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Introduction

The purpose of the present thesis is to study nonlinear di¤erential systems with nonlocal
conditions. We shall obtain existence and uniqueness results based on an operator ap-
proach that uses �xed point theorems.

The vector operator method

We shall apply the �xed point principles of Perov (a vector version of Banach�s con-
traction principle), Schauder and Leray-Schauder. To this aim, the nonlocal problems will
be expressed as �xed point equations of the type

u = T (u); (1)

for some nonlinear operators T: Thus, a key element is represented by the speci�c ex-
pression of the corresponding operator T: In fact, in this thesis, equation (1) has a vector
structure, namely �

x = T1(x; y)
y = T2(x; y);

where u = (x; y); T = (T1; T2) ; which allows the two terms T1; T2 to behave di¤erently one
from the other and also with respect to the two variables. This requires the use of matrices
instead of constants, when Lipschitz, growth, or "a priori" boundedness conditions are im-
posed to T1 and T2: Correspondingly, the use of vector-valued norms is necessary. We note
that we can easily generalize the approach of 2-dimensional systems to the n-dimensional
case.

Historically, it was A.I. Perov who in 1964 [63] gave a vector version to Banach�s con-
traction principle and applied it to di¤erential systems, showing the advantage of matrices
that are convergent to zero and of vector-valued metrics. More recently, R. Precup [65]
showed that this method can be put in connection to other principles of nonlinear analy-
sis, such as Schauder�s, Leray-Schauder�s and Krasnoselskii�s theorems. Here, the author
also explained that the use of vector-valued norms and, correspondingly of matrices that
are convergent to zero, is more appropriate when treating systems of equations. Systems
appear in the mathematical modelling of di¤erent processes and phenomena from vari-
ous domains, such as physics, biology, chemistry, engineering, economy etc., when several
quantities vary in time and interact.

The nonlocal problems studied in this thesis

First, in Chapter 2, we consider the problem with discrete nonlocal (polylocal) initial
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conditions 8>>>>>><>>>>>>:

x0 (t) = f (t; x (t) ; y(t))
y0 (t) = g (t; x (t) ; y(t))

x (0) +
mP
k=1

akx(tk) = 0

y (0) +
mP
k=1

eaky(tk) = 0;
(a.e. on [0; 1])

where tk are given points with 0 � t1 � t2 � ::: � tm < 1:
Then, instead of discrete conditions we shall consider nonlocal conditions given by two

linear and continuous functionals, �; � : C[0; 1]! R; namely

x(0) = �[x]; y(0) = �[y] (uncoupled conditions)

and also
x(0) = �[y]; y(0) = �[x] (coupled conditions).

In Chapter 3, we deal with the n-dimensional case and the general coupled linear condition

u (0) = � [u] ;

where u = (u1; u2; :::; un) and � : C ([0; 1];Rn) ! Rn; while in Chapter 4 we discuss
second-order di¤erential equations and systems of the form8>><>>:

u00(t) = f (t; u(t); v(t))
v00(t) = g (t; u(t); v(t))
u(0) = 0; u(t0) = �(u(�); v(�))
v(0) = 0; v(t0) =  (u(�); v(�));

(t 2 [0; 1]); under nonlocal conditions on three points 0; �; t0:
The methods are then addapted in Chapter 5 in order to discuss the problem8>><>>:

x0 (t) = f1 (t; x (t) ; y(t))
y0 (t) = f2 (t; x (t) ; y(t))
x (0) = �[x; y]
y (0) = �[x; y]

; t 2 [0; 1]

with nonlocal conditions given by nonlinear functionals �; � : C[0; 1]2 ! R. Here, the
nonlinear operators T1; T2 will act on the product space (C [0; 1]� R)2 embedding in this
way the nonlinear conditions.

The methodology that we use throughout this work is �nally applied in Chapter 6 to
a special class of problems, namely to impulsive systems of the form8>><>>:

x0 (t) = f1 (t; x (t) ; y(t))
y0 (t) = f2 (t; x (t) ; y(t))
�xjt=t0 = I1(x(t0)); �yjt=t0 = I2(y(t0));
x (0) = �1[x]; y (0) = �2[y];

t 2 (0; 1); t 6= t0:

Here t0 2 (0; 1) and �vjt=t0 denotes the �jump� of the function v in t = t0; that is
�vjt=t0 = v(t+0 )� v(t

�
0 ); where v(t

�
0 ); v(t

+
0 ) are the left and the right limits of v in t = t0:
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Nonlocal conditions

The motivation for the study of nonlocal problems is that a nonlocal Cauchy problem
has better e¤ect in applications than the classical Cauchy problem since it is usually more
precise for physical measurements. Also, the mathematical modeling of real processes,
such as heat, �uid, chemical or biological �ow, where nonlocal conditions can be seen
as feedback controls, have brought into attention the treatment of nonlocal initial value
problems.

The study of abstract nonlocal semilinear initial-value problems was initiated by L.
Byszewski [19, 20], L. Byszewski and V. Lakshmikantham [21] and afterwards has been con-
tinued in many other papers: S. Aizicovici and Y. Gao [3], S. Aizicovici and M. McKibben
[5], J. Liang, J.H. Liu and T. Xiao [46], J.H. Liu [47], S.K. Ntouyas and P.Ch. Tsamatos
[58] and references therein. As remarked in L. Byszewski [20], nonlocal problems occur nat-
urally when modelling physical problems, for example thermostats G. Infante and J.R.L.
Webb [40], beams J.R.L. Webb and G. Infante [76, 77] and suspension bridges G. Infante,
F.M. Minhós and P. Pietramala [36]. A uni�ed method for establishing the existence and
multiplicity of positive solutions for a large number of nonlinear di¤erential equations of
arbitrary order with any allowed number of non-local boundary conditions was given in
J.R.L. Webb and G. Infante [76, 77]. Also, other discussions about the importance of
nonlocal conditions in di¤erent areas of applications, examples of problems with nonlocal
conditions and references to other works dealing with nonlocal problems can be found in
H.-K. Han and J.-Y. Park [34], D. Jackson [41], H.C. Lee [45] and the references therein.

Many authors have studied di¤erent types of nonlocal problems mainly with multi-
point boundary conditions (see, for example A. Boucherif and R. Precup [17], A.M.A. El-
Sayed, E.O. Bin-Taher [27], O. Nica and R. Precup [52], S.K. Ntouyas [59] and rerefences
therein for �rst order di¤erential equations, S.K. Ntouyas [59], R.P. Agarwal, D. O�Regan
and S. Stan¼ek [2], C.P. Gupta, S.K. Ntouyas and P.Ch. Tsamatos [33], G. Infante [35], R.
Ma [50], S. Stan¼ek [71] for second-order equations, or M. Eggensperger and N. Kosmatov
[26], J.R.L. Webb, G. Infante and D. Franco [80] for higher order equations. Initial value
problems involving boundary conditions given by linear and continuous functionals, or
equivalently, by Stieltjes integrals were studied, for example, in G. Infante [35], G.L.
Karakostats and P.Ch. Tsamatos [42], O. Nica [53, 55], J.R.L Webb and G. Infante [78],
J.R.L. Webb, G. Infante and D. Franco [80].

We also mention some other papers on nonlocal problems for several classes of di¤er-
ential equations and systems: S. Aizicovici and H. Lee [4], M. Benchohra and A. Boucherif
[7], M. Benchohra, E.P. Gatsori, L. Gorniewicz and S.K. Ntouyas [8], O. Bolojan-Nica, G.
Infante and R. Precup [11], O. Bolojan-Nica, G. Infante and R. Precup [12], A. Boucherif
[14]-[16], A. Boucherif and R. Precup [18], G. Infante and P. Pietramala [37, 38], G. In-
fante and J.R.L. Webb [40], G.L. Karakostas and P.Ch. Tsamatos [42], O. Nica [54], S.K.
Ntouyas [59], R. Precup [64], R. Precup and D. Trif [66], J.R.L. Webb [74], J.R.L. Webb
and G. Infante [75], J.R.L. Webb and K.Q. Lan [79], X. Xue [81, 82] and Z. Yang [83].

Structure of the thesis

The thesis is divided into six chapters, each chapter being organized in several sections.
Chapter 1 is entirely dedicated in presenting some preliminary notions, results and

notations that we need throughout this work. Here, in Section 1.1 we introduce the
concepts of vector-valued metric and vector-valued norm, while in Section 1.2 we present
another essential tool for our investigation, namely the notion of convergent to zero matrix.
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Next, in Section 1.3, we recall the classical �xed point principles of Perov, Schauder and
Leray-Schauder that we will apply frequently in this thesis. Other auxiliary results will
be also presented in the subsequent chapters.

In Chapter 2 we discuss three types of nonlocal initial value problems for �rst order
di¤erential systems. Section 2.1 contains an overview of the chapter, where we explain the
contents of each section and we present the main tools and methods that are used.

Motivated by the paper A. Boucherif and R. Precup [17], in Section 2.2 we deal with
the nonlocal initial value problem for the �rst order di¤erential system8>>>>>><>>>>>>:

x0 (t) = f (t; x (t) ; y(t))
y0 (t) = g (t; x (t) ; y(t))

x (0) +
mP
k=1

akx(tk) = 0

y (0) +
mP
k=1

eaky(tk) = 0;
(a.e. on [0; 1])

where f; g : [0; 1]�R2 ! R are Carathéodory functions, tk are given points with 0 � t1 �
t2 � ::: � tm < 1 and ak; eak are real numbers with 1 + mP

k=1

ak 6= 0 and 1 +
mP
k=1

eak 6= 0:
Section 2.2 contains three subsections, each one being dedicated to the study of the exis-
tence of solutions for the problem above. The proofs will rely on the Perov, Schauder and
Leray-Schauder �xed point principles which are applied to a nonlinear integral operator
splitted into two parts, one of Fredholm type for the subinterval containing the points
involved by the nonlocal condition, and another one of Volterra type for the rest of the
interval. Vector-valued norms and convergent to zero matrices play a key role in this
approach.

In Section 2.3 and Section 2.4, we extend the ideas of Section 2.2 by considering that the
nonlocal initial conditions are expressed, more general, by linear continuous functionals,
as in the works of J.R.L. Webb [74], J.R.L. Webb and G. Infante [75, 76, 77], J.R.L. Webb
and K.Q. Lan [79]. Therefore, in Section 2.3 we discuss the nonlocal initial value problem8>><>>:

x0 (t) = f1 (t; x (t) ; y(t))
y0 (t) = f2 (t; x (t) ; y(t))
x (0) = �[x]
y (0) = �[y];

(a.e. on [0; 1])

while in Section 2.4 we study the problem8>><>>:
x0 (t) = f1 (t; x (t) ; y(t))
y0 (t) = f2 (t; x (t) ; y(t))
x (0) = �[y]
y (0) = �[x];

(a.e. on [0; 1])

where f1; f2 : [0; 1] � R2 ! R are also Carathéodory functions and �; � : C[0; 1] ! R
are linear continuous functionals such that 1 � �[1] 6= 0 and 1 � �[1] 6= 0; in the �rst
case, and 1 � �[1]�[1] 6= 0; in the second case. Each one of the Sections 2.3 and 2.4
is divided into three subsections. Here, the existence and uniqueness results are �rst
obtained under Lipschitz or growth conditions given on the whole interval [0; 1] ; and after
that, in the second part of each subsection, under similar conditions given di¤erently
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on two subintervals [0; t0] and [t0; 1] : In the second case, the nonlinear integral operator
associated to the problem splits into two parts, one of Fredholm type and the other one
of Volterra type, which is re�ected on the nonlinearities behaviour.

The main results of Section 2.2 are: Theorem 2.2.1, which represents an existence and
uniqueness result, as an application of Perov�s �xed point theorem; Theorem 2.2.2 and
Theorem 2.2.3, two existence theorems which follow from Schauder�s and Leray-Schauder�s
�xed point principle, respectively. The results from this section have been published in
the paper O. Nica and R. Precup [52].

The most relevant results in Section 2.3 are: Theorem 2.3.1 and Theorem 2.3.2, two
existence and uniqueness theorems that use Perov�s �xed point principle; Theorem 2.3.4
and Theorem 2.3.5, which are existence results based on Schauder�s �xed point theorem;
Theorem 2.3.7 and Theorem 2.3.8, two existence theorems which are applications of Leray-
Schauder�s principle; Example 2.3.3 and Example 2.3.6 which represent two illustrations
of the theory. Most part of these results can be found in the papers O. Nica [53, 55].

Our main contributions in Section 2.4 are: Theorem 2.4.1 and Theorem 2.4.2 of ex-
istence and uniqueness; Theorem 2.4.4, Theorem 2.4.5, Theorem 2.4.7, Theorem 2.4.8
of existence; Example 2.4.3 and Example 2.4.6, numerical applications of the theoretical
results.

Chapter 3 extends to the general case the results from Chapter 2. More exactly, we
consider the n-dimensional system8>><>>:

u01 (t) = f1 (t; u1 (t) ; u2(t); :::; un (t)) ;
u02 (t) = f2 (t; u1 (t) ; u2(t); :::; un (t)) ;
:::
u0n (t) = fn (t; u1 (t) ; u2 (t) ; :::; un (t)) ;

for a.e. t in [0; 1], subject to the coupled nonlocal conditions8>><>>:
u1 (0) = �11[u1] + �12[u2] + :::+ �1n [un] ;
u2 (0) = �21[u1] + �22[u2] + :::+ �2n [un] ;
:::
un (0) = �n1[u1] + �n2[u2] + :::+ �nn [un] :

Here f1; f2; :::; fn : [0; 1] � Rn ! R are L1-Carathéodory functions and �ij : C[0; 1] !
R; i; j = 1; 2; :::; n are linear continuous functionals. The problem can be rewritten in the
vector form �

u0 (t) = f (t; u (t)) ; a.e. on [0; 1] ;
u (0) = � [u] ;

where u = (u1; u2; :::; un) ; f = (f1; f2; :::; fn) ; and

� [u] = (�1 [u] ; �2[u]; :::; �n [u]) ;

�i [u] = �i1[u1] + �i2[u2] + :::+ �in [un] (i = 1; 2; :::; n):

Clearly, in this case � is a linear continuous mapping from C ([0; 1];Rn) to Rn: This chapter
contains four sections. After an overview given in Section 3.1, we present the existence
results based on the �xed point theorems of Perov, Schauder and Leray-Schauder, in
Section 3.2, Section 3.3 and Section 3.4, respectively.

The main results in this chapter are: Theorem 3.2.1, Theorem 3.3.1 and Theorem
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3.4.1; Example 3.2.2 and Example 3.3.2 that present two numerical applications. These
contributions can be found in the paper O. Bolojan-Nica, G. Infante and R. Precup [11].

Chapter 4 is devoted to the study of second order di¤erential equations and systems
with nonlinear three-point boundary conditions. The chapter is divided into �ve sections
as follows. An overview on the problems and the contents of the chaper is given in Section
4.1. Then, motivated by the paper of E.V. Castelani and T.F. Ma [23], in Section 4.2,
we start our work by studying the three-point boundary value problem for second order
di¤erential equations �

u00 = f (t; u; u0)
u(0) = 0; u(t0) = g(u(�));

0 < t < t0

where 0 < � < t0 < 1 and f , g are continuous functions. In Section 4.3, we give existence
results for second-order di¤erential systems8>><>>:

u00(t) = f (t; u(t); v(t))
v00(t) = g (t; u(t); v(t))
u(0) = 0; u(t0) = �(u(�); v(�))
v(0) = 0; v(t0) =  (u(�); v(�));

on a given interval [0; t0]: In Section 4.4 we study the problem from Section 4.2 on the
larger interval [0; 1], namely �

u00 = f (t; u; u0)
u(0) = 0; u(t0) = g(u(�));

when t0 < 1: Finally, in Section 4.5, a similar strategy is applied to a system of two
second order di¤erential equations. The main results from this chapter are: Theorem
4.2.1, Theorem 4.2.2, Theorem 4.2.4 and Theorem 4.3.1, Theorem 4.3.2, existence results
on [0; t0] for equations and systems, respectively; Theorem 4.4.1, Theorem 4.4.2, Theorem
4.4.3, Theorem 4.4.4 and Theorem 4.5.1, Theorem 4.5.2, Theorem 4.5.3, Theorem 4.5.4,
existence results for equations and systems on [0; 1]: The results from this chapter appear
in the paper O. Nica [54].

The purpose of Chapter 5 is to study the existence of solutions to the nonlocal initial
value problem for a �rst order di¤erential system, with nonlinear nonlocal conditions8>><>>:

x0 (t) = f1 (t; x (t) ; y(t))
y0 (t) = f2 (t; x (t) ; y(t))
x (0) = �[x; y]
y (0) = �[x; y]:

; t 2 [0; 1]

Here f1; f2 : [0; 1] � R2 ! R are continuous functions, while �; � : C[0; 1]2 ! R are
nonlinear continuous functionals. The existence results are established by means of Perov,
Schauder and Leray-Schauder �xed point principles combined with the technique based on
vector-valued metrics and convergent to zero matrices. The main contributions here are
as follows: Theorem 5.2.1, which represents an existence and uniqueness result based on
Perov�s �xed point principle; Theorem 5.3.1 and Theorem 5.3.3, two existence results given
as direct application of Schauder and Leray-Schauder theorems, respectively; Example
5.2.2 and Example 5.3.2, two numerical applications that illustrate the results given by
Theorem 5.2.1 and Theorem 5.3.1. These results are part of the work O. Bolojan-Nica,
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G. Infante and R. Precup [13].
The methods that we mainly used in previous chapters are next addapted in Chapter

6 to the case of impulsive systems with nonlocal initial conditions expressed by means of
linear continuous functionals given by Stieltjes integrals8>><>>:

x0 (t) = f1 (t; x (t) ; y(t)) ;
y0 (t) = f2 (t; x (t) ; y(t)) ;
�xjt=t0 = I1(x(t0)); �yjt=t0 = I2(y(t0));
x (0) = �1[x]; y (0) = �2[y]:

t 2 (0; 1); t 6= t0:

Here t0 2 (0; 1) and �vjt=t0 denotes the �jump� of the function v in t = t0; that is
�vjt=t0 = v(t+0 )� v(t

�
0 ); where v(t

�
0 ); v(t

+
0 ) are the left and the right limits of v in t = t0.

The chapter is divided into four sections. After a general overview in Section 6.1, Section
6.2 presents an existence and uniqueness result by applying the �xed point principle of
Perov, while in Section 6.3 we provide an existence result as a consequence of Schauder�s
�xed point theorem. The existence principles that we apply are completed by the technique
based on vector-valued norms and matrices that are convergent to zero. Our contribu-
tions in this chapter are as follows: Theorem 6.2.1, an existence and uniqueness theorem;
Theorem 6.3.1 of existence; Example 6.2.2 and Example 6.3.2. These results are included
in the paper O. Bolojan-Nica, G. Infante and P. Pietramala [12].

Some ideas for further work

The methods that we have used throughout the thesis can be applied to other classes
of problems, for instance, to systems of evolution equations of the type8>>>>>><>>>>>>:

x0 (t) +A1x(t) = f1 (t; x (t) ; y(t))
y0 (t) +A2y(t) = f2 (t; x (t) ; y(t))

x (0) +
mP
k=1

akx(tk) = 0

y (0) +
mP
k=1

eaky(tk) = 0:
Here the linear operator �Ai : D(Ai) � Xi ! Xi generates a strongly continuous semi-
group of contractions fSi(t); t � 0g on a Banach space

�
Xi; j:jXi

�
; for i = 1; 2: In particular,

we can consider systems of parabolic and hyperbolic equations.
Another idea is to use a vector version of Krasnoselskii�s �xed point theorem for the

sum of two operators (see A. Viorel [73]) together with the method that uses convergent
to zero matrices, in order to treat more complicated nonlocal problems, for instance, the
problem 8>><>>:

x0(t) = g1(t; x(t); y(t)) + h1(t; x
0(t); y0(t))

y0(t) = g2(t; x(t); y(t)) + h2(t; x
0(t); y0(t))

x(0) = �[x]
y(0) = �[y];

where gi; hi : [0; 1] � R2 ! R are Carathéodory functions and �; � : [0; 1] ! R are linear
continuous functionals. Of course, all the other problems studied in this work could be
generalized this way.
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Chapter 1

Preliminaries

In this chapter we give some preliminary notions and results that we use throughout the
PhD thesis. Vector-valued metrics and norms, convergent to zero matrices and the �xed
point principles of Perov, Schauder and Leray-Schauder are the main tools in our work.

1.1 Vector-valued metrics and norms

De�nition 1.1.1 Let X be a nonempty set. By a vector-valued metric on X we mean a
mapping d : X �X ! Rn such that

(i) d(x; y) � 0 for all x; y 2 X and d(x; y) = 0 if and only if x = y;

(ii) d(x; y) = d(y; x) for all x; y 2 X;

(iii) d(x; y) � d(x; z) + d(z; y) for all x; y; z 2 X
with respect to the natural order relation of Rn. More exactly, if x; y 2 Rn; x =
(x1; x2; :::; xn); y = (y1; y2; :::; yn); by x � y we mean xi � yi for i = 1; 2; :::; n:

We call the pair (X; d) a generalized metric space.

De�nition 1.1.2 Let X be a linear space. A mapping k�k : X ! Rn is called a vector-
valued norm if

(i) kxk � 0 for all x 2 X and kxk = 0 if and only if x = 0;

(ii) k�xk = j�j kxk for all x 2 X and � 2 R;

(iii) kx+ yk � kxk+ kyk for all x; y 2 X:

Obviously, every linear space endowed with a vector-valued norm is a generalized metric
space with the vector-valued metric

d(x; y) = kx� yk :
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1.2 Convergent to zero matrices

De�nition 1.2.1 A square matrix M 2 Mn�n (Rn) with nonnegative elements is said to
be convergent to zero if

Mk ! 0 as k !1:

Lemma 1.2.2 Let M 2 Mn�n (Rn) be a square matrix of nonnegative numbers. The
following statements are equivalent:

(i) M is a matrix that is convergent to zero;

(ii) I �M is nonsingular and (I �M)�1 = I +M +M2 + ::: (where I stands for the
unit matrix of the same order as M);

(iii) the eigenvalues of M are located inside the unit disc of the complex plane;

(iv) I �M is nonsingular and (I �M)�1 has nonnegative elements.

Lemma 1.2.3 If A is a square matrix which is convergent to zero and the elements of an
other square matrix B are small enough, then A+B is also convergent to zero.

De�nition 1.2.4 An operator T : X ! X is said to be a generalized contraction (with
respect to the vector-valued metric d on X) if there exists a convergent to zero matrix M
such that

d(T (u); T (v)) �Md(u; v) for all u; v 2 X:

1.3 Fixed point theorems

Theorem 1.3.1 (Banach Contraction Principle) Let (K; d) be a complete metric space.
Suppose that T : K ! K is a contraction, i.e. there is � 2 [0; 1) such that

d(T (x); T (y)) � �d(x; y);

for all x; y 2 K: Then T has a unique �xed point x� and for any x 2 K, one has

d(T k(x); x�) � �k

1� �d(x; T (x)); k 2 N:

Theorem 1.3.2 (Perov) Let (X; d) be a complete generalized metric space and T : X !
X a generalized contraction with Lipschitz matrix M: Then T has a unique �xed point x�

and for each x 2 X we have

d(T k(x); x�) �Mk(I �M)�1d(x; T (x)); k 2 N:

Theorem 1.3.3 (Schauder) Let X be a Banach space, D � X a nonempty closed
bounded convex set and T : D ! D a completely continuous operator (i.e., T is con-
tinuous and T (D) is relatively compact). Then T has at least one �xed point.

Theorem 1.3.4 (Leray�Schauder) Let (X; j : jX) be a Banach space, R > 0 and T :
BX(0;R)! X a completely continuous operator. If jujX < R for every solution u of the
equation u = �T (u) and any � 2 (0; 1); then T has at least one �xed point.
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Chapter 2

Nonlocal initial value problems for
�rst order di¤erential systems

2.1 Overview

This chapter is devoted to existence of solutions to initial value problems for nonlinear �rst
order planar di¤erential systems with nonlocal conditions expressed by means of discrete
and continuous linear functionals.

2.2 First order di¤erential systems with polylocal condi-
tions

In this section, we deal with the nonlocal initial value problem for the �rst order di¤erential
system of the type 8>>>>>><>>>>>>:

x0 (t) = f (t; x (t) ; y(t))
y0 (t) = g (t; x (t) ; y(t))

x (0) +
mP
k=1

akx(tk) = 0

y (0) +
mP
k=1

eaky(tk) = 0:
(a.e. on [0; 1]) (2.2.1)

Here f; g : [0; 1]�R2 ! R are Carathéodory functions, tk are given points with 0 � t1 �
t2 � ::: � tm < 1 and ak; eak are real numbers with 1 + mP

k=1

ak 6= 0 and 1 +
mP
k=1

eak 6= 0:
Notice that the nonhomogeneous nonlocal initial conditions8>><>>:

x (0) +
mP
k=1

akx(tk) = x0

y (0) +
mP
k=1

eaky(tk) = y0

can always be reduced to the homogeneous ones (with x0 = y0 = 0) by the change of
variables x1(t) := x(t)� a x0 and y2(t) := y(t)� ea y0; where
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a =

 
1 +

mX
k=1

ak

!�1
and ea =  1 + mX

k=1

eak
!�1

: (2.2.2)

This can be viewed as a �xed point problem in C [0; 1]2 for the completely continuous
operator T = (T1; T2); T : C [0; 1]

2 ! C [0; 1]2 ; where T1 and T2 are given by

T1(x; y)(t) = �a
mP
k=1

ak
R tk
0 f (s; x (s) ; y(s)) ds+

R t
0 f (s; x (s) ; y(s)) ds;

T2(x; y)(t) = �ea mP
k=1

eak R tk0 g (s; x (s) ; y(s)) ds+
R t
0 g (s; x (s) ; y(s)) ds:

Operators T1 and T2 appear as sums of two integral operators, one of Fredholm type,
whose values depend only on the restrictions of functions to [0; tm]; and the other one, a
Volterra type operator depending on the restrictions to [tm; 1] ; as this was pointed out in
A. Boucherif and R. Precup [17]. Thus, T1 can be rewritten as T1 = TF1 + TV1 ; where

TF1(x; y)(t) =

8>><>>:
�a

mP
k=1

ak
R tk
0 f (s; x (s) ; y(s)) ds+

R t
0 f (s; x (s) ; y(s)) ds; if t < tm

�a
mP
k=1

ak
R tk
0 f (s; x (s) ; y(s)) ds+

R tm
0 f (s; x (s) ; y(s)) ds; if t � tm

and

TV1(x; y)(t) =

�
0; if t < tmR t
tm
f (s; x (s) ; y(s)) ds; if t � tm:

Similarly, T2 = TF2 + TV2 ; where

TF2(x; y)(t) =

8>><>>:
�ea mP

k=1

eak R tk0 g (s; x (s) ; y(s)) ds+
R t
0 g (s; x (s) ; y(s)) ds; if t < tm

�ea mP
k=1

eak R tk0 g (s; x (s) ; y(s)) ds+
R tm
0 g (s; x (s) ; y(s)) ds; if t � tm

and

TV2(x; y)(t) =

�
0; if t < tmR t
tm
g (s; x (s) ; y(s)) ds; if t � tm:

2.2.1 Nonlinearities with the Lipschitz property. Application of Perov�s
�xed point theorem

Here we show that the existence and uniqueness of solutions to problem (2.2.1) follows
from Perov�s �xed point theorem in case that f; g satisfy Lipschitz conditions in x and y :

jf(t; x; y)� f(t; x; y)j �
�
b1 jx� xj+eb1 jy � yj ; if t 2 [0; tm]
c1 jx� xj+ ec1 jy � yj ; if t 2 [tm; 1] ;

(2.2.3)
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jg(t; x; y)� g(t; x; y)j �
(
B1 jx� xj+ eB1 jy � yj ; if t 2 [0; tm]
C1 jx� xj+ eC1 jy � yj ; if t 2 [tm; 1]

(2.2.4)

for all x; y; x; y 2 R:
In what follows, we denote A1 := 1 + jaj

mP
k=1

jakj ; A2 = 1+ jeaj mP
k=1

jeakj ; where a and ea are
given by (2.2.2).

Theorem 2.2.1 If f; g satisfy the Lipschitz conditions (2.2.3), (2.2.4) and the matrix

M0 :=

"
b1tmA1 eb1tmA1
B1tmA2 eB1tmA2

#
(2.2.5)

is convergent to zero, then problem (2.2.1) has a unique solution.

2.2.2 Nonlinearities with growth at most linear. Application of Schauder�s
�xed point theorem

Here we show that the existence of solutions to problem (2.2.1) follows from Schauder�s
�xed point theorem in case that f; g satisfy instead of the Lipschitz conditions, the more
relaxed conditions of growth at most linear:

jf(t; x; y)j �
�
b1 jxj+eb1 jyj+ d1; if t 2 [0; tm]
c1 jxj+ ec1 jyj+ d2; if t 2 [tm; 1] ;

(2.2.6)

jg(t; x; y)j �
(
B1 jxj+ eB1 jyj+D1; if t 2 [0; tm]
C1 jxj+ eC1 jyj+D2; if t 2 [tm; 1] ;

(2.2.7)

for all x; y 2 R and some nonnegative coe¢ cients bi; ci; di;ebi;eci; edi; Bi; Ci; Di; eBi; eCi; eDi; i =
1; 2:

Theorem 2.2.2 If f; g satisfy conditions (2.2.6), (2.2.7) and matrix (2.2.5) is convergent
to zero, then problem (2.2.1) has at least one solution.

2.2.3 More general nonlinearities. Application of the Leray-Schauder
principle

We now consider that nonlinearities f; g satisfy more general growth conditions, namely:

jf(t; u)j �
�
!1(t; juje); if t 2 [0; tm]
�(t)�1(juje); if t 2 [tm; 1];

(2.2.8)

jg(t; u)j �
�
!2(t; juje); if t 2 [0; tm]
�(t)�2(juje); if t 2 [tm; 1];

(2.2.9)

for all u = (x; y) 2 R2; where by juje we mean the euclidean norm in R2: Here !1; !2
are Carathéodory functions on [0; tm]�R+; nondecreasing in their second argument, � 2
L1 [tm; 1] ; while �1; �2 : R+ ! R+ are nondecreasing and 1= (�1 + �2) 2 L1loc(0;1):
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Theorem 2.2.3 Assume that conditions (2.2.8), (2.2.9) hold. In addition assume that
there exists a positive number R0 such that for � = (�1; �2) 2 (0;1)2(

1
�1

R tm
0 !1(t; j�je)dt � 1

A1
1
�2

R tm
0 !2(t; j�je)dt � 1

A2

implies j�je � R0 (2.2.10)

and Z 1

R�

d�

�1(�) + �2(�)
>

Z 1

tm

�(s)ds; (2.2.11)

where R� =
��
A1
R tm
0 !1(t; R0)dt

�2
+
�
A2
R tm
0 !2(t; R0)dt

�2�1=2
: Then problem (2.2.1)

has at least one solution.

2.3 The nonlocal conditions x (0) = �[x]; y (0) = �[y]

The goal of Section 2.3 is to extend the results established in Section 2.2 to the case
where the nonlocal initial conditions are more generally expressed in terms of two linear
continuous functionals on C[0; 1].

More exactly, we deal with the nonlocal initial value problem for the �rst order di¤er-
ential system of the type8>><>>:

x0 (t) = f1 (t; x (t) ; y(t))
y0 (t) = f2 (t; x (t) ; y(t)) (a.e. on [0; 1])
x (0) = �[x]
y (0) = �[y]:

(2.3.12)

Here f1; f2 : [0; 1]�R2 ! R are Carathéodory functions, �; � : C[0; 1]! R are linear and
continuous functionals such that 1� �[1] 6= 0 and 1� �[1] 6= 0:

This can be viewed as a �xed point problem in C [0; 1]2 for the completely continuous
operator T : C [0; 1]2 ! C [0; 1]2 ; T = (T1; T2); where T1 and T2 are given by

T1(x; y)(t) =
1

1��[1]�[g1] +
R t
0 f1 (s; x (s) ; y(s)) ds;

T2(x; y)(t) =
1

1��[1]�[g2] +
R t
0 f2 (s; x (s) ; y(s)) ds;

(2.3.13)

where g1(x; y)(t) :=
R t
0 f1 (s; x (s) ; y(s)) ds; g2(x; y)(t) :=

R t
0 f2 (s; x (s) ; y(s)) ds:

We require the following property:

xj[0;t0] = yj[0;t0] implies �[x� y] = 0, whenever x; y 2 C[0; 1]: (2.3.14)

Therefore, (2.3.14) reads that the value of functional � on any function x only depends
on the restriction of x to the �xed subinterval [0; t0]:
The key property of functional � satisfying (2.3.14) is that

j�[x]j � k�k � jxjC[0;t0] ; (2.3.15)

for every x 2 C[0; 1]:
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2.3.1 Existence and uniqueness under Lipschitz conditions

First, we show that the existence and uniqueness of solution to problem (2.3.12) follows
from Perov�s �xed point theorem in case that f1; f2 satisfy the Lipschitz conditions in x
and y : �

jf1(t; x; y)� f1(t; x; y)j � a1 jx� xj+ b1 jy � yj
jf2(t; x; y)� f2(t; x; y)j � a2 jx� xj+ b2 jy � yj ;

(2.3.16)

for all x; y; x; y 2 R:

Theorem 2.3.1 If f1; f2 satisfy the Lipschitz conditions (2.3.16) and matrix

M�;� =

24 a1

�
k�k

j1��[1]j + 1
�

b1

�
k�k

j1��[1]j + 1
�

a2

�
k�k

j1��[1]j + 1
�

b2

�
k�k

j1��[1]j + 1
� 35 (2.3.17)

is convergent to zero, then problem (2.3.12) has a unique solution.

For our second existence and uniqueness result obtained via Perov�s �xed point the-
orem, we shall consider that there is t0 2 (0; 1) such that nonlinearities f1; f2 satisfy
di¤erent Lipschitz conditions on [0; t0] and [t0; 1]; respectively:

jf1(t; x; y)� f1(t; x; y)j �
�
a1 jx� xj+ b1 jy � yj ; if t 2 [0; t0]
a2 jx� xj+ b2 jy � yj ; if t 2 [t0; 1] ;

(2.3.18)

jf2(t; x; y)� f2(t; x; y)j �
�

A1 jx� xj+B1 jy � yj , if t 2 [0; t0]
A2 jx� xj+B2 jy � yj ; if t 2 [t0; 1] ;

(2.3.19)

for all x; y; x; y 2 R:

In what follows we denote A� :=
k�k

j1��[1]j + 1; B� :=
k�k

j1��[1]j + 1:

Theorem 2.3.2 Assume that �; � satisfy (2.3.14). If f1; f2 satisfy the Lipschitz condi-
tions (2.3.18), (2.3.19) and the matrix

M0 :=

�
a1t0A� b1t0A�
A1t0B� B1t0B�

�
(2.3.20)

is convergent to zero, then problem (2.3.12) has a unique solution.

Example 2.3.3 Consider the following nonlocal initial value problem:8>><>>:
x0(t) = 0:1 + 1

4
y2(t)
1+y2(t)

sin(2x(t)) � f1(x(t); y(t))

y0(t) = 0:1 + 2
3

y2(t)
1+y2(t)

cos(2x(t)) � f2(x(t); y(t))

x(0) =
R 1=2
0 x(s)ds; y(0) =

R 1=2
0 y(s)ds:

; t 2 [0; 40] (2.3.21)

We have that

M0 =

 
1
2

3
p
3

32
4
3

p
3
4

!
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whose eigenvalues are �1 = 0; �2 = 0:9330:::. HenceM0 is convergent to zero and Theorem
2.3.2 guarantees that problem (2.3.21) has a unique solution.

2.3.2 Existence under at most linear growth conditions

First, we show that the existence of solutions to problem (2.3.12) follows from Schauder�s
�xed point theorem in case that f1; f2 satisfy instead of the Lipschitz condition, the more
relaxed conditions of growth at most linear:�

jf1(t; x; y)j � a1 jxj+ b1 jyj+ c1
jf2(t; x; y)j � a2 jxj+ b2 jyj+ c2:

(2.3.22)

for all x; y 2 R:
In this �rst case, we deal with any two linear functionals �; � (i.e., we do not assume

(2.3.14)).

Theorem 2.3.4 If f1; f2 satisfy conditions (2.3.22) and matrix (2.3.17) is convergent to
zero, then problem (2.3.12) has at least one solution.

Next, we give another existence result for problem (2.3.12) as an application of Schauder�s
�xed point theorem in case that f1; f2 satisfy the more relaxed condition of growth at most
linear di¤erently, on two subintervals [0; t0] and [t0; 1],

jf1(t; x; y)j �
�
a1 jxj+ b1 jyj+ c1; if t 2 [0; t0]
a2 jxj+ b2 jyj+ c2; if t 2 [t0; 1] ;

(2.3.23)

jf2(t; x; y)j �
�
A1 jxj+B1 jyj+ C1; if t 2 [0; t0]
A2 jxj+B2 jyj+ C2; if t 2 [t0; 1] ;

(2.3.24)

and if the functionals �; � satisfy (2.3.14).

Theorem 2.3.5 If f1; f2 satisfy (2.3.23), (2.3.24) and the matrix (2.3.20) is convergent
to zero, then problem (2.3.12) has at least one solution.

Example 2.3.6 Consider the nonlocal initial value problem8><>:
x0 = �0:9x� 1:8 xy

2+x2
+ 90 � f1(x; y)

y0 = �0:2y � 1:8 xy
2+x2

+ 750 � f2(x; y)

x(0) =
R 1=2
0 x(s)ds; y(0) =

R 1=2
0 y(s)ds:

; t 2 [0; 1] (2.3.25)

Since
��� x
2+x2

��� � p
2
4 ; we have

M0 =

�
0:9 0:6364
0 0:8364

�
:

The eigenvalues are �1 = 0:9; �2 = 0:8364 showing that M0 is convergent to zero. Then,
from Theorem 2.3.5, problem (2.3.25) has at least one solution.
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2.3.3 Existence under more general growth conditions

We now consider that nonlinearities f1; f2 satisfy more general growth conditions on the
entire interval [0; 1], namely:�

jf1(t; u)j � !1(t; juje)
jf2(t; u)j � !2(t; juje)

; for t 2 [0; 1]; (2.3.26)

for all u = (x; y) 2 R2; where by juje we mean the euclidean norm in R2: Here, !1; !2 are
Carathéodory functions on [0; 1]� R+; nondecreasing in their second argument.

Theorem 2.3.7 Assume that condition (2.3.26) holds. In addition assume that there
exists a positive number R0 such that for � = (�1; �2) 2 (0;1)2(

1
�1

R 1
0 !1(t; j�je)dt �

1
A�

1
�2

R 1
0 !2(t; j�je)dt �

1
B�

implies j�je � R0: (2.3.27)

Then problem (2.3.12) has at least one solution.

Then, we suppose that nonlinearities f1; f2 satisfy more general growth conditions
given di¤erently on [0; t0] and [t0; 1], namely:

jf1(t; u)j �
�
!1(t; juje); if t 2 [0; t0]
(t)�1(juje); if t 2 [t0; 1];

(2.3.28)

jf2(t; u)j �
�
!2(t; juje); if t 2 [0; t0]
(t)�2(juje) ; if t 2 [t0; 1];

(2.3.29)

for all u = (x; y) 2 R2: Here !1; !2 are Carathéodory functions on [0; t0]�R+; nondecreas-
ing in their second argument,  2 L1 [t0; 1] ; while �1; �2 : R+ ! R+ are nondecreasing
and 1= (�1 + �2) 2 L1loc(R+):

Theorem 2.3.8 Assume that the functionals �; � satisfy (2.3.14) and conditions (2.3.28),
(2.3.29) hold. In addition assume that there exists a positive number R0 such that for
� = (�1; �2) 2 (0;1)2(

1
�1

R t0
0 !1(t; j�je)dt � 1

A�
1
�2

R t0
0 !2(t; j�je)dt � 1

B�

implies j�je � R0 (2.3.30)

and Z 1

R�

d�

�1(�) + �2(�)
>

Z 1

t0

(s)ds; (2.3.31)

where

R� =

"�
A�

Z t0

0
!1(t; R0)dt

�2
+

�
B�

Z t0

0
!2(t; R0)dt

�2#1=2
:

Then problem (2.3.12) has at least one solution.
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2.4 The nonlocal conditions x (0) = �[y]; y (0) = �[x]

In this section we introduce in our study coupled nonlocal conditions expressed by linear
functionals, namely the conditions

x (0) = �[y]; y (0) = �[x]:

Therefore, we deal with the nonlocal initial value problem for the �rst order di¤erential
system 8>><>>:

x0 (t) = f1 (t; x (t) ; y(t))
y0 (t) = f2 (t; x (t) ; y(t))
x (0) = �[y]
y (0) = �[x]:

(a.e. on [0; 1]) (2.4.32)

Here, f1; f2 : [0; 1] � R2 ! R are Carathéodory functions, �; � : C[0; 1] ! R are linear
and continuous functionals.

This can be viewed as a �xed point problem in C [0; 1]2 for the completely continuous
operator T : C [0; 1]2 ! C [0; 1]2 ; T = (T1; T2); where T1 and T2 are given by

T1(x; y)(t) =
1

1��[1]�[1] (�[g2] + �[1]�[g1]) +
R t
0 f1 (s; x (s) ; y(s)) ds;

T2(x; y)(t) =
1

1��[1]�[1] (�[g1] + �[1]�[g2]) +
R t
0 f2 (s; x (s) ; y(s)) ds:

2.4.1 Problems with Lipschitz conditions

Assume that f1; f2 satisfy Lipschitz conditions in x and y :�
jf1(t; x; y)� f1(t; x; y)j � a1 jx� xj+ b1 jy � yj
jf2(t; x; y)� f2(t; x; y)j � A1 jx� xj+B1 jy � yj ;

(2.4.33)

for all x; y; x; y 2 R and denote by

A� :=
1

j1��[1]�[1]j k�k ; A� :=
j�[1]j

j1��[1]�[1]j k�k ;
B� :=

j�[1]j
j1��[1]�[1]j k�k ; B� :=

1
j1��[1]�[1]j k�k :

Theorem 2.4.1 If f1; f2 satisfy the Lipschitz conditions (2.4.33) and the matrix

M :=

�
A�A1 + (A� + 1) a1 A�B1 + (A� + 1) b1
B�a1 + (B� + 1)A1 B�b1 + (B� + 1)B1

�
(2.4.34)

is convergent to zero, then problem (2.4.32) has a unique solution.

In case that �; � satisfy condition (2.3.14) for some t0 2 (0; 1); we can ask di¤erent
growth conditions for f1; f2; on [0; t0] and [t0; 1] ; respectively:

jf1(t; x; y)� f1(t; x; y)j �
�
a1 jx� xj+ b1 jy � yj ; if t 2 [0; t0]
a2 jx� xj+ b2 jy � yj ; if t 2 [t0; 1] ;

(2.4.35)

jf2(t; x; y)� f2(t; x; y)j �
�

A1 jx� xj+B1 jy � yj , if t 2 [0; t0]
A2 jx� xj+B2 jy � yj ; if t 2 [t0; 1] ;

(2.4.36)

for all x; y; x; y 2 R:
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Theorem 2.4.2 Assume that �; � satisfy condition (2.3.14). If f1; f2 satisfy the Lipschitz
conditions (2.4.35), (2.4.36) and the matrix

M0 :=

�
A�A1t0 + (A� + 1) a1t0 A�B1t0 + (A� + 1) b1t0
B�a1t0 + (B� + 1)A1t0 B�b1t0 + (B� + 1)B1t0

�
(2.4.37)

is convergent to zero, then problem (2.4.32) has a unique solution.

Example 2.4.3 We shall consider the following nonlocal initial value problem:8>><>>:
x0(t) = 0:1 + 1

4
y2(t)
1+y2(t)

sin(2x(t)) � f1(x(t); y(t))

y0(t) = 0:1 + 1
3

y2(t)
1+y2(t)

cos(2x(t)) � f2(x(t); y(t))

x(0) =
R 1=4
0 x(s)ds; y(0) =

R 1=4
0 y(s)ds:

; t 2 [0; 1] (2.4.38)

We have that � [u] = �[u] =
R 1=4
0 u(s)ds; � [1] = �[1] = 1

4 and k�k = k�k = 1
4 : Also,

t0 = 1=4; A� = B� = 4=15; A� = B� = 1=15 and

M =

 
8
45

p
3
30

19
90

19
p
3

480

!

whose eigenvalues are �1 = 0; �2 = 0:246338122 . Since both �1 and �2 are less than 1;
matrix M is convergent to zero and Theorem 2.4.2 guarantees the existence of a unique
solution for problem (2.4.38).

2.4.2 Problems with growth conditions at most linear

For the �rst existence result, we shall assume that f1; f2 satisfy instead of the Lipschitz
condition, the more relaxed condition of at most linear growth, uniformly on the entire
interval [0; 1]; and that �; � are general linear continuous functionals on C[0; 1]: Thus,
assume that �

jf1(t; x; y)j � a1 jxj+ b1 jyj+ c1;
jf2(t; x; y)j � A1 jxj+B1 jyj+ C1;

(2.4.39)

for all x; y 2 R:

Theorem 2.4.4 If f1; f2 satisfy (2.4.39) and matrix (2.4.34) is convergent to zero, then
problem (2.4.32) has at least one solution.

For our second existence result, another application of Schauder�s �xed point theorem,
we shall impose for nonlinearities f1; f2 conditions of growth at most linear that will di¤er
on [0; t0] and [t0; 1] ; respectively:

jf1(t; x; y)j �
�
a1 jxj+ b1 jyj+ c1; if t 2 [0; t0]
a2 jxj+ b2 jyj+ c2; if t 2 [t0; 1] ;

(2.4.40)

jf2(t; x; y)j �
�
A1 jxj+B1 jyj+ C1; if t 2 [0; t0]
A2 jxj+B2 jyj+ C2; if t 2 [t0; 1] ;

(2.4.41)
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for all x; y 2 R and some nonnegative coe¢ cients ai; bi; ci; Ai; Bi; Ci; i = 1; 2:

Theorem 2.4.5 Assume that �; � satisfy (2.3.14). If f1; f2 satisfy (2.4.40), (2.4.41) and
the matrix (2.4.37) is convergent to zero, then problem (2.4.32) has at least one solution.

Example 2.4.6 We study the nonlocal problem given by8>>><>>>:
x0 = �0:9x� 1:8 xy

2+x2
+ 1 � f1(x; y)

y0 = �0:2y � 1:8 xy
2+x2

+ 0:7 � f2(x; y)

x(0) =
R 1=4
0 x(s)ds

y(0) =
R 1=4
0 y(s)ds:

; t 2 [0; 1] (2.4.42)

We obtain that

M =

�
0:24 0:08094757079
0:06 0:04094757081

�
has the eigenvalues (rounded to the third decimal place) �1 = 0:262 < 1; �2 = 0:019 <
1:This shows that M is convergent to zero. Then, from Theorem 2.4.5, problem (2.4.42)
has at least one solution.

2.4.3 Problems with more general growth conditions

As we have already seen, the Leray-Schauder theorem guarantees the existence of solutions
under more general growth conditions on f1; f2 :�

jf1(t; u)j � !1(t; juje)
jf2(t; u)j � !2(t; juje)

(2.4.43)

for all u = (x; y) 2 R2; where by juje we have ment the euclidean norm in R2: As until now,
!1; !2 are Carathéodory functions on [0; 1]�R+; nondecreasing in their second argument.

Theorem 2.4.7 Assume that condition (2.4.43) holds. In addition assume that there
exists a positive number R0 such that for � = (�1; �2) 2 (0;1)2(

A�+1
�1

R 1
0 !1(t; j�je)dt+

A�
�1

R 1
0 !2(t; j�je)dt � 1

B�
�2

R 1
0 !1(t; j�je)dt+

B�+1
�2

R 1
0 !2(t; j�je)dt � 1

implies j�je � R0 (2.4.44)

Then problem (2.4.32) has at least one solution.

If the functionals �; � satisfy (2.3.14) for some number t0 2 (0; 1); then we may ask for
f1; f2 to satisfy general growth conditions, di¤erently on each of the intervals [0; t0] and
[t0; 1], namely:

jf1(t; u)j �
�
!1(t; juje); if t 2 [0; t0]
(t)�1(juje); if t 2 [t0; 1];

(2.4.45)

jf2(t; u)j �
�
!2(t; juje); if t 2 [0; t0]
(t)�2(juje) ; if t 2 [t0; 1];

(2.4.46)

for all u = (x; y) 2 R2: Again, !1; !2 are Carathéodory functions on [0; t0] � R+; nonde-
creasing in their second argument,  2 L1 [t0; 1] ; while �1; �2 : R+ ! R+ are nondecreas-
ing and 1= (�1 + �2) 2 L1loc(R+):
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Theorem 2.4.8 Assume that �; � satisfy (2.3.14) and conditions (2.4.45), (2.4.46) hold.
In addition assume that there exists a positive number R0 such that for � = (�1; �2) 2
(0;1)2(

A�+1
�1

R t0
0 !1(t; j�je)dt+ A�

�1

R t0
0 !2(t; j�je)dt � 1

B�
�2

R t0
0 !1(t; j�je)dt+ B�+1

�2

R t0
0 !2(t; j�je)dt � 1

implies j�je � R0 (2.4.47)

and Z 1

R�

d�

�1(�) + �2(�)
>

Z 1

t0

(s)ds; (2.4.48)

where

R� =

(�
(A� + 1)

Z t0

0
!1(t; R0)dt+A�

Z t0

0
!2(t; R0)dt

�2

+

�
B�

Z t0

0
!1(t; R0)dt+ (B� + 1)

Z t0

0
!2(t; R0)dt

�2)1=2
:

Then problem (2.4.32) has at least one solution.
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Chapter 3

Systems with general coupled non-
local initial conditions

3.1 Overview

Having in mind the problems and techniques that have been considered in Chapter 2, in
this chapter an existence theory is developed for �rst-order n-dimensional systems with
coupled nonlocal conditions given by general linear functionals.

In this chapter, we discuss the �rst order di¤erential system8>><>>:
u01 (t) = f1 (t; u1 (t) ; u2(t); :::; un (t)) ;
u02 (t) = f2 (t; u1 (t) ; u2(t); :::; un (t)) ;
:::
u0n (t) = fn (t; u1 (t) ; u2 (t) ; :::; un (t)) ;

(3.1.1)

for a.e. t in [0; 1], subject to the coupled nonlocal conditions8>><>>:
u1 (0) = �11[u1] + �12[u2] + :::+ �1n [un] ;
u2 (0) = �21[u1] + �22[u2] + :::+ �2n [un] ;
:::
un (0) = �n1[u1] + �n2[u2] + :::+ �nn [un] :

(3.1.2)

Here f1; f2; :::; fn : [0; 1] � Rn ! R are L1-Carathéodory functions and �ij : C[0; 1] !
R; i; j = 1; 2; :::; n are linear and continuous functionals. As was shown in R. Precup and
D. Trif [66], the problem (3.1.1)-(3.1.2) is su¢ ciently general to cover problems related
to nth-order ordinary di¤erential equations subject to nonlocal conditions involving the
unknown function and its derivatives until order n� 1:

The problem (3.1.1)-(3.1.2) can be rewritten in the vector form�
u0 (t) = f (t; u (t)) ; a.e. on [0; 1] ;
u (0) = � [u] ;

(3.1.3)

where u = (u1; u2; :::; un) ; f = (f1; f2; :::; fn) and

� [u] = (�1 [u] ; �2[u]; :::; �n [u]) ; (3.1.4)
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�i [u] = �i1[u1] + �i2[u2] + :::+ �in [un] ; i = 1; 2; :::; n: (3.1.5)

Note that � is a linear continuous mapping from C ([0; 1];Rn) to Rn:
We assume that the matrix

I � � [1] is non-singular; (3.1.6)

where I is the unit matrix of order n and by � [1] we mean the square matrix � [1] :=
(�ij [1])1�i;j�n :

Therefore, the problem (3.1.1)-(3.1.2) is equivalent to the integral type equation

u (t) = (I � � [1])�1 �
�Z t

0
f (s; u (s)) ds

�
+

Z t

0
f (s; u (s)) ds (3.1.7)

in the space C ([0; 1] ;Rn) :
Our approach is to seek solutions of the equation (3.1.7) as �xed points of the operator

(Tu) (t) = (I � � [1])�1 �
�Z t

0
f (s; u (s)) ds

�
+

Z t

0
f (s; u (s)) ds: (3.1.8)

in the space C ([0; 1] ;Rn). Throughout this chapter we assume that

�ij [v] =

Z t0

0
v (s) dAij (s) ; (v 2 C [0; 1])

for i; j = 1; 2; :::; n; where t0 2 [0; 1]: Note that, in this case,

� [v] = 0 whenever v (t) � 0 in [0; t0] : (3.1.9)

Under the assumption (3.1.9), the operator T can be written as sum of two operators,
one of Fredholm type and the other of Volterra type,

T = TF + Tv;

where

(TFu) (t) =

8<: (I � � [1])�1 �
hR t
0 f (s; u (s)) ds

i
+
R t
0 f (s; u (s)) ds; for 0 � t � t0

(I � � [1])�1 �
hR t
0 f (s; u (s)) ds

i
+
R t0
0 f (s; u (s)) ds; for t0 � t � 1

(TV u) (t) =

�
0; for 0 � t � t0R t
t0
f (s; u (s)) ds; for t0 � t � 1:
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3.2 Existence and uniqueness. The case of Lipschitz non-
linearities

In this section we assume that the functions f1; f2; :::; fn satisfy Lipschitz conditions of
the form

jfi (t; u)� fi (t; v)j �
�
ai1 (t) ju1 � v1j+ :::+ ain (t) jun � vnj ; for t 2 [0; t0] ;
bi1 (t) ju1 � v1j+ :::+ bin (t) jun � vnj ; for t 2 [t0; 1] ;

(3.2.10)
for all u; v 2 Rn; u = (u1; u2; :::; un) ; v = (v1; v2; :::; vn) ; and some functions aij 2
L1 ((0; 1);R+) ; bij 2 Lp ((0; 1);R+) and 1 < p � 1 (1 � i; j � n) :

Using vector notations we can rewrite the condition (3.2.10) as follows:

kf (t; u)� f (t; v)k �
�
A (t) ku� vk ; for t 2 [0; t0] ;
B (t) ku� vk ; for t 2 [t0; 1] ;

(3.2.11)

where A (t) ; B (t) are the matrices of Lipschitz coe¢ cients

A (t) = (aij (t))1�i;j�n ; B (t) = (bij (t))1�i;j�n :

Clearly A 2 L1 ((0; 1);Mn (R+)) and B 2 Lp ((0; 1);Mn (R+)) :

Theorem 3.2.1 Let f : [0; 1] � Rn ! Rn be a Carathéodory function satisfying (3.2.11)
and let � : C ([0; 1];Rn)! Rn be linear and continuous satisfying (3.1.6) and (3.1.9). If

the matrix
����(I � � [1])�1��� j�j+ I� jAjL1(0;t0) is convergent to zero; (3.2.12)

then the problem (3.1.3) has a unique solution u 2W 1;1 ((0; 1);Rn) :

Denote by M0; the matrix

M0 :=
���(I � � [1])�1��� j�j+ I: (3.2.13)

Example 3.2.2 Consider the nonlocal problem8>><>>:
x0 = a sinx+ by + g (t) � f1(t; x; y);
y0 = cos (cx+ dy) + h (t) � f2(t; x; y);

x(0) = 1
4

R t0
0 (x(s) + y (s)) ds;

y(0) = 1
4

R t0
0 (x(s) + y (s)) ds;

(3.2.14)

where t 2 [0; 1] ; a; b; c; d 2 R; g; h 2 L1 (0; 1) and 0 � t0 � 1: We have �ij [1] = t0
4 and

j�ij j = t0
4 for 1 � i; j � 2: Then

M0 jAjL1(0;t0) =
t0

2 (2� t0)

�
(4� t0) jaj+ t0 jcj (4� t0) jbj+ t0 jdj
t0 jaj+ (4� t0) jcj t0 jbj+ (4� t0) jdj

�
: (3.2.15)

Therefore, if the matrix (3.2.15) is convergent to zero, then the problem (3.2.14) has a
unique solution.
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Particular cases: (a) if jaj = jcj and jbj = jdj ; then

M0 jAjL1(0;t0) =
2t0
2� t0

�
jaj jbj
jaj jbj

�
;

whose eigenvalues are �1 = 0 and �2 = 2t0
2�t0 (jaj+ jbj) : Hence the matrix is convergent to

zero if and only if
2t0
2� t0

(jaj+ jbj) < 1:

(b) if jaj = jdj and jbj = jcj ; then

M0 jAjL1(0;t0) =
t0

2 (2� t0)

�
(4� t0) jaj+ t0 jbj t0 jaj+ (4� t0) jbj
t0 jaj+ (4� t0) jbj (4� t0) jaj+ t0 jbj

�
:

The eigenvalues are �1 = t0 (jaj � jbj) ; �2 = 2t0
2�t0 (jaj+ jbj) : Since j�1j � �2; the matrix is

convergent to zero if and only if 2t0
2�t0 (jaj+ jbj) < 1:

3.3 Existence. Nonlinearities with growth at most linear

We now assume that the functions f1; f2; :::; fn satisfy instead of Lipschitz conditions,
the more relaxed conditions of growth at most linear

jfi (t; u)j �
�
ai1 (t) ju1j+ :::+ ain (t) junj+ ai (t) ; for t 2 [0; t0] ;
bi1 (t) ju1j+ :::+ bin (t) junj+ bi (t) ; for t 2 [t0; 1] ;

(3.3.16)

for u 2 Rn; u = (u1; u2; :::; un) and some functions aij ; ai; bi 2 L1 ((0; 1);R+) ; bij 2
Lp ((0; 1);R+) and 1 < p � 1 (1 � i; j � n) :

Using vector notations we can rewrite the condition (3.3.16) as follows:

kf (t; u)k �
�
A (t) kuk+ a (t) ; for t 2 [0; t0] ;
B (t) kuk+ b (t) ; for t 2 [t0; 1] ;

(3.3.17)

whereA (t) ; B (t) are the matrices of coe¢ cientsA (t) = (aij (t))1�i;j�n ; B (t) = (bij (t))1�i;j�n
and a (t) ; b (t) are the column matrices a (t) = (ai (t))1�i�n ; b (t) =

�
bi (t)

�
1�i�n : One has

A 2 L1 ((0; 1);Mn (R+)) ; B 2 Lp ((0; 1);Mn (R+)) and a; b 2 L1
�
(0; 1);Rn+

�
:

Theorem 3.3.1 Let f : [0; 1] � Rn ! Rn be a Carathéodory function satisfying (3.3.17)
and let � : C ([0; 1];Rn) ! Rn be linear and continuous satisfying (3.1.6) and (3.1.9).
If the condition (3.2.12) holds, then the problem (3.1.3) has at least one solution u 2
W 1;1 ((0; 1);Rn) :

Example 3.3.2 Consider the nonlocal problem8>>>><>>>>:
x0 = ax sin

� y
x

�
+ by sin

�
x
y

�
+ g(t) � f1(t; x; y);

y0 = cx sin
� y
x

�
+ dy sin

�
x
y

�
+ h(t) � f2(t; x; y);

x(0) = 1
4

R t0
0 (x(s) + y (s)) ds;

y(0) = 1
4

R t0
0 (x(s) + y (s)) ds;

(3.3.18)
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where t 2 [0; 1] ; a; b; c; d 2 R; g; h 2 L1 (0; 1) and 0 � t0 � 1: Since

jf1 (t; x; y)j � jaj jxj+ jbj jyj+ jg (t)j ; jf2 (t; x; y)j � jcj jxj+ jdj jyj+ jh (t)j

we are under the assumptions from Section 3.3. Also, the matrixM0 jAjL1(0;t0) is that from
Example 3.2.2. Therefore, according to Theorem 3.3.1, if that matrix is convergent to zero,
then the problem (3.3.18) has at least one solution. Note that the functions f1 (t; x; y) ;
f2 (t; x; y) from this example do not satisfy Lipschitz conditions in x; y and consequently
Theorem 3.2.1 does not apply.

3.4 Existence. Nonlinearities with a more general growth

We now assume that the nonlinearities f1; f2; :::; fn satisfy more general growth conditions,
namely

jfi(t; u)j �
�
!i(t; kuk); if t 2 [0; t0];
�(juj)i (t) ; if t 2 [t0; 1];

(3.4.19)

for all u = (u1; u2; :::; u2) 2 Rn (1 � i � n) : Here !i are L1-Carathéodory functions on
[0; t0]�Rn+; nondecreasing in their second argument, i 2 L1 ((t0; 1);R+) ; while � : R+ !
R+ is nondecreasing and 1=� 2 L1loc(R+); here, the symbols j:j ; k:k are used to denote the
Euclidean norm and the vector-valued norm on Rn; respectively.

Using vector notation, the condition (3.4.19) can be rewritten as follows:

kf(t; u)k �
�
!(t; kuk); if t 2 [0; t0];
�(juj) (t) ; if t 2 [t0; 1];

(3.4.20)

where !(t; kuk);  (t) are the column matrices !(t; kuk) = (!i(t; kuk))1�i�n ;  (t) =
(i (t))1�i�n :

Theorem 3.4.1 Assume that the condition (3.4.20) holds. In addition assume that there
exists a vector R0 2 Rn+ and a number R1 > 0 such that

if � 2 Rn+ and M0

Z t0

0
!(t; �)dt � �; then � � R0 (3.4.21)

and Z 1

t0

j (s)j ds =
Z R1

R�0

1

� (�)
d� ; (3.4.22)

where R�0 =
���M0

R t0
0 !(s;R0)ds

��� and M0 is given by (3.2.13). Then the problem (3.1.3)

has at least one solution u 2W 1;1 ((0; 1);Rn) such that

kukC[0;t0] � R0 and jujC([t0;1];Rn) � R1: (3.4.23)
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Chapter 4

Existence results for second order
three-point boundary value prob-
lems

4.1 Overview

This chapter is devoted to the study of second order di¤erential equations and systems
with nonlinear three point boundary conditions.

Motivated by paper E.V. Castelani and T. F. Ma [23], in Section 4.2, we study the
three-point boundary value problem for second order di¤erential equations:�

u00 = f (t; u; u0) ; 0 < t < t0
u(0) = 0; u(t0) = g(u(�))

(4.1.1)

where 0 < � < t0 < 1 and f , g are continuous functions. Our tools here are Banach�s and
Schauder�s �xed point theorems.

Then, in Section 4.3, we discuss di¤erential systems of the type8>><>>:
u00(t) = f (t; u(t); v(t))
v00(t) = g (t; u(t); v(t))
u(0) = 0; u(t0) = �(u(�); v(�))
v(0) = 0; v(t0) =  (u(�); v(�))

(0 < t < t0)

by using Perov�s and Schauder�s �xed point theorems and the technique based on conver-
gent to zero matrices and vector-valued norms.

Section 4.4 is devoted to the problem�
u00 = f (t; u; u0) ; 0 < t < 1
u(0) = 0; u(t0) = g(u(�)):

(4.1.2)

Compared to problem (4.1.1), even if the three-boundary condition is the same, equation
(4.1.2) is considered on the larger interval [0; 1] which allows us to combine the operator
method with the technique based on Bielecki norm: Finally, in Section 4.5, a similar
strategy is applied to a system of two second order di¤erential equations.

34



4.2 Existence results for equations

Consider problem (4.1.1) with f : [0; t0] � R2 ! R and g : R ! R continuous functions.
Here are some hypotheses:

(H1) there exist a; b; c > 0 such that�
jf(t; u; v)� f(t; u; v)j � a ju� uj+ b jv � vj
jg(u)� g(u)j � c ju� uj , (4.2.1)

for t 2 [0; t0] and u; v; u; v 2 R:
(H2) there exist �1; �2; �3; �1; �2 > 0 such that

jf(t; u; v)j � �1 juj+ �2 jvj+ �3 and jg(u)j � �1 juj+ �2; (4.2.2)

for t 2 [0; t0] and u; v 2 R:

4.2.1 Application of Banach�s contraction principle

We begin this section by pointing out that problem (4.1.1) can be written equivalently as

u(t) =

t0Z
0

G(t; s)f
�
s; u (s) ; u0(s)

�
ds+

t

t0
g(u(�)) (4.2.3)

where G is the Green function for u00(t) = f(t) with u(0) = u(t0) = 0, namely

G(t; s) =

(
� t(t0�s)

t0
; 0 � t � s � t0

� s(t0�t)
t0

; 0 � s � t � t0:
(4.2.4)

We observe that u is a solution of (4.1.1) if and only if u is a �xed point of the operator
T : C1 [0; t0]! C1 [0; t0], de�ned by

(Tu)(t) =

t0Z
0

G(t; s)f
�
s; u (s) ; u0(s)

�
ds+

t

t0
g(u(�)): (4.2.5)

Theorem 4.2.1 If f; g satisfy (H1) with

a+ b

2
t0 +

c

t0
< 1; (4.2.6)

then problem (4.1.1) has a unique solution. Moreover, this solution can be obtained as
limit of the sequence of succesive approximations:

4.2.2 Application of Schauder�s �xed point theorem

Under the weaker hypothesis (H2), we have the following existence result as a consequence
of Schauder�s �xed point theorem.
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Theorem 4.2.2 Assume that (H2) holds with

�1 + �2
2

t0 +
�1
t0

< 1: (4.2.7)

Then problem (4.1.1) has at least one solution.

4.2.3 Application of Boyd-Wong�s �xed point theorem

Theorem 4.2.3 (Boyd-Wong contraction principle) Let (X; d) be a complete metric
space and suppose T : X ! X satis�es:

d(Tx; Ty) � 	(d(x; y)) for each x; y 2 X;

where 	 : [0;1) ! [0;1) ; 0 � 	(t) < t for t > 0 and 	 is upper semicontinuous from
the right, that is, rj & r � 0 implies lim supj!1	(rj) � 	(r): Then T has a unique �xed
point x� and (Tn(x)) converges to x� for each x 2 X:

In this section, instead of the Lipschitz condition on f from (H1), we shall consider
more generally conditions of Boyd-Wong type, namely:

(H3) there exist  1;  2 : [0;1)! [0;1) upper semicontinuous from the right and nonde-
creasing, and c > 0 such that�

jf(t; u; v)� f(t; u; v)j �  1(ju� uj) +  2(jv � vj)
jg(u)� g(u)j � c ju� uj , (4.2.8)

for t 2 [0; t0] and u; u; v; v 2 R:

Theorem 4.2.4 If f; g satisfy satisfy (H3) and

	(t) :=
t0
2
( 1 +  2)(t) +

c

t0
t < t; (4.2.9)

for t > 0; then problem (4.1.1) has a unique solution. Moreover, this solution can be
obtained as limit of the sequence of succesive approximations:

4.3 Existence results for systems

We next deal with the three-point boundary value problem for second order di¤erential
systems of the type:8>><>>:

u00(t) = f (t; u(t); v(t))
v00(t) = g (t; u(t); v(t))
u(0) = 0; u(t0) = �(u(�); v(�))
v(0) = 0; v(t0) =  (u(�); v(�));

; 0 < t < t0 (4.3.10)

where 0 < � < t0 < 1 and f; g; � and  are continuous functions.
This can be viewed as a �xed point problem in C [0; t0]

2

�
u = T1(u; v)
v = T2(u; v)
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for a completely continuous operator T = (T1; T2) ; T : C [0; t0]
2 ! C [0; t0]

2 where T1; T2
are given by

T1(u; v)(t) =
t0R
0

G(t; s)f (s; u (s) ; v(s)) ds+ t
t0
�(u(�); v(�))

T2(u; v)(t) =
t0R
0

G(t; s)g (s; u (s) ; v(s)) ds+ t
t0
 (u(�); v(�)):

4.3.1 Nonlinearities with the Lipschitz property. Application of Perov�s
�xed point theorem

Here the existence of solutions to problem (4.3.10) is established by means of Perov�s �xed
point theorem. For this, we assume global Lipschitz conditions, that is8>><>>:

jf(t; u; v)� f(t; u; v)j � a1 ju� uj+ b1 jv � vj
jg(t; u; v)� g(t; u; v)j � a2 ju� uj+ b2 jv � vj
j�(u; v)� �(u; v)j � c1 ju� uj+ d1 jv � vj
j (u; v)�  (u; v)j � c2 ju� uj+ d2 jv � vj ;

(4.3.11)

for t 2 [0; t0], u; v; u; v 2 R and some a1; b1; a2; b2; c1; d1; c2; d2 � 0:

Theorem 4.3.1 Assume that condition (4.3.11) holds. If the matrix

M :=

�
a1
8 t
2
0 + c1

b1
8 t
2
0 + d1

a2
8 t
2
0 + c2

b2
8 t
2
0 + d2

�
(4.3.12)

is convergent to zero, then problem (4.3.10) has a unique solution in C [0; t0]
2 :

4.3.2 Nonlinearities with growth at most linear. Application of Schauder�s
�xed point theorem

Here the existence of solutions to problem (4.3.10) is established by means of Schauder�s
�xed point theorem in case that f; g satisfy instead of the Lipschitz condition the more
relaxed condition of growth at most linear, that is8>><>>:

jf(t; u; v)j � a1 juj+ b1 jvj+ c1
jg(t; u; v)j � a2 juj+ b2 jvj+ c2
j�(u; v)j � a01 juj+ b01 jvj+ c01
j (u; v)j � a02 juj+ b02 jvj+ c02;

(4.3.13)

for all t 2 [0; t0], u; v 2 R and some ai; bi; ci; a0i; b0i; c0i � 0; i = 1; 2:

Theorem 4.3.2 If f; g; �;  satisfy conditions (4.3.13) and the matrix

M :=

�
a1
8 t
2
0 + a01

b1
8 t
2
0 + b01

a2
8 t
2
0 + a02

b2
8 t
2
0 + b02

�
(4.3.14)

is convergent to zero, then problem (4.3.10) has at least one solution in C [0; t0]
2 :
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4.4 Equations on a larger interval

We present existence results for the three-point boundary value problem:�
u00 = f (t; u; u0)
u(0) = 0; u(t0) = g(u(�))

; 0 < t < 1 (4.4.15)

where 0 < t0 < � < 1 and f; g are continuous functions. Problem (4.4.15) could be splitted
into two parts, one for the subinterval [0; t0] and the other one for [t0; 1] : More exactly,
we look for u such that

u(t) =

�
v(t); if t 2 [0; t0]
w(t); if t 2 [t0; 1]

where v solves �
v00 = f (t; v; v0)
v(0) = 0; v(t0) = g(v(�))

; 0 < t < t0 (4.4.16)

while w is a solution of 8<:
w00 = f (t; w;w0)
w(t0) = v(t0)
w0(t0) = v0(t0):

; t0 < t < 1 (4.4.17)

Problem (4.4.16) was already discussed in Section 4.2. Here we just point out that it
is equivalent to a �xed point problem for the Fredholm type operator TF : C1 [0; t0] !
C1 [0; t0] ;

(TF v)(t) =

t0Z
0

G(t; s)f
�
s; v (s) ; v0(s)

�
ds+

t

t0
g(v(�)):

For (4.4.17) we construct a Volterra type integral operator TV : C1 [t0; 1]! C1 [t0; 1] given
by

(TV w)(t) = v(t0) + (t� t0)v0(t0) +
tZ
t0

�Z
t0

f
�
s; w (s) ; w0(s)

�
dsd�: (4.4.18)

Notice that w solves (4.4.17) if and only if w is a �xed point of the operator TV .

4.4.1 Application of Banach�s contraction principle

We assume global Lipschitz conditions, that is the existence of ea1;eb1 > 0 such that
jf(t; u; v)� f(t; u; v)j � ea1 ju� uj+eb1 jv � vj ; (4.4.19)

for all t 2 [t0; 1] and u; v; u; v 2 R:

Theorem 4.4.1 If f satis�es (4.4.19) for some numbers ea1;eb1 > 0; then problem (4.4.17)
has a unique solution.
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4.4.2 Application of Schauder�s �xed point theorem

Assume that f satis�es more general conditions than (4.4.19), namely

jf(t; u; v)j � e�1 juj+ e�2 jvj+ e�3 (4.4.20)

for all t 2 [t0; 1] and u; v 2 R; where e�1; e�2; e�3 � 0:
Theorem 4.4.2 If the condition (4.4.20) holds for some numbers e�1; e�2; e�3 � 0; then
problem (4.4.17) has at least one solution.

Putting together the results from Section 4.2.1, Section 4.4.1 and the results from
Section 4.2.2, Section 4.4.2 respectively, we obtain the following results for equations on
the entire interval [0; 1]:

Theorem 4.4.3 If f; g satisfy (H1) with (4.2.6) and condition (4.4.19); then problem
(4.4.15) has a unique solution on [0; 1].

Theorem 4.4.4 Assume that (H2) holds with (4.2.7). If, in addition, condition (4.4.20)
holds, then problem (4.4.15) has at least one solution on [0; 1].

4.5 Systems on a larger interval

Here we consider the three point boundary value problems for second order di¤erential
systems of the type:8>><>>:

u00(t) = f (t; u(t); v(t))
v00(t) = g (t; u(t); v(t))
u(0) = 0; u(t0) = �(u(�); v(�))
v(0) = 0; v(t0) =  (u(�); v(�));

; 0 < t < 1 (4.5.21)

where 0 < � < t0 < 1: These systems can be splitted into two parts, one for the subinterval
[0; t0] and the other one for [t0; 1] ; respectively: A similar approach was given for equations
in Section 4.4. Systems on [0; t0] were already discussed in Section 4.3.

It remains to be considered the system:8>><>>:
x00(t) = f (t; x(t); y(t))
y00(t) = g (t; x(t); y(t))
x(t0) = u0(t0); x

0(t0) = u00(t0)
y(t0) = v0(t0); y

0(t0) = v00(t0);

; t0 � t � 1 (4.5.22)

where by (u0; v0) we mean the solution of (4.5.21) on the interval [0; t0] :
This can be viewed as a �xed point problem in C [t0; 1]

2 for the completely continuous
operator T = (T1; T2) ; T : C [t0; 1]

2 ! C [t0; 1]
2 ; where

T1(x; y)(t) = u0(t0) + (t� t0)u00(t0) +
tR
t0

�R
t0

f (s; x (s) ; y(s)) dsd�;

T2(x; y)(t) = v0(t0) + (t� t0)v00(t0) +
tR
t0

�R
t0

g (s; x (s) ; y(s)) dsd�:
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4.5.1 Nonlinearities with the Lipschitz property. Application of Perov�s
�xed point theorem

Here we prove that the existence of solutions to problem (4.5.22) by means of Perov�s �xed
point theorem. For this, we assume global Lipschitz conditions, that is the existence of
numbers ea1;eb1;ec1; ed1 > 0 such that:(

jf(t; x; y)� f(t; x; y)j � ea1 jx� xj+eb1 jy � yj
jg(t; x; y)� g(t; x; y)j � ec1 jx� xj+ ed1 jy � yj , (4.5.23)

for t 2 [t0; 1] and x; y; x; y 2 R:

Theorem 4.5.1 If the conditions (4.5.23) hold, then problem (4.5.22) has a unique solu-
tion in C [t0; 1]

2 :

4.5.2 Nonlinearities with growth at most linear. Application of Schauder�s
�xed point theorem

Here we show that the existence of solutions to problem (4.5.22) is established by means of
Schauder�s �xed point theorem in case that f; g satisfy instead of the Lipschitz conditions,
the more relaxed conditions of growth at most linear, that is(

jf(t; x; y)j � ea1 jxj+eb1 jyj+ ec1
jg(t; x; y)j � ea2 jxj+eb2 jyj+ ec2; (4.5.24)

for t 2 [t0; 1]; x; y 2 R and some eai;ebi;eci � 0; i = 1; 2:
Theorem 4.5.2 If f; g satisfy conditions (4.5.24), then problem (4.5.22) has at least one
solution in C [t0; 1]

2 :

Putting together the results from Section 4.3.1, Section 4.5.1 and the results from
Section 4.3.2, Section 4.5.2 respectively, we obtain the following results for systems on the
entire interval [0; 1]:

Theorem 4.5.3 Assume that conditions (4.3.11) and (4.5.23) hold. If the matrix (4.3.12)
is convergent to zero, then problem (4.5.21) has a unique solution in C [0; 1]2 :

Theorem 4.5.4 If f; g satisfy conditions (4.3.13) and (4.5.24) and if the matrix (4.3.14)
is convergent to zero, then problem (4.5.21) has at least one solution in C [0; 1]2 :
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Chapter 5

Nonlinear nonlocal initial value prob-
lems

5.1 Overview

The purpose of the present chapter is to study the existence of solutions to initial value
problems for �rst order di¤erential systems with nonlinear nonlocal boundary conditions
of functional type.

Therefore, we consider the nonlocal initial value problem for the �rst order di¤erential
system 8>><>>:

x0 (t) = f1 (t; x (t) ; y(t)) ;
y0 (t) = f2 (t; x (t) ; y(t)) ; on [0; 1] ;
x (0) = �[x; y];
y (0) = �[x; y]:

(5.1.1)

Here, f1; f2 : [0; 1]�R2 ! R are continuous functions and �; � : C[0; 1]2 ! R are nonlinear
continuous functionals.

Our approach is to rewrite the problem (5.1.1) as system of the form

xa =

�
a+

Z t

0
f1 (s; x (s) ; y (s)) ds; � [x; y]

�
;

yb =

�
b+

Z t

0
f2 (s; x (s) ; y (s)) ds; � [x; y]

�
;

where by xa; yb we mean the pairs (x; a) ; (y; b) 2 C [0; 1]� R:
This, in turn, can be viewed as a �xed point problem in (C [0; 1]� R)2 for the com-

pletely continuous operator

T = (T1; T2) : (C [0; 1]� R)2 ! (C [0; 1]� R)2 ;

where T1 and T2 are given by

T1 [xa; yb] =
�
a+

R t
0 f1 (s; x (s) ; y(s)) ds; �[x; y]

�
;

T2 [xa; yb] =
�
b+

R t
0 f2 (s; x (s) ; y(s)) ds; �[x; y]

�
:
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In this chapter, by jxjC , where x 2 C[0; 1]; we shall mean jxjC = max
t2[0;1]

jx(t)j :

5.2 Existence and uniqueness

In the present section we show that the existence of solutions to problem (5.1.1) follows
from Perov�s �xed point theorem in case that the nonlinearities f1; f2 and also the func-
tionals �; � satisfy Lipschitz conditions of the type:�

jf1(t; x; y)� f1(t; x; y)j � a1 jx� xj+ b1 jy � yj
jf2(t; x; y)� f2(t; x; y)j � a2 jx� xj+ b2 jy � yj ;

(5.2.1)

for all x; y; x; y 2 R; and�
j� [x; y]� � [x; y]j � A1 jx� xjC +B1 jy � yjC
j� [x; y]� � [x; y]j � A2 jx� xjC +B2 jy � yjC ;

(5.2.2)

for all x; y; x; y 2 C[0; 1]:

For a given number � > 0; denote

m11 (�) = max
�
1
� ; a1 + �A1

	
; m12 (�) = b1 + �B1;

m21 (�) = a2 + �A2; m22 (�) = max
�
1
� ; b2 + �B2

	
:

Theorem 5.2.1 If f1; f2 satisfy the Lipschitz conditions (5.2.1), �; � satisfy conditions
(5.2.2). In addition assume that for some � > 0; the matrix

M� =

�
m11 (�) m12 (�)
m21 (�) m22 (�)

�
(5.2.3)

is convergent to zero. Then the problem (5.1.1) has a unique solution.

Example 5.2.2 Consider the nonlocal problem8>><>>:
x0 = 1

4 sinx+ ay + g (t) � f1(t; x; y);
y0 = cos

�
ax+ 1

4y
�
+ h (t) � f2(t; x; y);

x(0) = 1
8 sin

�
x
�
1
4

�
+ y

�
1
4

��
;

y(0) = 1
8 cos

�
x
�
1
4

�
+ y

�
1
4

��
;

(5.2.4)

where t 2 [0; 1] ; a 2 R and g; h 2 L1 (0; 1) :We have a1 = 1=4; b1 = jaj ; a2 = jaj ; b2 = 1=4
and A1 = B1 = A2 = B2 = 1=8: Consider � = 2: Hence

M� =

�
1
2 jaj+ 1

4
jaj+ 1

4
1
2

�
: (5.2.5)

Since the eigenvalues ofM� are �1 = � jaj+ 1
4 ; �2 = jaj+

3
4 ; the matrix (5.2.5) is convergent

to zero if j�1j < 1 and j�2j < 1: It is also known that a matrix of this type is convergent
to zero if jaj+ 1

4 +
1
2 < 1 (see R. Precup [65]). Therefore, if jaj <

1
4 ; the matrix (5.2.5) is

convergent to zero and from Theorem 5.2.1 the problem (5.2.4) has a unique solution.
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5.3 Existence results

In the begining of this section, we give an application of Schauder�s �xed point theorem.
More exactly, we show that the existence of solutions to the problem (5.1.1) follows from
Schauder�s �xed point theorem in case that f1; f2 and also functionals �; � satisfy some
relaxed growth conditions of the type:�

jf1(t; x; y)j � a1 jxj+ b1 jyj+ c1;
jf2(t; x; y)j � a2 jxj+ b2 jyj+ c2;

(5.3.1)

for all x; y 2 R; and �
j� [x; y]j � A1 jxjC +B1 jyjC + C1;
j� [x; y]j � A2 jxjC +B2 jyjC + C2;

(5.3.2)

for all x; y 2 C[0; 1]:

Theorem 5.3.1 If the conditions (5.3.1), (5.3.2) hold and the matrix (5.2.3) is convergent
to zero for some � > 0, then the problem (5.1.1) has at least one solution.

We shall give another numerical example for the above existence result.

Example 5.3.2 Consider the nonlocal problem8>>>><>>>>:
x0 = 1

4x sin
� y
x

�
+ ay sin

�
x
y

�
+ g(t) � f1(t; x; y);

y0 = ax sin
� y
x

�
+ 1

4y sin
�
x
y

�
+ h(t) � f2(t; x; y);

x(0) = 1
8 sin

�
x
�
1
4

�
+ y

�
1
4

��
;

y(0) = 1
8 cos

�
x
�
1
4

�
+ y

�
1
4

��
;

(5.3.3)

where t 2 [0; 1] ; a 2 R and g; h 2 L1 (0; 1) : Since

jf1 (t; x; y)j �
1

4
jxj+ jaj jyj+ jg (t)j ; jf2 (t; x; y)j � jaj jxj+

1

4
jyj+ jh (t)j

we are under the assumptions from the �rst part of Section 5.3. Also, the matrix M� is
that from Example 5.2.2 if we consider � = 2. Therefore, according to Theorem 5.3.1,
if that matrix is convergent to zero; then the problem (5.3.3) has at least one solution.
Note that the functions f1 (t; x; y) ; f2 (t; x; y) from this example do not satisfy Lipschitz
conditions in x; y and consequently Theorem 5.2.1 does not apply.

In what follows, we give an application of the Leray-Schauder Principle and we assume
that the nonlinearities f1; f2 and also the nonlinear functionals �; � satisfy more general
growth conditions, namely: �

jf1(t; x; y)j � !1(t; jxj ; jyj);
jf2(t; x; y)j � !2(t; jxj ; jyj);

(5.3.4)

for all x; y 2 R; �
j� [x; y]j � !3(jxjC ; jyjC);
j� [x; y]j � !4(jxjC ; jyjC);

(5.3.5)
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for all x; y 2 C[0; 1]:Here !1; !2 are L1-Carathéodory functions on [0; 1]�R2+; nondecreasing
in their second and third arguments, and !3; !4 are continuous functions on R2+; nonde-
creasing in both variables.

Theorem 5.3.3 Assume that the conditions (5.3.4), (5.3.5) hold. In addition assume that
there exists R0 =

�
R10; R

2
0

�
2 (0;1)2 such that for � = (�1; �2) 2 (0;1)2( R 1

0 !1(s; �1; �2)ds+ !3(�1; �2) � �1R 1
0 !2(s; �1; �2)ds+ !4(�1; �2) � �2

implies � � R0: (5.3.6)

Then the problem (5.1.1) has at least one solution.
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Chapter 6

Impulsive systems with nonlocal ini-
tial conditions

6.1 Overview

In this chapter we deal with a system of �rst order di¤erential equations with impulsive
terms subject to nonlocal initial value conditions, namely8>><>>:

x0 (t) = f1 (t; x (t) ; y(t))
y0 (t) = f2 (t; x (t) ; y(t))
�xjt=t0 = I1(x(t0)); �yjt=t0 = I2(y(t0));
x (0) = �1[x]; y (0) = �2[y]:

t 2 (0; 1); t 6= t0; (6.1.1)

Here �vjt=t0 denotes the �jump�of the function v in t = t0; that is �vjt=t0 = v(t+0 )�vt
�
0 );

where v(t�0 ); v(t
+
0 ) are the left and the right limits of v in t = t0 and �i; i = 1; 2 are linear

continuous functionals on C[0; 1] which satisfy the condition (2.3.14).
We rewrite the system (6.1.1) as a system of integral equations8><>:

x(t) =
1

1� �1[1]
�1[g1] + g1(x; y)(t) +G1(x)(t);

y(t) =
1

1� �2[1]
�2[g2] + g2(x; y)(t) +G2(y)(t);

(6.1.2)

where the terms Gi take into account the impulsive e¤ect.
Also, we shall bene�t of a careful decomposition similar to the one proposed in A.

Boucherif and R. Precup [17] and later used in O. Nica and R. Precup [52], O. Nica [53],
also presented in Chapter 2 and Chapter 3. This is the �rst time that this approach is
used in the context of nonlocal impulsive systems.

6.2 An existence and uniqueness result

We work in the Banach space PCt0 [0; 1]
2; where

PCt0 [0; 1] := fx : [0; 1]! Rj; x is continuous for t 2 [0; 1]nft0g;
there exist x(t�0 ) = x(t0) and jx(t+0 )j <1g:

45



Solving (6.1.1), equivalently (6.1.2), reduces to the existence of a �xed point of the operator

T = TF + TV +G; (6.2.3)

where

TF (x; y)(t) =

�
TF1(x; y)(t)
TF2(x; y)(t)

�
; TV (x; y)(t) =

�
TV1(x; y)(t)
TV2(x; y)(t)

�
;

with for i = 1; 2

TFi(x; y)(t) =

(
1

1��i[1]�i[gi] +
R t
0 fi (s; x (s) ; y(s)) ds; if t < t0;

1
1��i[1]�i[gi] +

R t0
0 fi (s; x (s) ; y(s)) ds; if t � t0;

TVi(x; y)(t) =

�
0; if t < t0;R t
t0
fi (s; x (s) ; y(s)) ds; if t � t0;

and

G(x; y)(t) =

�
G1(x)(t)
G2(y)(t)

�
; Gi(v)(t) =

�
0; if t � t0;

Ii(v(t0)); if t > t0:

First, by means of the �xed point theorem of Perov, we obtain an existence and
uniqueness result, provided that f1; f2 and also the impulsive terms Ii satisfy the Lipschitz
conditions

jf1(t; x; y)� f1(t; x; y)j �
�
a1 jx� xj+ b1 jy � yj ; if t 2 [0; t0]
a2 jx� xj+ b2 jy � yj ; if t 2 [t0; 1] ;

(6.2.4)

jf2(t; x; y)� f2(t; x; y)j �
�

A1 jx� xj+B1 jy � yj , if t 2 [0; t0]
A2 jx� xj+B2 jy � yj ; if t 2 [t0; 1] ;

(6.2.5)

and also
jIi(v)� Ii(v)j � di jv � vj ; for i = 1; 2; (6.2.6)

for all x; y; x; y; v; v 2 R:
In what follows we denote by

A�i : =
k�ik

j1� �i[1]j
+ 1; i = 1; 2:

M : = t0

24 a1

�
k�1k

j1��1[1]j + 1
�

b1

�
k�1k

j1��1[1]j + 1
�

A1

�
k�2k

j1��2[1]j + 1
�

B1

�
k�2k

j1��2[1]j + 1
� 35 ; MI :=

�
d1 0
0 d2

�
:

Theorem 6.2.1 If the conditions (6.2.4), (6.2.5), (6.2.6) hold and the matrix

M0 :=M +MI (6.2.7)

is convergent to zero, then the problem (6.1.1) has a unique solution.

Example 6.2.2 We present a modi�ed version of Example 2.2 in R. Precup and D. Trif
[66] that takes into account systems and impulsive e¤ects. Consider the initial value
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problem8>>>>>><>>>>>>:

x0 = 1
2y
h
1 + e�

4
5
(x�1)

i�1
� f1(x; y);

y0 = 1
10x

h
1 + e�

2
5
(y�1)

i�1
� f2(x; y);

�xjt= 3
4
= 1

3 cos
�
x
�
3
4

��
; �yjt= 3

4
= 1

5 sin
�
y
�
3
4

��
;

x(0) = 1
2

R 1
2
0 x(s)ds; y(0) = 1

2

R 1
2
0 y(s)ds:

; t 2 [0; 1] (6.2.8)

Here we have that matrix

M0 =
1

15

�
6 5
1 4

�
is convergent to zero since its eigenvalues satisfy �1 = 0:17 < 1; �2 = 0:5 < 1: From
Theorem 6.2.1, the problem (6.2.8) has a unique solution.

6.3 An existence result

We now show that the existence of solutions for the problem (6.1.1) follows from Schauder�s
�xed point theorem when f1; f2 satisfy some growth conditions of the type: there exist
nonnegative coe¢ cients ai; bi; ci; Ai; Bi; Ci such that

jf1(t; x; y)j �
�
a1 jxj+ b1 jyj+ c1; if t 2 [0; t0]
a2 jxj+ b2 jyj+ c2; if t 2 [t0; 1] ;

(6.3.9)

jf2(t; x; y)j �
�
A1 jxj+B1 jyj+ C1; if t 2 [0; t0]
A2 jxj+B2 jyj+ C2; if t 2 [t0; 1] ;

(6.3.10)

for all x; y 2 R:
We also assume that the impulses satisfy the growth conditions, i.e. there exist di; ei 2

[0;1) such that for every v 2 R we have

jIi(v)j � di jvj+ ei; for i = 1; 2: (6.3.11)

Theorem 6.3.1 If the conditions (6.3.9), (6.3.10), (6.3.11) are satis�ed and the matrix
(6.2.7) is convergent to zero, then the problem (6.1.1) has at least one solution.

Example 6.3.2 Consider the initial value problem8>>>>><>>>>>:
x0 = 1

4x sin
� y
x

�
+ 1

3y sin
�
x
y

�
+ g(t) � f1(t; x; y);

y0 = 1
3x sin

� y
x

�
+ 1

6y sin
�
x
y

�
+ h(t) � f2(t; x; y);

�xjx= 3
4
= 1

3 sin
�
x
�
3
4

��
; �yjy= 3

4
= 1

4 cos
�
y
�
3
4

��
;

x(0) = 1
2

R 1
2
0 x(s)ds; y(0) = 1

2

R 1
2
0 y (s) ds;

; t 2 [0; 1] (6.3.12)

where g; h 2 L1(0; 1): We obtain

M0 =
1

36

�
18 8
8 13

�
;
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which is convergent to zero because its eigenvalues (rounded to the third decimal place)
are j�1j = 0:485 < 1; j�2j = 0:237 < 1: From Theorem 6.3.1, the problem (6.3.12) has at
least one solution.
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