
b) If additionally, exists ψ : R+ → R+ increasing, continuous in 0 and ψ(0) = 0

such that:
ρ(y, s(t−1(y))) ≤ ψ(ρ(t(y), s(y))), for all y ∈ t(X), (2.15)

then the coincidence point problem (2.1) is (β−1 ◦ ψ)− generalized Ulam-Hyers stable,
where β(t) := t− ϕ(t) increasing and bijective.

Next we present the main results of this section which extend previous ones (for
instance see O. Mleşniţe [75, Theorems 1.6, 1.8, 1.11, 1.13]).

Theorem 2.3.3 (J. Garcia-Falset and O. Mleşniţe [49]). Let (X, d) and (Y, ρ) be two
complete metric spaces. Suppose that:

(i) t : X → Y is an expansive operator,
(ii) the operator s : X → Y is a φ-contraction,
(iii) s(X) ⊆ t(X).
Then the coincidence problem (2.1) has a unique solution.

Regarding the Ulam-Hyers stability problem the ideas given in T. P. Petru, A.
Petruşel and J.-C. Yao [94, Theorem 2.3] allow us to obtain the second main result.

Theorem 2.3.4 (J. Garcia-Falset and O. Mleşniţe [49]). Let (X, d), (Y, ρ) be two com-
plete metric spaces. Suppose that all the hypotheses of Theorem 2.3.3 hold and addi-
tionally that the function β : R+ → R+, β(r) := r−φ(r) is strictly increasing and onto.
Then the coincidence problem (2.1) is generalized Ulam-Hyers stable.

Since if t : X → Y is a dilatation, then t is an expansive operator. As a consequence
of Theorems 2.3.3 and 2.3.4, we infer.

Corollary 2.3.1 (J. Garcia-Falset and O. Mleşniţe [49]). Let (X, d) and (Y, ρ) be two
complete metric spaces. Suppose both that the operator t : X → Y is a dilatation and
s : X → Y is a φ-contraction with s(X) ⊆ t(X). Then

1. the coincidence problem (2.1) has a unique solution.

2. If in addition, the function β : R+ → R+, β(r) := r − φ(r) is strictly increasing
and onto, then the coincidence problem (2.1) is generalized Ulam-Hyers stable.
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Theorem 2.3.5 (J. Garcia-Falset and O. Mleşniţe [49]). Let (X, d) and (Y, ρ) be two
complete metric spaces. Suppose that:

(i) t : X → Y is an operator such that there exists a function φ1 : R+ → R+,
continuous, increasing, φ1(r) > r and φ1(0) = 0 and satisfying the following relation:

ρ(t(y), t(z)) ≥ φ1(d(y, z)), for all y, z ∈ X,

(ii) the operator s : X → Y is lipschizian with constant ks > 0,
(iii) s(X) ⊆ t(X),
(iv) r < φ1(

r
ks

).
Then the coincidence problem (2.1) has a unique solution.

Next result is a generalization of Theorem 2.1 of T. Xiang and R. Yuan [130].

Corollary 2.3.2 (J. Garcia-Falset and O. Mleşniţe [49]). Let (X, d) be a complete
metric space and let t : X → X be an onto operator satisfying condition (i) of Theorem
2.3.5. Then it has a unique fixed point.

Theorem 2.3.6 (J. Garcia-Falset and O. Mleşniţe [49]). Let (X, d) and (Y, ρ) be two
complete metric spaces. Suppose that the operator t : X → Y is expansive and the
operator s : X → Y is a separate contraction and s(X) ⊆ t(X). Then

(i) If ϕ is nondecreasing, the coincidence problem (2.1) has a unique solution.

(ii) If ψ is onto, the coincidence problem (2.1) is generalized Ulam-Hyers stable.

Remark 2.3.1. Other results on Ulam-Hyers stability for fixed point problems using
generalized contractions (i.e. α− ψ-contractive mappings) in (b)-metric space are pre-
sented in M.-F. Bota, E. Karapinar and O. Mleşniţe [20].

2.4 Coincidence results by fixed point theorems in

generalized metric spaces

In this section we will present some existence, uniqueness and Ulam-Hyers stability
results for fixed point and coincidence point problems with singlevalued operators in
spaces endowed with vector valued metrics. Many other contributions on this topic
were given in R. P. Agarwal [1], A. Bucur, L. Guran and A. Petruşel [27], A. D. Filip
and A. Petruşel [43], D. O’Regan, N. Shahzad and R. P. Agarwal [85], R. Precup [97],
R. Precup and A. Viorel [98], [99].

We present now an extension of Perov’s Theorem. In the same time, the result is a
generalization to vector-valued metric spaces of the main theorem in M. Berinde and
V. Berinde [17].
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Theorem 2.4.1 (A. Petruşel, O. Mleşniţe and C. Urs [93]). Let (X, d) be a gener-
alized complete metric space and let f : X → X be an (A,B,C,D)-contraction, i.e.,
A,B,C,D ∈ Mmm(R+) are such that the matrices D and M := (I − D)−1(A + C)
converge to zero and

d(f(x), f(y)) ≤ Ad(x, y) +Bd(y, f(x)) + Cd(x, f(x)) +Dd(y, f(y)), for all x, y ∈ X.

Then, the following conclusions hold:

(1) f has at least one fixed point and, for each x0 ∈ X, the sequence xn := fn(x0) of
successive approximations of f starting from x0 converges to x∗(x0) ∈ Fix(f) as
n→∞;

(2) For each x0 ∈ X we have

d(xn, x
∗(x0)) ≤Mn(I −M)−1d(x0, f(x0)), for all n ∈ N

and
d(x0, x

∗(x0)) ≤ (I −M)−1d(x0, f(x0));

(3) If, additionally, the matrix A + B converges to zero, then f has a unique fixed
point in X.

Remark 2.4.1. In particular, if B = C = D = Omm (where Omm is zero matrix from
Mmm(R+)), then we get the classical result of Perov, see Theorem 1.2.1.

Let us introduce now some vector valued metrics of Perov’s type. Let (X, d) and
(Y, ρ) be two metric spaces. Let Z := X × Y and define on Z × Z the vector metric
dV : Z × Z → R2

+ by

dV (x, u) = dV ((x1, x2), (u1, u2)) = (d(x1, u1), ρ(x2, u2)), (2.16)

for each x = (x1, x2), u = (u1, u2) ∈ Z.
Our main result in this section is the following theorem.

Theorem 2.4.2 (O. Mleşniţe [75]). Let (X, d) and (Y, ρ) be two complete metric spaces.
Suppose that the operator t : X → Y is a dilatation with constant kt > 0, the operator

s : X → Y is Lipschitz with the constant ks > 0 and s(X) ⊆ t(X). If
ks
kt
∈ [0, 1), then

the coincidence problem (2.1) has a unique solution.

Next we have an approximation and an error estimate for the solution of the coin-
cidence problem.

Theorem 2.4.3 (O. Mleşniţe [75]). Let (X, d), (Y, ρ) be two complete metric spaces.
Suppose that all the hypotheses of Theorem 2.4.2 hold and additionally suppose that
t : X → Y is metrically regular on X with constant α > 0. Then the coincidence
problem (2.1) is Ulam-Hyers stable.
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2.5 A Leray-Schauder condition to the coincidence

problems

The first step to extend the Schauder theorem to noncompact operators was given
by G. Darbo [36] in 1955. The first measure of noncompactness was defined by K.
Kuratowski [67] in 1930. Darbo used this measure to generalize Schauder’s theorem to
a wide class of operators, called k-set-contractive operators, which satisfy the condition
α(T (A)) ≤ kα(A) for some k ∈ [0, 1). In 1967, B. N. Sadovskii [117], generalized
Darbo’s theorem to set-condensing operators.

Measures of noncompactness are very useful tools in the theory of operator equations
in Banach spaces. There exists a considerable literature devoted to this subject, see
for example R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and
B. N. Sadovskii, [3], J. Banaś and K. Goebel [14], V. I. Istrăţescu [61], [62], J. M.
Ayerbe Toledano, T. Domı́nguez-Benavides and G. Lopez Acedo [13], W. Zhao [134]
and references therein.

In this section, we intend to obtain several versions, without invoking degree theory,
of the coincidence problem where s and t can both become nonlinear.

Definition 2.5.1. Let X be a normed space and B(X) := {A ⊂ X : A is bounded}. A
measure of non-compactness is a function µ : B(X)→ R+ which satisfies:

1. µ(A) = 0⇔ A is compact.

2. µ(A) = µ(A).

3. µ(A ∪B) = max{µ(A), µ(B)}

4. µ(conv(A)) = µ(A).

To avoid confusion when dealing with different spaces, we will in some cases add
the name of a subspace as a subscript.

Point 3 in the last definition implies that µ(A) ≤ µ(B), whenever A ⊂ B.
Some usual measures of noncompactness are the following.

Definition 2.5.2. Let (X, ‖ · ‖) be a normed space. The Kuratowski measure of non-
compactness for a bounded subset A of X is given by

α(A) = inf {r > 0 : A ⊂ ∪ni=1Di, diam(Di) ≤ r} .

Definition 2.5.3. Let (X, ‖ · ‖) be a normed space. The Hausdorff measure of non-
compactness for a bounded subset A of X is given by

χ(A) = inf {r > 0 : A ⊂ ∪ni=1B(xi, r), xi ∈ X} .
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A detailed account of theory and applications of measures of noncompactness may
be found in the monographs R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E.
Rodkina and B. N. Sadovskii [3], J. M. Ayerbe Toledano, T. Domı́nguez-Benavides and
G. Lopez Acedo [13].

Definition 2.5.4. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed spaces endowed with
the measures of noncompactness µX and µY respectively. If C is a nonempty subset of
X and T : C → Y is an operator,

(a) Given k > 0, the operator T is called (µX , µY )-k-set contractive if µY (T (A)) ≤
kµX(A) for all A ∈ B(C).

(b) The operator T is called (µX , µY )-condensing if µY (T (A)) < µX(A) for all bounded
subset A of C with µX(A) > 0.

(c) The operator T is called expansive if the inequality ‖T (x) − T (y)‖Y ≥ ‖x − y‖X
holds for every x, y ∈ C.

(d) The operator T is called nonexpansive if the inequality ‖T (x)−T (y)‖Y ≤ ‖x−y‖X
holds for every x, y ∈ C.

(e) The operator T is said to be bounded if there exists k > 0 such that ‖T (x)‖Y ≤ k
for all x ∈ C.

The following well known theorem was proved in 1967 by B. N. Sadovskii [117], it
is a generalization of Darbo’s fixed point theorem G. Darbo [36]. We refer to J. Appel
[5] where the reader will find many applications of these theorems.

Theorem 2.5.1 (B. N. Sadovskii [117]). Suppose that C is a closed convex bounded
subset of a Banach space X and T : C → C a continuous and condensing operator,
then T has a fixed point.

When the domain C, in Sadovskii’s theorem, is unbounded the following result is
also well known.

Theorem 2.5.2 (J. Garcia-Falset [46]). Suppose that C is a closed convex and un-
bounded subset of a Banach space X and T : C → C a continuous and condensing
operator. If there exist R > 0 and z ∈ C such that for all u ∈ C ∩ SR(z)

T (u)− z 6= λ(u− z), ∀λ > 1,

then T has a fixed point.

We recall the following theorem proved by W. V. Petryshyn in [95].
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Theorem 2.5.3 (W. V. Petryshyn [95]). Suppose that U is an open bounded subset
of a Banach space X and T : U → X a continuous and condensing operator. If there
exists z ∈ U such that for all u ∈ ∂U

u 6= λT (u) + (1− λ)z, ∀λ ∈ (0, 1),

then T has a fixed point.

Let T : X → Y be an operator which transforms bounded subsets of X into bounded
subsets of Y . For a such operator, we define

l(T ) := sup{r > 0 : rµX(A) ≤ µY (T (A)), A ∈ B(X)}.

In the following we are going to use the Kuratowski measure of noncompactness.
Assuming that (X, ‖·‖X) and (Y, ‖·‖Y ) are normed spaces and if an operator T : C → Y
is (αX , αY )-condensing we will say simply that T is α-condensing.

Next we propose to establish several coincidence results by using Theorem 2.5.2.

Theorem 2.5.4 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]). Let
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Consider C a convex closed subset of X
such that the operators t : C → Y and s : C → Y satisfy:

1. t(C) is a convex subset of Y and t−1 : t(C) → C is uniformly continuous on
bounded subsets of t(C),

2. s is a continuous k-set contractive operator,

3. s(C) ⊆ t(C),

4. k < l(t),

5. There are R > 0 and x0 ∈ C such that for every x ∈ C with ‖x − x0‖ ≥ R we
have

s(x)− t(x0) 6= λ(t(x)− t(x0)) ∀λ > 1. (2.17)

Then there is z ∈ C such that s(z) = t(z).

Corollary 2.5.1 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]).
Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and let t : X → Y be a continuous
invertible linear map and C a convex closed subset of X.Let s : C → Y be a continuous
k-set contraction with k < l(t) and satisfying that s(C) ⊂ t(C). If there are R > 0 and
x0 ∈ C such that

x ∈ C, ‖x− x0‖X ≥ R⇒ s(x)− t(x0) 6= λ(t(x)− t(x0)) ∀λ > 1,

then there is z ∈ C such that s(z) = t(z).
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Next result may be considered as a sharpening of Theorem 2.5.3.

Theorem 2.5.5 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]). Let
X be a normed space and let Y be a Banach space. Assume that U is a bounded open
subset of X, t : U → Y an expansive operator such that t(U) is an open bounded subset
of Y with ∂(t(U)) ⊂ t(∂U) and s : U → Y is a continuous condensing operator. If
there exists x0 ∈ U such that for all x ∈ ∂U

t(x) 6= λs(x) + (1− λ)t(x0) ∀λ ∈ (0, 1) (2.18)

then there exists z0 ∈ Y such that t(z0) = s(z0).

Corollary 2.5.2 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]).
Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and let t : X → Y be an expansive
continuous invertible affine map and U a bounded open subset of X.Let s : U → Y be
a continuous condensing operator. If there is x0 ∈ U such that for all x ∈ ∂U ,

t(x) 6= λs(x) + (1− λ)t(x0) ∀λ ∈ (0, 1),

then there is z ∈ U such that s(z) = t(z).
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Chapter 3

Coincidence theorems for
multivalued operators

The purpose of this chapter is to present some existence, metric regularity and Ulam-
Hyers stability results for fixed point and coincidence point problems with multivalued
operators. This approach is based on the weakly Picard operator technique in the
setting of generalized metric spaces in the sense of Perov, i.e., spaces endowed with
vector metrics d : X × X → Rm

+ . Using the cartesian product technique for two
multivalued operators, our result improve some recent theorems in the literature, see
M. Bota and A. Petruşel [21], T. P. Petru, A. Petruşel and J.-C. Yao [94], I. A. Rus
[108].

Let (X, d) be a metric space, Y be a nonempty set and S, T : X → P (Y ) be
two multivalued operators. An element x∗ ∈ X is a coincidence point for S and T if
S(x∗)∩T (x∗) 6= ∅. We denote by C(S, T ) the set of all coincidence points for S and T .

Let (X, d) and (Y, ρ) be two metric spaces and S, T : X → P (Y ) be two multivalued
operators. Let dZ be a traditional scalar metric on X×Y . Let us consider the following
multivalued coincidence problem:

find (x, y) ∈ X × Y such that y ∈ S(x) ∩ T (x). (3.1)

By definition, a solution of the coincidence problem (3.1) is a pair (x∗, y∗) ∈ X × Y
such that

y∗ ∈ T (x∗) ∩ S(x∗).

Denote by CP (S, T ) ⊂ X × Y the set of all solutions of the coincidence problem for S
and T .

It is well know that a coincidence problem is, under appropriate conditions, equiv-
alent to a fixed point problem for a multivalued operator generated by s and t.

Ulam-Hyers stability for the coincidence problem (3.1):

Let (X, d), (Y, ρ) be two metric spaces and S, T : X → Y be two multivalued
operators. The coincidence problem (3.1) is called generalized Ulam-Hyers stable if
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and only if there exists ψ : R+ → R+ increasing, continuous at 0 and ψ(0) = 0 such
that for every ε > 0 and for each solution w∗ ∈ X of the approximative coincidence
problem

Dρ(S(w∗), T (w∗)) ≤ ε (3.2)

there exists a solution z∗ of (3.1) such that

dZ(w∗, z∗) ≤ ψ(ε). (3.3)

If there exists c > 0 such that ψ(t) = ct for each t ∈ R+ then the coincidence
problem (3.1) is said to be Ulam-Hyers stable.

For Ulam-Hyers stability of some integral and differential equations see L.P. Castro
and A. Ramos [31], S.-M. Jung [63], I.A. Rus [110], I. A. Rus [111], while for Ulam-
Hyers stability of the fixed point problems in metric spaces see I.A. Rus [108], M. Bota
and A. Petruşel [21], P.T. Petru, A. Petruşel and J.C. Yao [94].

3.1 Metric regularity and Ulam-Hyers stability re-

sults for coincidence problems

In general, metric regularity deals with the study of equation of the type y ∈ F (x),
where y ∈ X is fixed, for a multivalued operator F : X → P (Y ). Many authors have
obtained results in the metric regularity field among whom we remind A. L. Dontchev,
A. S. Lewis, R. T. Rockafellar [40], A. L. Dontchev, A. S. Lewis [42], A. D. Ioffe [59], [60],
L. A. Lyusternik [71] and others. A point x is an approximate solution of a generalized
equation y ∈ F (x) if the distance from the point y to the set F (x) is small.

Let F : X → P (Y ) be a multivalued operator between metric spaces (X, d) and
(Y, d) and U ⊆ X, V ⊆ Y given subsets. According to A. D. Ioffe [59] and B. S.
Mordukhovich [80], F is said to cover on (or to be open at a linear rate) with respect
to U × V if there exists a positive constant a such that

F (B(x, r)) ⊇ B(F (x) ∩ V, ar), for all x ∈ U, r > 0 : B(x, r) ⊆ U. (3.4)

The supremum of all constants satisfying inclusion (3.4) is called modulus of open cov-
ering of F with respect to U × V and is denoted by covU×V F . In one of its several
manifestations, known and widely employed under the name of metric regularity, it
takes the form of an inequality providing an estimation for how far a point x is from
being a solution to the generalized equation y ∈ F (x). In the most developed theorems
of subdifferential calculus, all qualification conditions appear to be regularity/ open
covering conditions for certain multivalued operators, see A. D. Ioffe [59] and B. S.
Mordukhovich [80].

The notion of open covering to the global case is the case in which U = X and
V = Y .
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Definition 3.1.1 (A. D. Ioffe [59]). A multivalued operators F : X → P (Y ) between
metric spaces (X, d) and (Y, d) is said cover on X (or to be globally open at a linear
rate), provided that there exists a constant a > 0 such that

F (B(x, r)) ⊇ B(F (x), ar), for all x ∈ X, r > 0. (3.5)

The supremum over all values a satisfying inclusion (3.5) is called modulus of global
covering of F and denoted for short by cov(F ) (instead of covX×Y F ).

Remark 3.1.1 ( A. Uderzo [123]).

(i) The open covering property of a multivalued operator admits several useful for-
mulation. It is well known that an operator F fulfils Definition 3.1.1 if and only
if there exists l > 0 such that

D(x, F−1(y)) ≤ lD(y, F (x)), for all x ∈ X, y ∈ Y. (3.6)

The infimum of all values l satisfying inequality (3.6) is called modulus of global
metric regularity of F and denoted by reg(F ).

(ii) Another characterization of open covering/ metric regularity can be obtained in
terms of Lipschitz behavior of the inverse multivalued operator. In fact F covers
on X if and only if F−1 is Lipschitz continuous in Y and it holds

lip(F−1) =
1

cov(F )
.

Additionally suppose that T and S are onto and let F : X × Y → P (X)×P (Y ) be
defined by F (x, y) = T−1(y)×S(u). We can deduce that F−1 : X×Y → P (X)×P (Y )
is defined by F−1(u, v) = S−1(v)× T (u).

Lemma 3.1.1 (O. Mleşniţe and A. Petruşel [76]). Under the above conditions, we have
that

CP (S, T ) = Fix(F ) = Fix(F−1).

Let (X, d) and (Y, ρ) be two metric spaces and the following two metrics on X × Y :

d∗((x1, y1), (x2, y2)) := d(x1, x2) + ρ(y1, y2), for all (x1, y1), (x2, y2) ∈ X × Y

d∗((x1, y1), (x2, y2)) := max{d(x1, x2), ρ(y1, y2)}, for all (x1, y1), (x2, y2) ∈ X × Y.

Denote by Hd∗ and Hd∗ the Hausdorff-Pompeiu functionals on P (X × Y ) generated by
d∗ and d∗ respectively.

The following main results are some generalizations of the main theorems of A. V.
Blaga [19].
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Theorem 3.1.1 (O. Mleşniţe [79]). Let (X, d) and (Y, ρ) be two complete metric spaces.
Let T, S : X → P (Y ) be two onto multivalued operators, such that:

(i) T : X → Pcl(Y ) is a contraction with constant kT < 1;

(ii) S : X → P (Y ) is metrically regular on X with constant kS ∈ (0, 1) and S−1(y) is
closed for each y ∈ Y .

Then there exists at least one solution of multivalued coincidence problem (3.1).
If, in addition, S−1 and T have compact values then the problem (3.1) is Ulam-Hyers

stable.

Theorem 3.1.2 (O. Mleşniţe [79]). Let (X, d) and (Y, ρ) be two complete metric spaces.
Let T, S : X → P (Y ) be two onto multivalued operators, such that:

(i) T : X → Pcl(Y ) satisfy the following relation:

∃ kT > 2 such that Dρ(x, T
−1(y)) ≥ kT ·Dd(y, T (x)), for each (x, y) ∈ X × Y ;

(ii) S : X → P (Y ) is metrically regular on X with constant kS ∈ (0, 1
2
) and S−1(y) is

closed, for all y ∈ Y ;

(iii) (x, y) ∈ X × Y if and only if (y, x) ∈ X × Y.

Then there exists at least one solution of the multivalued coincidence problem (3.1).
If, in addition, S−1 and T have compact values then the problem (3.1) is Ulam-Hyers

stable.

3.2 Existence and Ulam-Hyers stability results for

coincidence problems

In this section, we will present some existence and Ulam-Hyers stability results for co-
incidence problems with multivalued operators using the weakly Picard operator tech-
nique. These results are based on the following works W. A. Kirk and B. Sims [65],
O. Mleşniţe and A. Petruşel [76], A. Petruşel [90], I. A. Rus [108], [102], I.A. Rus, A.
Petruşel and A. Ŝıntămărian [115]

Let (X, d) and (Y, ρ) be two metric spaces and the following two metrics on X × Y :

d∗((x1, y1), (x2, y2)) := d(x1, x2) + ρ(y1, y2), for all (x1, y1), (x2, y2) ∈ X × Y

d∗((x1, y1), (x2, y2)) := max{d(x1, x2), ρ(y1, y2)}, for all (x1, y1), (x2, y2) ∈ X × Y.

Denote by Hd∗ and Hd∗ the Hausdorff-Pompeiu functionals on P (X × Y ) generated by
d∗ and d∗ respectively.
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Theorem 3.2.1 (O. Mleşniţe and A. Petruşel [76]). Let (X, d) and (Y, ρ) be two com-
plete metric spaces. Let T, S : X → P (Y ) be two multivalued operators such that:

(i) T : X → P (Y ) is an onto strong kT -dilatation with constant kT > 1 and
T−1(y) is closed for each y ∈ Y ;

(ii) S : X → Pcl(Y ) is a kS-contraction.
Then there exists at least one solution of the multivalued coincidence problem (3.1).

If, in addition the multivalued operators S and T−1 have compact values and T is
metrically regular on X with constant l > 0 then the multivalued coincidence problem
(3.1) is Ulam-Hyers stable.

Remark 3.2.1. A similar result take place if we replace, in the proof of the above
theorem, the metric d∗ with d∗ and Hd∗ with Hd∗.

Next we present some data dependence results for the Ulam-Hyers stability of the
multivalued coincidence problems of two pair of multivalued operators.

Theorem 3.2.2 (O. Mleşniţe and A. Petruşel [76]). Let (X, d) and (Y, ρ) be two metric
spaces and Ti, Si : X → P (Y ), i ∈ {1, 2} be four multivalued operators. Consider the
following coincidence problems with multivalued operators:

T1(x) ∩ S1(x) 6= ∅ (3.7)

and
T2(x) ∩ S2(x) 6= ∅. (3.8)

Let us consider the sets:

Ciε := {x ∈ X|Dρ(Ti(x), Si(x)) ≤ ε}, i ∈ {1, 2}.

If the following conditions are satisfied:
(i) C(T2, S2) ⊆ C(T1, S1);
(ii) the multivalued coincidence point problem (3.8) is Ulam-Hyers stable;
(iii) C1ε ⊆ C2ε, for each ε > 0;

then, the multivalued coincidence point problem (3.7) is Ulam-Hyers stable.

3.3 Coincidence results by fixed point theorems in

generalized metric spaces

The purpose of this section is to present some existence and Ulam-Hyers stability results
for fixed point problems coincidence point problems with multivalued operators. The
approach is based on the weakly Picard operator technique in the setting of generalized
metric spaces in the sense of Perov, i.e., spaces endowed with vector valued metrics
d : X×X → Rm

+ . Using the cartesian product technique for two multivalued operators,
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our results improve some recent theorems in the literature, see M. Bota and A. Petruşel
[21], T. P. Petru, A. Petruşel and J.-C. Yao [94], I. A. Rus [108], [110], [111].

Let (X, d) and (Y, ρ) be two metric spaces. Let Z := X × Y and define on Z × Z

the vector metric dV (u, v) :=

(
d(u1, v1)
ρ(u2, v2)

)
, for each u = (u1, u2), v = (v1, v2) ∈ Z.

In the same framework as Chapter 1, let us consider a Hausdorff-Pompeiu type
vector functional given by H∗ : (P (X)× P (Y ))× (P (X)× P (Y ))→ R2

+ given by

H∗(A×B,U × V ) :=

(
Hd(A,U)
Hρ(B, V )

)
.

From the definition, it follows that H∗ is a vector metric on Pcl(X)× Pcl(Y ).
We present now an existence and Ulam-Hyers stability result for the multivalued

coincidence problem.

Theorem 3.3.1 (O. Mleşniţe and A. Petruşel [76]). Let (X, d) and (Y, ρ) be two com-
plete metric spaces. Let T, S : X → P (Y ) be two multivalued operators such that:

(i) T : X → P (Y ) is an onto strong kT -dilatation and T−1(y) is closed for each
y ∈ Y ;

(ii) S : X → Pcl(Y ) is kS-Lipschitz;
(iii) kS

kT
< 1.

Then there exists at least one solution of the multivalued coincidence problem (3.1).
If, in addition the multivalued operators S, T−1 have compact values and T is metrically
regular on X with constant l > 0, then the multivalued coincidence problem (3.1) is
Ulam-Hyers v-stable.

3.4 A Leray-Schauder condition to the coincidence

problems

In this section we establish several coincidence results for multivalued operators by using
Leray-Schauder type condition and Theorem 2.5.2. We use the concepts presented in
the section 2.5. These results are based on the following works: V. Barbu [15], J.
Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50].

Definition 3.4.1. An operator F ⊂ X × X is said to be accretive if and only if
‖x− y‖ ≤ ‖x− y + λ(u− v)‖ for all x, y ∈ Dom(F ), for each u ∈ F (x) and v ∈ F (y),
and for all λ > 0. If moreover, R(F + I) = X, we say that F is m-accretive.

A detailed account of theory and applications of accretive operators may be found,
for instance, in the monograph V. Barbu [15].

Theorem 3.4.1 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]). Let
X be a normed space and let Y be Banach space. Consider a nonempty subset D of X.
Suppose that t : D → P (Y ) is a multivalued operator and s : D → Y is an operator
which satisfy:
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1. R(t) = Y and t−1 : Y → D is a singlevalued continuous and compact operator,

2. s is continuous and it maps bounded subsets into bounded subsets,

3. There exists R > 0 such that

‖x‖X ≥ R, x ∈ D ⇒ λs(x) /∈ t(x) ∀λ ∈ (0, 1). (3.9)

Then there exists x0 ∈ D with s(x0) ∈ t(x0).

Corollary 3.4.1 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]).
Let X be a Banach space and F : Dom(F )→ P (X) an m-accretive operator such that
0 ∈ F (0) and s : Dom(F ) → X a continuous operator. Suppose that the following
conditions are fulfilled:

1. JFλ is compact,

2. there exists R > 0 such that ‖s(x)‖ ≤ a + b‖x‖ whenever x ∈ Dom(F ) with
‖x‖ ≥ R.

Then given ρ > b there exists x0 ∈ Dom(F ) such that s(x0) ∈ ρx0 + F (x0).

Next result works with operators which are condensing but not necessarily k-set
contractive, examples of such operators can be found for instance in J. Appel [5], J. M.
Ayerbe Toledano, T. Domı́nguez-Benavides and G. Lopez Acedo [13].

Theorem 3.4.2 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]).
Let (X, ‖ · ‖X) be a normed space and let (Y, ‖ · ‖Y ) be a Banach space. Assume that
t : X → P (Y ) is a multivalued operator with R(t) = Y such that t−1 : Y → X is
singlevalued nonexpansive and s : Dom(t) → Y a continuous α-condensing operator
satisfying that there exists R > 0 and y0 ∈ Y such that

‖x− t−1y0‖X ≥ R⇒ µs(x) + (1− µ)y0 /∈ t(x) ∀µ ∈ (0, 1). (3.10)

Then there exists x0 ∈ X such that s(x0) ∈ t(x0).

Corollary 3.4.2 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]).
Let (X, ‖ · ‖X) be a normed space and let (Y, ‖ · ‖Y ) be a Banach space. Assume that
t : X → Y is an expansive surjection and s : X → Y a continuous, bounded and
α-condensing operator. Then there exists x0 ∈ X such that s(x0) = t(x0).

Corollary 3.4.3 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]).
Let (X, ‖ · ‖X) be a normed space and let (Y, ‖ · ‖Y ) be a Banach space. Assume that
t : X → Y is an expansive surjection and s : X → Y a continuous, α-condensing
operator satisfying that there exists R > 0 and y0 ∈ Y such that

‖x− t−1y0‖X ≥ R⇒ ‖s(x)− y0‖Y ≤ ‖x− t−1(y0)‖X . (3.11)

Then there exists x0 ∈ X such that s(x0) = t(x0).
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Chapter 4

Applications

The purpose of this chapter is to present some applications of the results presented in
this thesis. Firstly is given an application regarding Ulam-Hyers stability for differential
equations and operatorial inclusions and then we study the existence of classical and of
strong solution to a diferential equation of first order and second order.

The references which were used to develop this chapter are: J. Appell and P.P.
Zabrejko [6], H. Brezis and W. Strauss [23], J. Garcia-Falset [47], J. Garcia-Falset and
O. Mleşniţe [49], J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50], K.
Goebel [52], O. Mleşniţe [74], [77]

4.1 Ulam-Hyers stability for differential equations

In this section, we establish some new existence, uniqueness and Ulam-Hyers stability
results for differential equations. In this case, the following theorem is an application
of the Theorems 2.3.3 and 2.3.4.

Application 1.(J. Garcia-Falset and O. Mleşniţe [49]) Let us consider the differen-
tial equation {

u′(t) = f(t, u(t)),
u(0) = ξ ∈ R, (4.1)

where f : [0,+∞)× R→ R satisfies the following conditions:

• (i) f(t, ·) is a continuous function for almost all t ≥ 0;

• (ii) f(·, u) is a measurable function for all u ∈ R;

• (iii) Lipschitz inequality, i.e., |f(t, x)− f(t, y)| ≤ L(t)|x− y|, where L : R+ → R+

is locally integrable function on the interval (0,∞);

• (iv)
∫ t
0
f(τ, 0)dτ = O(e

∫ t
0 L(τ)dτ ) := {u ∈ C([0,∞)) : |u(t)| ≤Me

∫ t
0 L(τ)dτ +N}.
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Then equation (4.1) has a unique solution uξ for every ξ ∈ R,

uξ ∈ C([0,+∞)) := {u : [0,+∞)→ R continuous },

and moreover it is Ulam-Hyers stable.

Let us consider the sets

X = {u ∈ C([0,+∞)) | u(t) = O(e
∫ t
0 L(τ)dτ )},

and the metric dp : X×X → R+ defined by dp(u, v) = sup
t∈[0,+∞)

{|u(t)−v(t)| ·e−p
∫ t
0 L(τ)dτ}

where p > 1, Y = BC([0,+∞)) is the set of bounded continuous functions on [0,+∞)
and we endow this set with the metric ρ : Y ×Y → R+ defined by ρ(u, v) = ‖u−v‖∞ =

sup
t∈[0,+∞)

|u(t)− v(t)|, then (Y, ρ) is a complete metric space.

We have that (X, dp) and (Y, ρ) are complete metric spaces.
We define the operators T, S : X → Y by

Tu(t) = u(t) · e−p
∫ t
0 L(τ)dτ and Su(t) =

{∫ t

0

f(τ, u(τ))dτ + ξ

}
e−p

∫ t
0 L(τ)dτ .

Equation (4.1) can be written as a coincidence problem in the following form:

find u ∈ X such that Tu = Su. (4.2)

T and S fulfill the hypotheses of Theorem 2.3.3, so the coincidence problem (4.2)
has a unique solution in X, this means that there exists x̄ ∈ X such that S(x̄) = T (x̄).

For the second conclusion, if we define β(r) := r− r
p

(p > 1), since β is a continuous

strictly increasing function, lim
r→0+

β(r) = 0 and lim
r→+∞

β(r) = +∞, then β is strictly

increasing and onto.
All the hypotheses of Theorem 2.3.4 hold, so the coincidence problem (4.2) is Ulam-

Hyers stable. So, equation (4.1) is Ulam-Hyers stable.

Next, we present an application of Theorem 2.3.2.

Application 2.(O. Mleşniţe [77]) Let us consider the same differential equation
(4.1) where f : [0,+∞) × R → R satisfies all the conditions of Application 1. If in
addition f satisfies the following condition

• f(t, γu) ≥ γf(t, u) for all γ ≥ 1, t > 0, u ∈ R,

then the differential equation (4.1) has a unique solution for every ξ ∈ R and moreover
it is Ulam-Hyers stable.

The operators S and T satisfy the conditions of Theorem 2.3.2, so there exists x̄ ∈ X
such that S(x̄) = T (x̄).

Next we prove that the equation (4.1) is Ulam-Hyers stable.
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We have (T−1y)(t) = y(t) · ep
∫ t
0 L(τ)dτ . We prove that d(y, S(T−1(y))) ≤ αd(Ty, Sy),

for all y ∈ T (A). We obtain that

S(T−1(y))(t) = e−p
∫ t
0 L(τ)dτ

{∫ t

0

f(τ, y(τ)ep
∫ t
0 L(τ)dτ )dτ + ξ

}
.

By calculations we get

|y(t)− S(T−1(y))(t)| =
∣∣∣∣y(t)− e−p

∫ t
0 L(τ)dτ

{∫ t

0

f(τ, y(τ)ep
∫ t
0 L(τ)dτ )dτ + ξ

}∣∣∣∣ ≤
≤ ep

∫ t
0 L(τ)dτ |(Sy)(t)− (Ty)(t)|.

Since, all the condition of Theorem 2.3.2 hold, then the differential equation (4.1) is
Ulam-Hyers stable.

4.2 Ulam-Hyers stability for operatorial inclusions

The aim of this section is to prove an Ulam-Hyers stability theorem for a multivalued
Cauchy problem corresponding to a first order differential inclusion.

Let us consider the following multivalued Cauchy problem:{
x′(t) ∈ F (t, x(t)), a.e. t ∈ [a, b];
x(a) = α,

(4.3)

where α ∈ Rn and F : [a, b] × Rn → Pcp,cv(Rn) is a multivalued operator. We will

denote by

∫ b

a

F (s, x(s))ds (where x : [a, b] → Rn is a given function) the multivalued

integral in Aumann’ sense, see J.-P. Aubin and H. Frankowska [12].

Definition 4.2.1. Let F : [a, b] × Rn → Pcp,cv(Rn) a multivalued operator, a ∈ R and
α ∈ Rn. A function ϕ : [a, T ] → Rn is called solution to problem (4.3) if and only if
T ≤ b, ϕ is absolutely continuous on [a, T ] and satisfy the relations:{

ϕ′(t) ∈ F (t, ϕ(t)), a.e. on [a, T ];
ϕ(a) = α.

The equivalence between the above differential inclusion and an integral inclusion
is given by the following lemma:

Lemma 4.2.1. Let I ⊂ R an interval and F : I × Rn → Pcp,cv(Rn) be an upper
semi-continuous multivalued operator. Then x : I → R is a solution for differential
inclusion

x′(t) ∈ F (t, x(t)) (4.4)

if and only if

x(t2) ∈ x(t1) +

∫ t2

t1

F (t, x(t))dt, for each t1, t2 ∈ I. (4.5)
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Taking into account of Lemma 4.2.1 we deduce that the problem (4.3) is equivalent
to an integral inclusion of Volterra type:

x(t) ∈ α +

∫ t

a

F (s, x(s))ds, t ∈ [a, b]. (4.6)

The result with respect to the Ulam-Hyers stability of the Cauchy problem (4.3) is
the following theorem.

Theorem 4.2.1 (O. Mleşniţe [74]). Let F : [a, b]× Rn → Pcl,cv(Rn) such that:
(a) there exists an integrable function M : [a, b]→ R+ such that for each u ∈ Rn we

have F (s, u) ⊂M(s)B(0, 1), a.e. s ∈ [a, b];
(b) for each u ∈ Rn, F (·, u) : [a, b]→ Pcl,cv(Rn) is measurable;
(c) for each u ∈ Rn, F (·, u) : [a, b]→ Pcl,cv(Rn) is lower semi-continuous;
(d) there exists a continuous function p : [a, b] → R+ such that for each s ∈ [a, b]

and each u, v ∈ Rn we have that:

H(F (s, u), F (s, v)) ≤ p(s) · |u− v|. (4.7)

Then the following conclusions hold:
(i) there exists at least one solution for the Cauchy problem (4.3);
(ii) the Cauchy problem (4.3) is Ulam-Hyers stable.

4.3 Existence of solution to a differential equation

of first order

In this section, we intend to obtain several version, without invoking degree theory, of
the coincidence problems where the operators s and t can both nonlinear. For these
types of applications we apply Corollary 2.5.2. These results are based on the following
work: J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50].

In this section we are concerned to find an absolutely continuous function u : [0, 1]→
Rn such that its derivative u′ ∈ L1(0, 1;Rn) satisfies almost for every point in (0, 1) the
following differential equation{

u′(t)− g(t, u(t), u′(t)) = f(t), t ∈ (0, 1) a.e.
u(0) = ξ ∈ Rn,

(4.8)

where f ∈ L1(0, 1;Rn) is a fixed function and g : [0, 1]×Rn×Rn → Rn is a Carathéodory
function. A such function u is called strong solution of equation (4.8).

Consider the Banach space (Rn, ‖ · ‖n) and let L1(0, 1;Rn) be the Banach space of
Bochner integrable functions x : [0, 1]→ Rn endowed with the norm

‖x‖1 =

∫ 1

0

‖x(t)‖ndt.
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It is well known that if x : [0, 1] → Rn is absolutely continuous, then it is almost
everywhere differentiable on [0, 1], its derivative x′ ∈ L1(0, 1;Rn) and

x(t) = x(0) +

∫ t

0

x′(s)ds.

First, let us notice that equation (4.8) is equivalent to the differential equation{
u′(t)− g(t, u(t) + ξ, u′(t)) = f(t), t ∈ (0, 1) a.e.
u(0) = 0,

(4.9)

Thus, our goal will be to study the existence of a strong solution of equation (4.9).
Let us introduce the Sobolev space W 1,1(0, 1;Rn) as the space of all absolutely

continuous functions. Then we can write this space as:

W 1,1(0, 1;Rn) :=
{
u ∈ L1(0, 1;Rn) : u′ ∈ L1(0, 1;Rn)

}
,

The space W 1,1(0, 1;Rn) can be endowed with the norm

‖u‖1,1 := max{‖u‖1, ‖u′‖1},

where ‖ · ‖1 is the usual norm in L1(0, 1;Rn). (W 1,1(0, 1;Rn), ‖ · ‖1,1) is a Banach space.
Now we can consider the following subspace X := {u ∈ W 1,1(0, 1;Rn) : u(0) = 0}.

This is a closed subspace of (W 1,1(0, 1;Rn), ‖ · ‖1,1) and thus it is also a Banach space.

Lemma 4.3.1. Let u be an element in X. Then ‖u‖1,1 = ‖u′‖1.

Lemma 4.3.2. Let f be a fixed element of L1(0, 1;Rn). The operator T : X →
L1(0, 1;Rn) defined by T (u)(t) = u′(t)− f(t) is an expansive bijection.

LetM(0, 1;Rn) be the set of all measurable functions ϕ : [0, 1]→ Rn. If f : [0, 1]×
Rn → Rn is a Carathéodory function, then f defines an operator Nf : M(0, 1;Rn) →
M(0, 1;Rn) by Nf (ϕ)(t) := f(t, ϕ(t)). This operator is called the superposition (or
Nemytskii) operator generated by f . The next three lemmas are of foremost importance
for our subsequent analysis.

Lemma 4.3.3. Let f : [0, 1] × Rn → Rn be a Carathéodory function, if there exist a
constant b ≥ 0 and a function a(·) ∈ L1

+(0, 1;R) such that

‖f(t, x)‖n ≤ a(t) + b‖x‖n,

then Nf maps continuously L1(0, 1;Rn) into itself.

If we argue as J. Appell and P.P. Zabrejko in [6, Lemma 9.5] we obtain:
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Lemma 4.3.4. Let g : [0, 1]×Rn×Rn → Rn be a Carathéodory function, if there exist
a constant b ≥ 0 and a function a(·) ∈ L1

+(0, 1;R) such that

‖g(t, x, y)‖n ≤ a(t) + b(‖x‖n + ‖y‖n),

then the map Ng : W 1,1(0, 1;Rn)→ L1(0, 1;Rn) defined by

Ng(ϕ)(t) = g(t, ϕ(t), ϕ′(t))

is continuous.

Lemma 4.3.5. Let g : [0, 1] × Rn × Rn → Rn be a Carathéodory function such that
there exist a ∈ L1

+(0, 1,R), b, k > 0 satisfying that

1. ‖g(t, x, 0)‖n ≤ a(t) + b‖x‖n,

2. ‖g(t, x, y1)− g(t, x, y2)‖n ≤ k‖y1 − y2‖n.

Then, the operator Ng : X → L1(0, 1;Rn) is 2k-set contractive.

Now, for studying the existence of a strong solution to equation (4.9), we define

T : X → L1(0, 1;Rn) by T (u) = u′ − f

and
S : X → L1(0, 1;Rn) by S(u) = Ng̃(u),

where g̃(t, x, y) = g(t, x+ ξ, y).
Thus, to show that equation (4.9) has a solution is to see that the coincidence

problem, T (u) = S(u) admits a solution.

Theorem 4.3.1 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]).
If max{b + k, 2k} < 1, equation (4.9) has at least a solution in the Sobolev space
W 1,1(0, 1;Rn).

Example 4.3.1. {
u′(t)− cos(u(t))√

t
− u(t)+sin(u′(t))

2
√
t+2

= f(t), t ∈ (0, 1)

u(0) = ξ,
(4.10)

has a strong solution since in this example we have that g(t, x, y) = cos(x)√
t

+ x+sin(y)

2
√
t+2

and

therefore |g(t, x, 0)| ≤ 1√
t

+ 1
2
√
2
|x| and |g(t, x, y1) − g(t, x, y2)| ≤ 1

2
√
2
|y1 − y2|, which

implies that g fulfills the conditions of Theorem 4.3.1.
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4.4 Existence of solutions to a differential equation

of second order

In this section, we want to study the existence of classical and strong solutions to a
differential equation with a non homogeneous Dirichlet conditions (we refer to equation
(4.11)). For these types of applications we apply Theorem 2.3.3 and Corollary 3.4.3.
These results are based on the following work: J. Garcia-Falset, C. A. Hernández-
Linares and O. Mleşniţe [50].

First we will study the existence of classical solutions to a differential equation of
second order.

Let Y := (C([0, 1]), ‖ · ‖0) be the Banach space of the continuous functions u :
[0, 1]→ R, where ‖u‖0 := sup{|u(t)| : t ∈ [0, 1]}.

Denote C2([0, 1]) := {u : [0, 1] → R : u′′ ∈ C([0, 1])}. This allows us to introduce
the following linear space

X := {u ∈ C2([0, 1]) : u(0) = u(1) = 0},

if on this linear space we define the norm ‖u‖2 := max{‖u‖0, ‖u′‖0, ‖u′′‖0}, then (X, ‖ ·
‖2) is a Banach space.

On the other hand, if g : [0, 1] × R × R → R is a continuous function, then g
defines an operator Ng : Y → X by Ng(u)(t) = g(t, u(t), u′′(t)). This operator is called
superposition (or Nemytskii) operator generated by g. The following lemmas are of
foremost importance for our subsequent analysis.

Lemma 4.4.1. Let u be an element in X. Then ‖u‖2 = ‖u′′‖0.

Lemma 4.4.2. Let f a fixed element of Y . The operator T : X → Y defined by
T (u)(t) = u′′(t)− f(t) is an expansive surjection.

Lemma 4.4.3. Let g : [0, 1]×R×R×R→ R be a continuous function and there exists
k ∈ [0, 1) such that

|g(t, x, y, z)− g(t, u, v, w)| ≤ kmax{|x− u|, |y − v|, |z − w|},

for all (t, x, y, z), (t, u, v, w) ∈ [0, 1]× R3. Then the superposition operator Ng : X → Y
is k-contractive.

Lemma 4.4.4. Let g : [0, 1] × R × R → R be a continuous function. Then the super-
position operator Ng : X → Y is a continuous and compact operator.

We want to study the existence of classical solutions for the differential equation
with a non homogeneous Dirichlet conditions{

u′′(t)− g(t, u(t), u′(t)) = f(t), t ∈ [0, 1],
u(0) = ξ, u(1) = ν,

(4.11)
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where f ∈ Y is a fixed function.
First, let us notice that equation (4.11) is equivalent to the differential equation

with the Dirichlet condition{
u′′(t)− g(t, u(t) + (ν − ξ)t+ ξ, u′(t)− (ν − ξ)) = f(t), t ∈ [0, 1],
u(0) = 0, u(1) = 0.

(4.12)

Thus, our goal will be to study the existence of classical solutions to equation (4.12).
For this purpose we define

T : X → Y by T (u)(t) = u′′(t)− f(t)

and
S : X → Y by S(u)(t) = Ng̃(u)(t),

where g̃(t, x, y) = g(t, x+ (ν − ξ)t+ ξ, y − (ν − ξ)).
To show that equation (4.12) has a classical solution is to find an element u0 ∈ X

such that T (u0) = S(u0). That is, to see that the coincidence problem has a solution.

As a consequence of the Lemmas 4.4.1, 4.4.2, 4.4.3 and Theorem 2.3.3 is the following
result.

Theorem 4.4.1 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]). If
g : [0, 1]×R×R→ R is under the hypotheses of Lemma 4.4.3, then Problem (4.12) has
a unique solution.

Another consequence of Lemmas 4.4.1, 4.4.2, 4.4.4 and Corollary 3.4.2 is the follow-
ing theorem.

Theorem 4.4.2. If g : [0, 1] × R × R → R is a bounded continuous function, then
Problem (4.12) has a solution.

Theorem 4.4.3 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]). If
g : [0, 1]× R× R→ R is a continuous function with the properties:

(a) there exists M > 0 such that if |x| > M , then xg(t, x + t(ν − ξ) + ξ, 0) >
max{0,−xf(t)},

(b) there exists A,B > 0 such that if |x| ≤ M , then |g(t, x + t(ν − ξ) + ξ, y)| <
A(y + (ν − ξ))2 +B for all t ∈ [0, 1] and for all y ∈ R,

then Problem (4.12) has a solution.

Example 4.4.1. {
u′′(t)− u3(t) = f(t), t ∈ [0, 1],
u(0) = ξ, u(1) = ν,

(4.13)

has a solution since in this example we have that g(t, x, p) = x3 and therefore g fulfills
the conditions of Theorem 4.4.3.
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Next, we will study the existence of strong solutions to a differential equation of
second order.

Consider the interval I := (0, 1) and define the Sobolev space

W 2,1(I) := {u ∈ W 1,1(I) : u′ ∈ W 1,1(I)}.
The space W 2,1(I) can be endowed with the norm

‖u‖2,1 := max{‖u‖1, ‖u′‖1, ‖u′′‖1},
where ‖·‖1 is the usual norm in L1(I). It is well know that (W 2,1(I), ‖·‖2,1) is a Banach
space.

Now we can consider the following subspace X := {u ∈ W 2,1(I) : u(0) = 0, u′(0) =
0}. This is a closed subspace of (W 2,1(I), ‖ · ‖2,1) and thus it is also a Banach space.

On the other hand, if g : [0, 1] × R × R → R is a Carathéodory function, then g
defines an operator Ng : L1(I) →M(I) by Ng(u)(t) = g(t, u(t), u′(t)), where M(I) is
the set of all measurable functions φ : I → R. This operator is called superposition
operator generated by g. The following three lemmas are of foremost importance for
our subsequent analysis.

Lemma 4.4.5. Let u be an element in X. Then ‖u‖2,1 = ‖u′′‖1.
Lemma 4.4.6. Let f a fixed element of L1(I). The operator T : X → L1(I) defined
by T (u)(t) = u′′(t)− f(t) is an expansive surjection.

Lemma 4.4.7. Let g : [0, 1]× R× R→ R be a Carathéodory function such that there
exist b, c > 0 and a ∈ L1

+(I) satisfying that |g(t, x, y)| ≤ a(t) + b|x| + c|y|. Then the
superposition operator Ng : X → L1(I) is a continuous and compact operator.

We want to study the existence of at least a function u ∈ W 2,1(I) such that{
u′′(t)− g(t, u(t), u′(t)) = f(t), t ∈ (0, 1) a.e.
u(0) = ξ, u(1) = ν,

(4.14)

where f ∈ L1(I) is a fixed function.
First, let us notice that equation (4.14) is equivalent to the differential equation{

u′′(t)− g(t, u(t) + t(ν − ξ) + ξ, u′(t) + (ν − ξ)) = f(t), t ∈ (0, 1) a.e.
u(0) = 0 = u(1).

(4.15)

Thus, our goal will be to look for a function u ∈ X satisfying equation (4.15). For this
purpose we define

T : X → L1(I) by T (u) = u′′ − f
and

S : X → L1(I) by S(u) = Ng̃(u),

where g̃(t, x, y) = g(t, x+ t(ν − ξ) + ξ, y + (ν − ξ)).
To show that equation (4.15) has a solution is to find an element u0 ∈ X such that

T (u0) = S(u0). That is, to see that the coincidence problem has a solution.

Theorem 4.4.4 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]). If
b+ c < 1, equation (4.15) has at least a solution in W 2,1(I).
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4.5 A nonlinear Dirichlet problem

In this section we will use the results of coincidence problems to obtain the existence
of solution for a Dirichlet problem of the form (4.16). In order to find a solution of this
type of problems we will apply Theorem 3.4.1. These applications are based on the
work J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50].

Let Ω be a measurable subset on Rn which for simplicity will be assumed to be
bounded.

The Sobolev space Wm,p(Ω) is the Banach space of all functions in Lp(Ω) all of
whose weak derivatives up to order m also belong to Lp(Ω). The norm in this space is
given by

‖u‖m,p = ‖u‖p +
∑

1≤|α|≤m

‖Dαu‖p,

where α = (α1, ..., αn) ∈ Nn, |α| =
∑n

i=1 αi, and Dαu = ∂α1+...+αn

∂x
α1
1 ...∂xαnn

u.

Wm,p
0 (Ω) is the closure of C∞0 (Ω) in Wm,p(Ω).

Next we shall study the existence of solutions in L1(Ω) for the equation{
∆ρ(u(x)) = f(x, u(x)) x ∈ Ω
ρ(u(x)) = 0 x ∈ ∂Ω

(4.16)

Let us now specify the conditions assuring the existence of a solution for equation
(4.16):

1. Ω is a bounded domain in Rn with a smooth boundary ∂Ω.

2. ρ ∈ C(R) ∩ C1(R \ {0}), ρ(0) = 0.

3. There exists C > 0 and γ ∈ R+ with γ > 1 such that

ρ′(r) ≥ C|r|γ−1 for each r ∈ R \ {0}.

4. f : Ω×R→ R is a Carathéodory function such that |f(s, x)| ≤ a(s) + b|x|, where
a ∈ L1(Ω) and b ≥ 0. This condition guarantees that the superposition operator
associated to f,

Nf (u)(s) = f(s, u(s)),

acts form L1(Ω) into L1(Ω) and is continuous. We refer to [6] for background
material on superposition operators.

H. Brezis and W. Strauss in [23] showed that under the above conditions (1) and
(2), the operator{

D(P ) = {u ∈ L1(Ω) : ρ(u) ∈ W 1,1
0 (Ω), ∆ρ(u) ∈ L1(Ω)}

P (u) = ∆ρ(u), u ∈ D(P )
(4.17)

is m-dissipative, which means that −P is m-accretive.
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Definition 4.5.1. We say that v ∈ L1(Ω) is a solution of Problem (4.16) whenever
v ∈ L1(Ω), ρ(v) ∈ W 1,1

0 (Ω), ∆ρ(v) ∈ L1(Ω) and ∆ρ(v(x)) = f(x, v(x)) a.e. x ∈ Ω.
That is, whenever v ∈ D(P ) is a solution of the coincidence problem P (v) = Nf (v),
where D(P ) and P are defined in (4.17).

Theorem 4.5.1 (J. Garcia-Falset, C. A. Hernández-Linares and O. Mleşniţe [50]). If
Conditions (1-4) are fulfilled, then Problem (4.16) has a solution.
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[17] M. Berinde and V. Berinde, On a general class of multivalued weakly Picard map-
pings, J. Math. Anal. Appl., 326 (2007), 772-782.
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[28] A. Buică, Data dependence theorems on coincidence problems, Studia Univ.
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3, 1983, Babeş-Bolyai Univ., 1-130.

[106] I. A. Rus, Principles and Applications of the Fixed Point Theory, Dacia, Cluj-
Napoca, Romania, 1979.

[107] I. A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae,
58 (2003), No. 1, 191-219.

[108] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point
Theory, 10(2009), no. 2, 305-320.

[109] I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carol. 34 (4) (1993),
769-773.

[110] I.A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babeş-
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