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Introduction

Calculus of variations concerns with the optimization of physical quantities, such

as time, area or distance. The typical problem of the calculus of variations is to find

a minimum of a functional of the form

F (u) =

∫
Ω

f(x, u(x), Du(x))dx,

where u is a real or vector valued function which belongs to some suitable class of

functions and the hypotheses on the integrand may vary depending on the situation.

The brachistochrone problem was one of the earliest problems posed in the calcu-

lus of variations. However, for the apparition of modern calculus of variations must

have been waited until the middle of the 19th century, being a basic tool in the quali-

tative analysis of models arising in physics. An important milestone in the transition

from classical to contemporary physics represents the characterization of phenomena

by means of variational principles. Since the 1950’s, variational principles occupy an

important place in the study of nonlinear partial differential equations and many

problems arising in applications. According to Ioffe and Tikhomirov [55], ”the term

’variational principle’ refers essentially to a group of results showing that a lower

semi-continuous, lower bounded function on a complete metric space possesses ar-

bitrarily small perturbations such that the perturbed function will have an absolute

(and even strict) minimum.”

Ekeland’s variational principle, established by Ivar Ekeland in his pioneer work

[42] in 1974 (shortly, EVP) is one of the most important and maybe the most fruit-

ful results of the mathematical analysis, being a very useful tool to solve problems

in optimization, game theory, optimal control theory, nonlinear equations and in

dynamical systems; see for instance J.-P. Aubin, H. Frankowska [12], M. Bianchi et

al. [16], I. Ekeland [42], [43], D. G. De Figueiredo [38], etc. This principle provides
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INTRODUCTION 5

a minimizing sequence for any lower semicontinuous and bounded from below func-

tional f , where the elements of the minimizing sequence minimize an appropriate

sequence of perturbations of f which converges locally uniformly to f .

Since its discovery many generalizations and equivalent formulations of this prin-

ciple have also appeared (see J. Daneš [36], P.G. Georgiev [48], [49], A.H. Hamel [53],

I. Meghea [73], W. Oettli, M. Théra [80], J.-P. Penot [84], L. Yongxing, S. Shuzhong

[93] or Section 1.3, respectively). In the other hand, EVP is equivalent with Caristi’s

and Tarafdar’s fixed point theorem (J. Caristi [26], E. Tarafdar [91]).In addition,

EVP has also many other equivalent formulations such as Daneš drop theorem (J.

Daneš [35]) and the Flower Petal theorem of Penot (J.-P. Penot [84]), just to name

a few. Moreover, EVP is equivalent to the Bishop-Phelps theorem in the setting of

Banach spaces (J. M. Borwein, Q. J. Zhu [23]).

In the hope of finding more applications, EVP and several results mentioned

above have been extended to spaces with more general distances, for example to

quasimetric spaces. In the literature, the notion of quasimetric space is used in two

different ways: the first concept means asymmetry of the metric (see, for example,

S. Al-Homidana et al. [1]), while in the second concept a quasimetric satisfies a re-

laxed triangle inequality, rather then the usual triangle inequality (see I.A. Bakhtin

[13], S. Czerwik [33], J. Heinonen [54]). Obviously, the asymmetry is not equivalent

with the relaxed triangle inequality. Very recently S. Al-Homidan, Q.H. Ansari and

J.-C. Yao in [1] gave an extended result of Ekeland’s variational principle to quasi-

metric spaces (according to the first concept) and as an application of this result,

they presented an existence theorem for solutions of equilibrium problems and fixed

points. In this thesis, we focus our attention to the latter quasimetric, called also

b-metric. The concept of this space was introduced by I.A. Bakthin in [13] and S.

Czerwik in [33]. Since the publication of these works, several papers have appeared

which were concerned to these spaces obtaining important results in many fields of

mathematics: fixed point theory (study of fixed point theorems for single-valued and

multivalued operators), geometry, calculus of variations; see for example the works

of N. Bourbaki, I.A. Bakhtin [13], V. Berinde [15], S. Czerwik [33], S.L. Singh et al.

[90], etc.

The first purpose of this thesis is to develop the theory of some important and

celebrated variational principles such as the Ekeland’s variational principle or the



6

generalization of it, i.e. Zhong’s variational principle (abbreviated, ZVP) due to

C.-K. Zhong ([94], [95]). Since the power of variational principles is motivated by

various applications in different fields of analysis, in this thesis we deal to derive

some applications of the extended EVP, resp. ZVP to fixed point theory and to

equilibrium problems.

One of the most important problems in nonlinear analysis is the so-called equi-

librium problem which can be defined in the following way: Let A and B be two

nonempty sets and f : A×B → R a given function. The problem consists on finding

an element x ∈ A such that

(EP ) f(x, y) ≥ 0, ∀y ∈ B.

Notice that x is an equilibrium point of f on A×B.

In the recent past, (EP) becomes an attractive field both in theory and appli-

cations (see e.g. [16], [17], [21], [58], [18], [19], [20], [60], [72] and the references

therein).

In [9], Q. H. Ansari et al. introduced and investigated systems of equilibrium

problems. For the definition of these type of equilibrium problems, the reader is

reffered to Section 1.5 from this thesis.

Since the appearances of the (EP ) and (SEP ), respectively, many authors are

interested in extending Ekeland’s theorem to the setting of an (EP ), resp. (SEP ).

In the study of equilibrum problems we frequently encounter with such a situation

when an equilibrium problem may not have solution even in case when the problem

arises from practice. For this issue the EVP offers an accessible solution, since it

provides the existence of approximate solutions of minimization problems for lower

semicontinuous functions (see, for instance, J.P. Aubin [11]). In the other hand, we

know that minimization problems are particular cases of equilibrium problems. For

details concerning Ekeland’s variational principle and its relation with the equilib-

rium problems, see, for example, A. Amini-Harandi et al. [3], Q.H. Ansari [5]-[7],

Q.H. Ansari, L.-J. Lin [8], Y. Araya et al. [10], M. Bianchi et al. [16] and the refer-

ences quoted therein.

As we mentioned before, an other goal of this thesis is to extend the EVP to the

setting of (EP) and (SEP), and with the aid of the extended principles and of ZVP,

respectively, to give some existence, resp. localization results of these type of prob-
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lems.

Ekeland’s variational principle can be applied in critical point theory to prove

different existence and multiplicity results. We emphasize here the work of D. G.

De Figueiredo [38], where the author shows how to use a consequence of EVP (i.e.

a general variational principle of the min-max type) to derive the Mountain Pass

Theorem due to Ambrosetti and Rabinowitz [2], as well as the Saddle Point and

the Generalized Mountain Pass Theorems investigated by Rabinowitz (see [85] and

[86], respectively). For locally Lipschitz functions the Mountain Pass Theorem of

Ambrosetti and Rabinowitz was proved by P. Mironescu and V. Rădulescu (see [74],

[87]).

The aforementioned types of results are very useful tools in the study of inequali-

ties and systems of inequalities of hemivariational types. Hemivariational inequalities

were introduced by P.D. Panagiotopoulos in the early 1980’s (see P.D. Panagiotopou-

los [81],[82]) as a generalization of variational inequalities. Actually, they are more

than simple generalizations, since a hemivariational inequality is not equivalent to

a minimum problem. The hemivariational inequality problem becomes a variational

inequality problem, if we assume that the involved functionals are convex.

Hemivariational inequalities gave rise to a new branch in nonlinear analysis, the

so-called nonsmooth analysis, its main tool is the concept of Clarke’s generalized

gradient of a locally Lipschitz function (see F.H. Clarke [27]-[30]). The theory of

hemivariational inequalities has produced important results both in pure and applied

mathematics; see the monographs of Z. Naniewicz and P.D. Panagiotopoulos [79],

D. Motreanu and P.D. Panagiotopoulos [77], D. Motreanu and V. Rǎdulescu [78]

and the references cited therein.

Nonlinear hemivariational inequalities were introduced recently, in 2010, by N.

Costea and V. Rădulescu [31] (see also I. Andrei and N. Costea [4]), while the first

paper dealing with systems of nonlinear hemivariational inequalities is due to N.

Costea and Cs. Varga [32]. For more details and connections regarding systems of

hemivariational inequalities one can consult the works of B.E. Breckner, A. Horváth

and Cs. Varga [24], A. Kristály [61], [63] and D. Repovš, Cs. Varga [89].

There are three approaches to the study these type of inequalities: via monotone

and pseudo-monotone operators, (see e.g. Z. Liu and D. Motreanu [71], Z. Naniewicz

and P.D. Panagiotopoulos [79]), with the aid of critical point theory (F. Gazzola and
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V. Rădulescu [47], Z. Naniewicz and P.D. Panagiotopoulos [79], D. Motreanu and

P.D. Panagiotopoulos [77], D. Motreanu and V. Rǎdulescu [78], A. Kristály [62], [64],

Z. Dályai and Cs. Varga [34], Cs. Varga [92], F. Faraci et al. [44]) and using fixed

point theory results(see P. D. Panagiotopoulos et al. [83], A. Kristály and Cs. Varga

[66], V. Rădulescu and D. Repovš [88]). Following the latter approach, in this thesis

we study the existence of solutions of some inequalities and systems of inequalities of

hemivariational types via fixed point techniques without imposing any monotonicity

assumptions, underlining the possibilities of the diverse applicability of the obtained

existence results.

The thesis is divided into 4 chapters.

Chapter 1: Preliminaries.

In this first chapter we present some notions and results which we will use in the

next chapters of this thesis.

Chapter 2: Variational principles in b-metric spaces with applications to fixed

point results.

This chapter deals to present several extensions of the EVP in the setting of com-

plete b-metric spaces for single-valued function and for functions with two variables

and to emphasize the applicability of the obtained generalized variational principles

to fixed point theory. The main theorem of this chapter is Ekeland’s variational

principle stated in complete b-metric spaces for single-valued functions. In the first

section, inspired by the common generalization of the Ekeland and Borwein-Preiss

variational principle due to L. Yongxing and S. Shuzhong [93], we formulate and

prove the EVP in the setting of complete b-metric spaces for single-valued mappings

and then for functions with two variables. As consequence, we present a weak version

of ZVP in complete b-metric spaces. In addition, an extension of ZVP to complete

b-Banach spaces is obtained. The second section is dedicated to present some new

results of the fixed point theory in b-metric spaces, namely the Caristi-Kirk fixed

point theorem for single-valued mappings and for bifunctions, which can be consid-

ered also as applications of the versions of EVP and of the generalized form of it,

respectively, in the framework of b-metric spaces.

Chapter 3: Variational principles in metric spaces with applications to equilib-
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rium problems.

The aim of this chapter is to extend some results investigated by M. Bianchi et

al. in [16] to complete metric spaces without any convexity requirements. In the lit-

erature, when dealing with equilibrium problems and the existence of their solutions,

the most used assumptions are the convexity of the domain and the generalized con-

vexity and monotonicity, together with some weak continuity assumptions, of the

function (see M. Bianchi, R. Pini [18], [19], N. Hadjisavvas et al. [52], G. Kassay,

J.Kolumbán [59]). E. Blum, W. Oettli [21] and W. Oettli and M. Théra [80] were

the first who established an existence result for a solution of an equilibrium prob-

lem in the setting of complete metric spaces. They proved this result with the aid

of EVP but without imposing any convexity requirements. Almost ten years later,

M. Bianchi, G. Kassay and R. Pini in their afformentioned paper [16] aimed to ex-

tend Ekeland’s variational principle for (EP) and (SEP) in the setting of Euclidean

spaces without any kind of convexity of the functions involved in the formulation of

the principle. They also showed that the obtained equilibrium versions of the EVP

guarantee the existence of an approximate equilibria for (EP) and (SEP), and using

this result it is possible to show the existence of equilibria on general closed sets

without any convexity assumptions neither on the sets nor on the functions involved

(see Section 1.5). Very recently, A. Amini-Harandi et al. [3] established equilibrium

version of EVP on complete metric spaces. The authors only focused on conditions

that do not involve any semicontinuity concept for the bifunction involved.

The chapter contains two sections. In the first section the relationship between

(EP) and the EVP are discussed, while in the second section we extend all our the-

orems presented in the previous section for systems. We establish two extensions of

Ekeland’s variational principle in complete metric spaces (one for (EP), the other

for (SEP)) without assuming any kind of convexity of the bifunction, resp. the func-

tion system involved in the formulation of the principle or of the set whereon the

bifunction, resp. the function system are defined. We also show that these principles

ensure the nonemptiness of the solution set of (EP) and (SEP) with compactness

assumption on the underlying sets but without any convexity requirements.

Another powerful topic in the study of (EP) is considered the localization of the equi-

librium point. Starting from the ZVP, as further applications of the main theorems,

we aim to prove localization-type results for (EP) and (SEP). The importance of the
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main theorems in finding equilibrium points of differential equations and systems of

differential equations is also highlighted.

Chapter 4: Fixed point techniques used in the study of different classes of

inequalities and systems of inequalities of hemivariational type.

In this chapter we study a variational-hemivariational inequality problem and

a type of a nonlinear hemivariational inequality system problem, respectively, on

closed and convex sets. Concerning these problems we establish existence results

with the aid of fixed point technics without assuming any kind of monotonicity

assumptions.

The first section is devoted to discuss the solvability of a variational-hemivariational

inequality problem on a closed and convex set (either bounded or unbounded). We

start this paragraph with the assumptions and formulating the problem. Then we

present the main theorem of this paragraph which is an existence result regarding

the studied system. The proof is based on a version of the well-known fixed theorem

of Knaster-Kuratowski-Mazurkiewicz.

In the second section we introduce a new type of inequality systems, which we call

nonlinear hemivariational-like inequality system. After imposing the corresponding

assumptions and formulating the problem itself, we prove the existence of at least

one solution of the studied problem without employing the nonsmooth critical point

theory (we apply Lin’s fixed point theorem) and without imposing any monotonicity

assumptions.

The chapter ends with a section which presents a wide range of applications of

the results obtained in the previous sections to Nash generalized derivative points,

Schrödinger-type problems and to problems with radially symmetric functions.

Our contributions to this thesis are based on five papers, written in collaboration:

• H. Lisei, A. É. Molnár, Cs. Varga [69] - appeared in Journal of Mathematical

Analysis and Applications (2010);

• M. Bota, A. É. Molnár, Cs. Varga [22] - published in Fixed Point Theory

(2011);

• Cs. Farkas, A. É. Molnár [45] - appeared in Journal of Optimization Theory

and Applications (2013);
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• A. É. Molnár, O. Vas [75] - accepted for publication in Studia Universitatis

Babeş-Bolyai Mathematica;

• Cs. Farkas, A. É. Molnár [46] - submitted to Studia Universitatis Babeş-Bolyai

Mathematica.

We specify here our original results:

Chapter 1:

Lemma 1.1.1.

Chapter 2:

Theorems 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2;

Lemmas 2.1.1, 2.1.2;

Corollaries 2.1.1, 2.1.2;

Remarks 2.1.1, 2.1.2, 2.2.1, 2.2.2.

Chapter 3:

Theorems 3.1.1, 3.1.2, 3.1.3, 3.2.1, 3.2.2, 3.2.3;

Remarks: 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1;

Definitions: 3.1.1, 3.2.1;

Examples: 3.1.1, 3.1.2, 3.1.3.

Chapter 4:

Theorems: 4.1.1, 4.1.2, 4.2.1, 4.3.1, 4.3.2;

Lemma 4.1.1;

Corollaries: 4.3.1, 4.3.2;

Proposition 4.2.1;

Remarks: 4.1.1, 4.2.1, 4.2.2, 4.3.1, 4.3.2;

Examples: 4.1.1, 4.1.2, 4.2.1, 4.2.2.

Finally, we mention here two other papers which also contains original results,

but these results are not included in this thesis, since these results could not be

bounded directly to the topic of the thesis, and they would have destructed the
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unity of it. One of these papers [A. É. Molnár, A Nonsmooth Sublinear Elliptic

Problem in RN with Perturbations, Stud. Univ. Babeş-Bolyai Math. 57 (1) (2012),

61-68.] deals with a differential inclusion problem in RN involving the p-Laplace

operator and a (p−1)-sublinear term, p > N > 1. This problem was also studied by

Kristály, Marzantowicz and Varga [J. Global Optim. 46 (1) (2010), 49-62.]. The aim

of the aforementioned paper is to show that under the same assumptions, a more

precise conclusion can be concluded by exploiting a recent result of Iannizzotto (see

[Set-Valued and Variational Analysis, 19 (2) (2011), 311-327].). In addition, the non-

sensitivity of the studied problem with respect to small perturbations is showed.

In the second paper [Cs. Farkas, A. É. Molnár, Cs. Varga, Multiple symmetric

solutions of the semilinear elliptic problem, manuscript] we study a semilinear ellip-

tic differential inclusion problem coupled with a homogeneous Dirichlet boundary

condition on the unit ball, depending on a positive parameter λ. We proved that for

large values of λ, problem (Pλ) has at least two non-zero symmetric weak solutions.

The proof of the multiplicity result is based on the general minimax theorem for

locally Lipschitz functionals, stated in the same paper, and on a symmetric version

of Ekeland’s variational principles due to M. Squassina [J. London Math. Soc. 85

(2012), 323-348.]

Keywords: Ekeland-type variational principles, Zhong-type variational princi-

ples, Caristi-type fixed point theorems, b-metric space, Palais-Smale condition, equi-

librium problem, system of equilibrium problems, approximate solution, fixed point

theory, locally Lipschitz functionals, variational-hemivariational inequality, system

of nonlinear hemivariational-like inequality, Nash equilibrium point, Schrödinger-

type problem, radially symmetric functions, set-valued operator, nonsmooth func-

tions
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Chapter 1

Preliminaries

The aim of this chapter is to recall some basic notions and results needed in the

next chapters of this work, allowing us to present the results of this Ph.D. thesis.

We mainly follow the works of H. Brézis [25]; F.H. Clarke [27]-[30]; Z. Denkowski, S.

Migórski, N. S. Papageorgiou, [40], [41]; A. Kristály, V. Rădulescu, Cs. Varga, [65];

A. Kristály, Cs. Varga, [67]; D. Motreanu, P.D. Panagiotopoulos, [77].

1.1 Basic notions and properties in several metric

spaces

In this section we develop the most basic facts about the metric and the b-metric

spaces, respectively, which will be crucial tools in the following. The last part of this

paragraph is devoted to present the main notions and properties related to normed

and b-normed spaces, respectively.

Definition 1.1.1 (I.A. Bakthin [13], S. Czerwik [33]) Let X be a set and let s ≥ 1

be a given real number. A functional d : X×X → R+ is said to be a b-metric if and

only if for all points x, y, z ∈ X the following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ s[d(x, y) + d(y, z)].

14
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A b-metric space consist of a set X and a b-metric d.

Lemma 1.1.1 (M. Bota, A. É. Molnár, Cs. Varga, [22]) Let (X, d) be a b-metric

space. Suppose that (X, d) is complete. Then, for every descending sequence {Fn}n≥1

of nonempty closed subsets of X, that is,

F1 ⊃ F2 ⊃ F3 ⊃ ... ⊃ Fn ⊃ ... (1.1.1)

such that

diam(Fn) → 0 as n → ∞, (1.1.2)

we have that the intersection
∞∩
n=1

Fn contains one and only one point.

1.2 Elements of topological and convex analysis

We continue with presenting some useful notions and results of topological and

convex analysis.

1.3 Variational principles

For the sake of completeness, this section is devoted to present some well-known

variational principles, most of them being the starting point in our research.

1.4 Fixed point theorems

In this section we present some fixed point results needed in the sequel.

1.5 Equilibrium points and problems

This section is devoted to present some useful notions and properties concerning

equilibrium problems.
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1.6. DIFFERENTIABILITY. ELEMENTS OF THE THEORY DEVELOPED

BY CLARKE

1.6 Differentiability. Elements of the theory devel-

oped by Clarke

In this section we recall some useful notions and facts about differentiability.

1.7 Lp and Sobolev spaces

The last section treats with different function spaces such as Lp and Sobolev

spaces. We start with Lp spaces.



Chapter 2

Variational principles in b-metric

spaces with applications to fixed

point results

The purpose of this chapter is to establish some extensions of the celebrated

Ekeland’s variational principle (abbreviated EVP) in the setting of b-metric spaces

for single-valued functions and for functions with two variables and to emphasize the

applicability of the obtained generalized variational principles to fixed point theory.

This capitol is based on the following two papers: M. Bota, A. É. Molnár, Cs.

Varga [22]; Cs. Farkas, A. É. Molnár [46].

2.1 Variational principles in b-metric spaces

In this paragraph we present the extended versions of some well-known vari-

ational principles (such as Ekeland’s variational principle or Zhong’s variational

principle) in the setting of complete b-metric spaces for single-valued maps and for

bifunctions.

In order to obtain our results, let us consider the complete b-metric space (X, d)

such that the b-metric d is continuous. We impose the following condition:

(F) Let f : X → R(= R ∪ {+∞}) be a lower semicontinuous, proper and lower

bounded mapping.

17



18 2.1. VARIATIONAL PRINCIPLES IN B-METRIC SPACES

We need also to introduce the notation below:

F [x;m] = f(x) +
m∑

n=0

1

sn
· d(x, xn).

In possession of the suitable conditions and terms we can formulate our first

main result.

Theorem 2.1.1 (M. Bota, A. É. Molnár, Cs. Varga, [22]) Let (X, d) be a complete

b-metric space with a continuous b-metric d. Suppose that the function f : X → R
satisfies the assumption (F). Then, for every x0 ∈ X and ε > 0 with

f(x0) ≤ inf
x∈X

f(x) + ε,

there exists a sequence {xn} ⊂ X and xε ∈ X such that

xn → xε, as n → ∞ (2.1.1)

d(xε, xn) ≤
ε

2n
, n ∈ N (2.1.2)

F [xε; +∞] ≤ f(x0) (2.1.3)

and for every x ̸= xε, we have

F [x; +∞] > F [xε; +∞]. (2.1.4)

Remark 2.1.1 Theorem 2.1.1 is the extended version of Ekeland’s variational prin-

ciple to b-metric spaces. We note, that if s = 1 we get back the original version of

Ekeland’s variational principle, stated in metric spaces.

The following result is a consequence of the previous theorem.

Corollary 2.1.1 (M. Bota, A. É. Molnár, Cs. Varga, [22]) Consider the complete b-

metric space (X, d) such that the b-metric d is continuous. Suppose that the function

f : X → R satisfies the condition (F). Then, for every ε > 0 there exists a sequence

{xn}n∈N ⊂ X and xε ∈ X such that

xn → xε, as n → ∞, (2.1.5)

F [xε; +∞] ≤ inf
x∈X

f(x) + ε (2.1.6)

and for any x ∈ X we have

F [x; +∞] ≥ F [xε; +∞]. (2.1.7)
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In the sequel, as a generalization of Theorem 2.1.1, we establish a generalized

variational principle for b-metric spaces. In order to obtain this result, we need to

impose some further assumptions. We suppose again that (X, d) is a complete b-

metric space (the b-metric d is continuous) and f : X → R satisfies the condition

(F). Let us also consider the continuous non-increasing function h : R+ → R+ and

the non-negative number sequence δn ⊂ R+ such that δ0 > 0. We also assume the

following:

(R) The function ρ : X ×X → R+ satisfies:

(i) for each x ∈ X, we have ρ(x, x) = 0;

(ii) for each (yn, zn) ∈ X × X such that ρ(yn, zn) → 0 as n → ∞, we have

d(yn, zn) → 0 as n → ∞;

(iii) for each z ∈ X, the function y 7→ ρ(y, z) is lower semicontinuous.

In addition, we introduce the following notation:

Fh[x;m] = f(x) + h(d(x0, x))
m∑

n=0

δnρ(x, xn),m ∈ N.

A generalized form of Theorem 2.1.1 is given below.

Theorem 2.1.2 (Cs. Farkas, A. É. Molnár, [46]) Suppose that (X, d) is a complete

b-metric space, d is continuous, and the mappings f : X → R and ρ : X ×X → R+

satisfy the assumptions (F) and (R), respectively. Then for every x0 ∈ X and ε > 0

with

f(x0) ≤ inf
x∈X

f(x) + ε,

we assume the existence of a sequence {xn}n∈N ⊂ X and an element xε ∈ X such

that

xn → xε, whenever n → ∞ (2.1.8)

h(d(x0, xε))ρ(xε, xn) ≤
ε

2nδ0
, for all n ∈ N. (2.1.9)

If δn > 0 for infinitely many n ∈ N, then we have

Fh[xε; +∞] ≤ f(x0), (2.1.10)
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and for x ̸= xε we have

Fh[x; +∞] > Fh[xε; +∞]. (2.1.11)

If δk > 0 for some k ∈ N∗ and δj = 0 for every j > k, then for each x ̸= xε there

exists m ∈ N, m ≥ k such that

Fh[x; k−1]+h(d(x0, x))δkρ(x, xm) > Fh[xε; k−1]+h(d(x0, xε))δkρ(xε, xm). (2.1.12)

Remark 2.1.2 If in the previous theorem we choose h(x) ≡ 1 and δn =
1

sn
, we get

back our first result (Theorem 2.1.1). In other words, for every x ̸= xε we obtain the

inequality (2.1.4), that is,

f(x) +
∞∑
n=0

1

sn
d(x, xn) > f(xε) +

∞∑
n=0

1

sn
d(xε, xn). (2.1.13)

The rest of this section is dedicated to the presentation of the extended forms

of Theorems 2.1.1 and 2.1.2, respectively, to bifunctions. As in above, we introduce

some new symbols and notations which we will use in the rest of this paragraph.

Let C be a closed subset of the complete b-metric space (X, d) (suppose that d is

continuous), h : R+ → R+ be a decreasing function and ρ : X × X → R+ be a

function which satisfies the assumption (R).

Instead of the condition (F), we shall assume:

(F2) For the mapping f : C × C → R the following assertions are fulfilled:

(i) f(x, ·) is lower bounded and lower semicontinuous, for every x ∈ C;

(ii) f(z, z) = 0, for each z ∈ C;

(iii) f(z, x) ≤ f(z, y) + f(y, x), for all x, y, z ∈ C.

We will also use the following notation:

Fh[y, x;m] = f(y, x) + h(d(x0, x))
m∑

n=0

δnρ(x, xn).

Theorem 2.1.3 (Cs. Farkas, A. É. Molnár, [46]) Let us consider the complete b-

metric space (X, d) with the continuous b-metric and the mapping f : C × C → R
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which satisfies the assumption (F2). Then, for every x0 ∈ X and ε > 0, there exists

a sequence {xn}n∈N ⊂ C which converges to some xε ∈ X, i. e.

xn → xε, as n → ∞ (2.1.14)

such that

h(d(x0, xε))ρ(xε, xn) ≤
ε

2nδ0
, n ∈ N, (2.1.15)

Fh[x0, xε; 0] ≤ 0. (2.1.16)

Moreover, for all x ̸= xε we have

Fh[xε, x; +∞]− h(d(x0, xε))
∞∑
n=0

δnρ(xε, xn) > 0. (2.1.17)

One of the particular cases of Theorem 2.1.3 we can obtain if we set: h ≡ 1, δn =
1

sn
and ρ = d. But at the same time, this result can be viewed as a generalization of

Ekeland’s variational principle in the setting of complete b-metric spaces for single-

valued maps (see Theorem 2.1.1).

Theorem 2.1.4 (Cs. Farkas, A. É. Molnár, [46]) Let (X, d) be a complete b-metric

space with s > 1, where d is continuous, C ⊂ X be a closed set and f : C × C → R
be a function which satisfies the assertion (F2). Then, for every x0 ∈ X and ε > 0

there exists a sequence {xn}n∈N ⊂ C and an element xε ∈ C such that xn → xε, as

n → ∞ and

d(xε, xn) ≤
ε

2n
, n ∈ N, (2.1.18)

f(x0, xε) + d(xε, x0) ≤ 0, (2.1.19)

and for every we have x ̸= xε

f(xε, x) +
∞∑
i=0

1

si
d(x, xi)−

∞∑
i=0

1

si
d(xε, xi) > 0. (2.1.20)

We close this paragraph with a special case of Theorem 2.1.2. Actually, this result

can be considered as a weak Zhong-type variational principle (for the statement of

the original Zhong variational principle, see [94], [95]). Before the presentation of

this result, at first we establish two technical lemmas which play an important role

in the demonstration of this principle.



22 2.1. VARIATIONAL PRINCIPLES IN B-METRIC SPACES

Lemma 2.1.1 (Cs. Farkas, A. É. Molnár, [46]) If g : R+ → R+ is a continuous

non-decreasing function, and x /∈ B(x0; d(x0, xε)) then we have

d(x0, x)

1 + g(d(x0, x))
− s · d(x0, xε)

1 + g(d(xε, x0))
≤ s · d(x, xε)

1 + g(d(xε, x0))
. (2.1.21)

Lemma 2.1.2 (Cs. Farkas, A. É. Molnár, [46]) If g : R+ → R+ is a continuous

non-decreasing function, and g(x)
x

is decreasing on (0, d(x0, xε)] then we have

d(x0, x)

1 + g(d(x0, x))
− s · d(x0, xε)

1 + g(d(xε, x0))
≤ s · d(x, xε)

1 + g(d(xε, x0))
.

Next we show that in a special case of the Theorem 2.1.2 we get the original version

of Zhong’s variational principle (see for instance C.-K. Zhong [94, 95]). In order to

obtain this result let us choose the sequence δn and the functions h, ρ as follows.

For every n > 0, let δ0 = 1 and δn = 0. Furthermore, we take ε, λ > 0 and h(t) =
ε

λ(1 + g(t))
, where g : [0,∞) → [0,∞) is a continuous non-decreasing function. In

this case, we have
∞∑
n=0

δnρ(x, xn) = δ0ρ(x, x0) = ρ(x, x0).

If we put ρ = d, then we can consider the following form of Theorem 2.1.2:

f(x) ≥ f(xε) +
ε

λ(1 + g(d(x0, xε)))
d(xε, x0)−

ε

λ(1 + g(d(x0, x)))
d(x, x0). (2.1.22)

Therefore, by Lemmas 2.1.1 and 2.1.2, we obtain the following weak Zhong-type

variational principle in complete b-metric space.

Corollary 2.1.2 (Cs. Farkas, A. É. Molnár, [46]) Let h : R+ → R+ be a continuous

non-decreasing function. Let (X, d) be a complete b-metric space (the b-metric d is

continuous) and f : X → R be a function which satisfies the assumption (F). Then

for every x0 ∈ X and ε > 0 with

f(x0) ≤ inf
x∈X

f(x) + ε,

we assume the existence of a sequence {xn} ⊂ X which converges to some xε ∈ X

such that

h(d(x0, xn))d(xε, xn) ≤
ε

2n
, n ∈ N. (2.1.23)
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Then we can distinguish two cases:

1. If x /∈ B(x0, d(x0, xε)), then we have

f(x) ≥ f(xε)− s · ε

λ(1 + g(d(x0, xε)))
d(x, xε). (2.1.24)

2. If
g(x)

x
is decreasing on (0, d(x0, xε)], then for all we have x ̸= xε

f(x) ≥ f(xε)− s · ε

λ(1 + g(d(x0, xε)))
d(x, xε).

In the following, we assume that g : [0,+∞) → [0,+∞) is a continuous non-

decreasing function, the mapping
g(x)

x
is decreasing, and f : X → R ∪ {∞} is a

lower semicontinuous, Gâteaux differentiable function and not identically with +∞.

In this case we can extend Theorem 2.1 from Zhong [94]. More precisely, if f is

bounded from below, then for ε > 0, every y ∈ X such that

f(y) ≤ inf
x∈X

f(x) + ε, (2.1.25)

and every λ > 0, there exists a z ∈ X such that

f(z) ≤ f(y),

∥f ′(z)∥ ≤ s · ε

λ(1 + g(∥z∥))
.

From the above, one can extend the notion of weak (PS)-condition from [94],

and we can prove that a function, which is bounded below, and satisfies the weak

(PS)-condition has a minimal point.

2.2 Applications to fixed point theory

This paragraph is devoted to highlight the importance of the extended versions

of EVP presented in the previous section establishing some applications of them to

fixed point theorems in the setting of b-metric spaces. We will show that Ekeland’s

variational principle in the setting of complete b-metric spaces for single-valued

functions and for functions with two variables, respectively, can be also applied to

prove fixed point theorems within the framework of complete b-metric spaces. This

usefulness is demonstrated by two versions of Caristi’s fixed point theorem, both of
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them stated in complete b-metric spaces, one for single-valued functions and one for

bifunctions, since the proofs of these results become very simple if we invoke the

extended versions of the well-known variational principle.

Throughout this paragraph we will use the same notations as in the previous

section. We suppose again that (X, d) is a complete b-metric space, where d is

continuous.

We start our discussion with the extension of Caristi’s fixed point theorem in

the context of complete b-metric spaces for single-valued functions. Me mention that

Corollary 2.1.1 is the main ingredient for the proof of this result.

Theorem 2.2.1 (M. Bota, A. É. Molnár, Cs. Varga, [22]) Let (X, d) be a complete

b-metric space (with s > 1), such that the b-metric d is continuous. Let φ : X → X

be an operator for which there exists a lower semicontinuous mapping f : X → R,

such that

d(u, v) + s d(u, φ(u)) ≥ d(φ(u), v) (2.2.1)

s2

s− 1
d(u, φ(u)) ≤ f(u)− f(φ(u)), ∀u, v ∈ X (2.2.2)

Then, φ has at least one fixed point.

Remark 2.2.1 If s = 1, then we get back Caristi’s fixed point theorem in complete

metric spaces (see [26], [43]).

Similarly to the above theorem, we can formulate the following Caristi-type fixed

point theorem in complete b-metric spaces for bifunctions. We mention here that ξ

denotes the sum of the convergent series
∞∑
n=0

δn, i.e. ξ :=
∞∑
n=0

δn.

Theorem 2.2.2 (Cs. Farkas, A. É. Molnár, [46]) Let (X, d) be a complete b-metric

space such that d is a continuous b-metric and ρ : X × X → R+ be a continuous

function. Let us consider the operator φ : X → X such that there exists a lower

semicontinuous mapping f : X → R+ satisfying the following assumptions:

h(d(x0, φ(x)))ρ(φ(x), y)− h(d(x0, x))ρ(x, y) ≤ ρ(x, φ(x)), (2.2.3)

ξρ(u, φ(u)) ≤ f(u)− f(φ(u)). (2.2.4)

Then φ has at least one fixed point.
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Remark 2.2.2 We notice that Theorem 2.2.1 is a particular case of Theorem 2.2.2,

since if in Theorem 2.2.2 we choose adequately the functions ρ and h and, respectively

the sequence δn, i.e. h ≡ 1, ρ = d, and δn =
1

sn
, then we obtain Theorem 2.2.1.



Chapter 3

Variational principles in metric

spaces with applications to

equilibrium problems

The aim of this chapter is to study the relationship between (EP), respectively

(SEP), and the celebrated Ekeland’s variational principle. Inspired by the paper

of M. Bianchi, G. Kassay and R. Pini [16], we establish two versions of Ekeland’s

variational principle in complete metric spaces (one for/to (EP), the other for/to

(SEP)) without assuming any kind of convexity of the bifunction involved in the

formulation of the principle or of the set whereon the bifunction, resp. the function

systems are defined. As applications of these principles, we derive existence results

for a solution of (EP) and (SEP), respectively, with compactness assumption on the

underlying sets.

As further applications of the main theorems, we aim to prove localization-type

results for (EP) and (SEP). The importance of the main theorems in finding equi-

librium points of differential inequations and systems of differential inequations is

also motivated.

The results of this chapter are contained in Cs. Farkas, A. É. Molnár, [45].

26
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3.1 On the existence and localization of equilibrium

points for bifunctions

Let (X, d) be a complete metric space, C a closed subset of X, and f : C×C → R
be a function. Let h : [0,∞[→ [0,∞[ be a non-increasingfunction. Throughout this

section we shall use the same notations as in Chapter 2.

We begin this paragraph with the definition of a new equilibrium point, namely

the (x0, h)-equilibrium point. We notice that this notation stems from the fact that

the underlined equilibrium point depends on an element x0 ∈ C and on a function

h defined as above.

Definition 3.1.1 (Cs. Farkas, A. É. Molnár, [45]) Let f : C×C → R be a function

and x0 ∈ C an element. x̃ ∈ C is said to be an (x0, h)-equilibrium point of f , if and

only if

f(x̃, y) + h(d(x0, y))d(x̃, y) ≥ 0 , ∀y ∈ C. (3.1.1)

The main result of this section is given below.

Theorem 3.1.1 (Cs. Farkas, A. É. Molnár, [45]) Let (X, d) be a complete met-

ric space, C ⊂ X be a closed set, and f : C × C → R be a mapping. Let us

also consider the continuous non-increasing function h : [0,∞[→]0,∞[ and a point

x0 ∈ X. Suppose that f satisfies the assumption (F2). Then, there exists a x̃ ∈ C

such that

(a) f(x0, x̃) + h(d(x0, x̃))d(x0, x̃) ≤ 0,

(b) f(x̃, x) + h(d(x0, x))d(x, x̃) > 0, ∀x ∈ C, x ̸= x̃.

Now we show that there exists a function which satisfies the condition (F2), but

it does not have any equilibrium point in the classical sense.

Example 3.1.1 (Cs. Farkas, A. É. Molnár, [45]) Let f : R+ ×R+ → R, f(x, y) =

= x
1+x

− y
y+1

. It is easy to see that this function satisfies all the assumptions of

the Theorem 3.1.1. If there exists an x0 ∈ R+ such that f(x0, y) ≥ 0,∀y ∈ R+,

then we get x0 ≥ y, ∀y ∈ R+, which is a contradiction. So the solution set of the

problem (EP ) is empty, but by Theorem 3.1.1, we can guarantee that there exists an

(x0, h)-equilibrium point of f .
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POINTS FOR BIFUNCTIONS

Consequently, we could assert that we obtained an ”almost” equilibrium point

by perturbing the initial bifunction by a small perturbation.

Next we give some examples where the defined functions have equilibrium points.

Example 3.1.2 (Cs. Farkas, A. É. Molnár, [45]) Let X = R. Let C be a closed and

bounded subset of R and h : [0,∞[→]0,∞[ be a function, defined by h(x) = 1+ e−x,

and let x0 = 0. We consider F : C × C → R, F (x, y) = y − x + (1 + e−y)|x − y|
and f : C × C → R, f(x, y) = y − x. By Theorem 3.1.1, it follows that F has an

equilibrium point.

Example 3.1.3 (Cs. Farkas, A. É. Molnár, [45]) Let X = R × R and let C be

a closed and bounded subset of R. Let us consider the function h : [0,∞[→]0,∞[,

h(x) = 1
1+x

, and let x0 = 0R2. We consider F : C × C → R, F (x, y) = yN − xN+

+ 1
1+∥y∥∥x − y∥ and f : C × C → R, f(x, y) = yN − xN , where N ≥ 1 is a natural

number. It is easy to see that, by Theorem 3.1.1, F has an equilibrium point.

Remark 3.1.1 (Cs. Farkas, A. É. Molnár, [45]) One might wonder whether a bi-

function f , satisfying all the assumptions of Theorem 3.1.1, should be of the form

g(y)− g(x). In this case, Theorem 3.1.1 would reduce to an improved version of the

classical Ekeland’s principle.

It is not the case, as the example below shows: Let f : R2 → R be a function,

defined by

f(x, y) =

{
e−|x−y| + 1 + sin(y)− sin(x), x ̸= y,

0, x = y,

and let h : [0,∞[→]0,∞[ be defined by h(x) = 1
1+x

. By Theorem 3.1.1, it follows

that

F (x, y) = f(x, y) +
1

1 + ∥y∥
∥x− y∥

has an (x0, h)-equilibrium point, but clearly f cannot be represented in the above

mentioned form. We notice here, that in this case C = R, which is a closed set.

Remark 3.1.2 (Cs. Farkas, A. É. Molnár, [45]) Let X = Rn with the Euclidean

norm, i.e. d(x, y) = ||x− y||. In the framework of Theorem 3.1.1, we get

(i) f(x0, x̃) + h(∥x0 − x̃∥)||x0 − x̃|| ≤ 0,
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(ii) f(x̃, x) + h(∥x0 − x∥)||x− x̃|| > 0, ∀x ∈ C, x ̸= x̃.

The importance of Theorem 3.1.1 marks out from the fact that with the aid of

it we can derive the following existence result, ensuring the nonemptiness of the

solution set of (EP) on compact sets, without any convexity requirement. To this

purpose, we need to impose the following additional assumption:

(F̃2) The mapping f : C × C → R satisfies the following condition

(iv) f(·, y) is upper semicontinuous, for every y ∈ C.

Theorem 3.1.2 (Cs. Farkas, A. É. Molnár, [45]) Let C be a compact (not nec-

essarily convex) subset of an Euclidean space, and f : C × C → R be a function.

If the conditions (F2) and (F̃2) are satisfied, then the set of solutions of (EP ) is

nonempty, i.e. there exists x̃ ∈ C such that f(x̃, y) ≥ 0,∀y ∈ C.

Remark 3.1.3 (Cs. Farkas, A. É. Molnár, [45]) We notice that if we take h ≡ ε in

Theorem 3.1.1, we get back [16, Theorem 2.1], established by M. Bianchi et al. This

underlines the fact that our main result is a generalization of [16, Theorem 2.1].

The next remark emphasize even more the importance of Theorem 3.1.1, showing

that this result is a very useful technique in finding equilibrium points of differential

inequations (in the case of normed spaces).

Remark 3.1.4 (Cs. Farkas, A. É. Molnár, [45]) Let X be a normed space. Let

h : [0,∞[→]0,∞[ be a continuous non-increasing function and let f : X×X → R be

a function satisfying the assumptions from Theorem 3.1.1. If in addition we assume

that f is Gâteaux differentiable in the second variable, then we have by Theorem

3.1.1

f(x̃, x) + h(d(x0, x))d(x̃, x) > 0.

Let ϕ ∈ X, t > 0, and x = x̃+ tϕ, then the above inequality can be rewritten as

f(x̃, x̃+ tϕ) + h(||x̃+ tϕ||)t||ϕ|| > 0,

therefore
f(x̃, x̃+ tϕ)

t
+ h(||x̃+ tϕ||)||ϕ|| > 0.
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POINTS FOR BIFUNCTIONS

By (F2)− (ii), we have f(x̃, x̃) = 0, therefore

f(x̃, x̃+ tϕ)− f(x̃, x̃)

t
+ h(||x̃+ tϕ||)||ϕ|| > 0.

If t → 0, we get

∂2f(x̃, x̃)(ϕ) + h(||x̃||)||ϕ|| ≥ 0 for all ϕ ∈ X. (3.1.2)

This means that there exists an equilibrium point, in the sense of Definition 3.1.1,

for differential inequations having the above form.

Finally, as a consequence of the Theorem 3.1.1 we present a Zhong-type varia-

tional principle for bifunctions (for the original ZVP, see [94],[95]). This result may

be important from algorithmic point of view, because it localizes the position of

the corresponding equilibrium point (i.e. the location of this equilibrium point is a

sphere).

Theorem 3.1.3 (Cs. Farkas, A. É. Molnár, [45]) Let (X, d) be a complete metric

space, C ⊂ X be a closed set, and f : C × C → R be a mapping, satisfying (F2).

Let g : [0,∞[→ [0,∞[ be a continuous non-decreasing function such that
∞∫
0

1

1 + g(r)
dr = ∞. (3.1.3)

Let x0 ∈ C be fixed. Then, for every ε > 0 and y ∈ C for which we have

inf
z∈C

f(y, z) > −ε, (3.1.4)

and for every λ > 0, there exists xε ∈ C such that

(a) d(x0, xε) < r0 + r

(b) f(x0, xε) +
ε

λ(1+g(d(x0,xε)))
d(x0, xε) ≤ 0,

(c) f(xε, x) +
ε

λ(1+g(d(x0,x)))
d(x, xε) > 0, ∀x ∈ C, x ̸= xε,

where r0 = d(x0, y) and r are chosen such that

r0+r∫
r0

1

1 + g(r)
dr ≥ λ.
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3.2 On the existence and localization of system of

equilibrium points for systems of functions

In this section we aim to extend the results investigated in the previous section

for a system of equilibrium problems. Throughout this paragraph will be kept the

notations introduced in Chapter 2 and in the previous section, respectively.

Let m be a positive integer and I = {1, 2, ...,m}. Let C =
∏

j∈I Cj and Cj ⊂ Xj

be a closed subset of the complete metric space (Xj, dj). Consider a system of open

balls in Xj: (Bj), j ∈ I and denote the jth open ball with center x0
j and radius rj,

(for each j ∈ I) by Bj(x
0
j , ri) = {zj ∈ X|d(x0

j , zj) < rj}. Furthermore, consider the

functions fj : C × Cj → R, j ∈ I. An element of the set Cj =
∏

j ̸=iCi will be

represented by xj; therefore, x ∈ C can be written as x = (xj, xj) ∈ Cj × Cj. If

x ∈
∏

Xi, the symbol d∗(x0, x) will denote the Tchebychev distance of x from x0,

i.e.,

d∗(x0, x) = max
j

dj(x
j
0, xj),

and we shall consider the metric space
∏

Xi endowed with this metric.

Let hi : [0,∞[→]0,∞[ be a continuous non-increasing function, for each i ∈ I,

and let h : Rm
+ → Rm

+ be defined by h = (h1, ..., hm). Let us consider the following

definition of an (x0, h)-equilibrium point for a system of equilibrium problems:

Definition 3.2.1 (Cs. Farkas, A. É. Molnár, [45]) Let Ci, i ∈ I, be a subset of a

certain metric space and put C =
∏

i∈I Ci. Given fi : C×Ci → R, i ∈ I, then x̃ ∈ C

is said to be an (x0, h)-equilibrium point of {f1, ..., fm}, if and only if

fi(x̃, yi) + hi(di(x
0
i , yi))d(x̃

i, yi)i ≥ 0, ∀yi ∈ Ci, and i ∈ I.

We assume that the following conditions hold:

(F2i) Consider the functions fi : C × Ci → R, i ∈ I such that

(i) fi(x, ·) : Ci → R is lower bounded and lower semicontinuous, for every

i ∈ I;

(ii) fi(x, xi) = 0, for every i ∈ I, and x = (x1, ..., xm) ∈ C;

(iii) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ C where y = (yi, yi),

and for every i ∈ I.
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The main result of this section is:

Theorem 3.2.1 (Cs. Farkas, A. É. Molnár, [45]) Let hi : [0,∞[→]0,∞[ be a non-

increasing function, for each i ∈ I, and let h : Rm
+ → Rm

+ be a function, defined by

h = (h1, ..., hm). Consider the functions fi : C × Ci → R, i ∈ I, where C =
∏

i∈I Ci

and Ci ⊂ Xi is a closed subset of the complete metric space (Xi, di). Suppose that

the functions fi satisfy the condition (F2i), for all i ∈ I. Let x0 = (x0
1, ..., x

0
m) be a

fixed element in C. Then, there exist x̃ ∈ C such that:

1. fi(x
0, x̃i) + hi(x̃i)di(x

0
i , x̃

i) ≤ 0,

2. fi(x̃, xi) + hi(xi)di(x̃
i, xi) > 0, whenever xi ̸= x̃i,

for every i ∈ I.

As application of Theorem 3.2.1, we derive the following existence result, guar-

anteing the nonemptiness of the solution set of (SEP) on compact sets, without any

convexity requirement. For this, we assume the assumption above:

(F̃2i) The function fi : C × Ci → R, i ∈ I satisfies the following assumption

(iv) fi(·, yi) is upper semicontinuous, for every yi ∈ Ci.

Theorem 3.2.2 (Cs. Farkas, A. É. Molnár, [45]) If in addition to the assumptions

of Theorem 3.2.1, for every i ∈ I, Ci is compact and fi : C × Ci → R satisfies the

assumption (F̃2i), then the following system of equilibrium problems

fi(x̃, yi) ≥ 0 ∀i ∈ I, ∀yi ∈ Ci,

has a solution x̃ = (x̃1, ..., x̃m) ∈ C.

Taking into consideration Remark 3.1.4, we can derive a similar, but more general

conclusion regarding differential inequation systems.

Remark 3.2.1 (Cs. Farkas, A. É. Molnár, [45]) Let i ∈ I. Let Xi be a normed space

and hi : [0,∞[→]0,∞[ be a continuous non-increasing function and let x0
i = 0Xi

.

We also consider that fi : X ×X → R is a function which satisfies the assumptions
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from Theorem 3.2.1. In addition, we assume that fi are Gâteaux differentiable in

the second variable (for every i ∈ I). Then, we have by Theorem 3.2.1

fi(x̃, xi) + h(di(x
0
i , xi))d(x̃i, xi) > 0.

Let ϕi ∈ Xi be an arbitrary element, t > 0, and let xi = x̃i+tϕi. The above inequality

can be rewritten as follows

fi(x̃, x̃i + tϕi) + hi(||x̃i + tϕi||i)t||ϕi||i > 0.

Therefore
fi(x̃, x̃i + tϕi)

t
+ hi(||x̃i + tϕi||i)||ϕi||i > 0.

By (F̃2i)− (ii), we have fi(x̃, x̃i) = 0, hence

fi(x̃, x̃i + tϕi)− fi(x̃, x̃i)

t
+ hi(||x̃i + tϕi||i)||ϕi||i > 0.

If t → 0, we get

∂2fi(x̃, x̃)(ϕi) + hi(||x̃i||i)||ϕi||i > 0 for all ϕi ∈ Xi. for all i ∈ I. (3.2.1)

This means that there exists an equilibrium point, in the sense of Definition 3.2.1,

for a differential inequation system having the above form.

We conclude this paragraph by stating a localization result for the point x̃ con-

structed in Theorem 3.2.1.

Theorem 3.2.3 (Cs. Farkas, A. É. Molnár, [45]) Let gi : [0,∞[→]0,∞[ be a non-

decreasing function, for all i ∈ I, let g : Rm
+ → Rm

+ be defined by g = (g1, ..., gm)

and
∞∫
0

1

1 + gi(r)
dr = ∞ for all i ∈ I. (3.2.2)

Consider the functions fi : C × Ci → R, i ∈ I where C =
∏

i∈I Ci and Ci ⊂ Xi

is a closed subset of the complete metric space (Xi, di). Assume that fi satisfies the

condition (F2i) for all i ∈ I. Let x0 = (x0
1, ..., x

0
m) ∈ C be an arbitrary fixed element.

Then, for every εi > 0, i = 1..m and y ∈ C for which we have

inf
zi∈Ci

fi(y, zi) > −εi, (3.2.3)

and for every λi > 0 there exists x̃ ∈ C such that
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1. di(x
0
i , x̃i) ≤ ri0 + ri

2. fi(x
0, x̃i) + εi

λi(1+gi(di(x0
i ,x̃i)))

di(x
0
i , x̃i) ≤ 0,

3. fi(x̃, xi) +
εi

λi(1+gi(di(x0
i ,xi)))

di(x̃i, xi) > 0, ∀i ∈ I

where r0i = di(x
0
i , yi) and ri are choosen such that

r0i+ri∫
r0i

1

1 + gi(r)
dr ≥ λi.



Chapter 4

Fixed point techniques used in the

study of different classes of

inequalities and systems of

inequalities of hemivariational type

The theory of hemivariational inequalities has produced important results both

in pure and applied mathematics and it is very useful to understand several problems

of mechanics and engineering for nonconvex, nonsmooth energy functionals.

There are three different approaches to the study of hemivariational inequalities

and of systems of hemivariational inequalities: via monotone operators (see e.g. Z.

Naniewicz, P.D. Panagiotopoulos [79]), with the aid of critical point theory (see D.

Motreanu and P.D. Panagiotopoulos [77], D. Motreanu and V. Rǎdulescu [78]) and

using fixed point technics (see P. D. Panagiotopoulos, M. Fundo and V. Rădulescu

[83], A. Kristály and Cs. Varga [66], V. Rădulescu and D. Repovš [88]). In Chapter

4 we shall follow the latter approach: we study some inequalities and systems of

inequalities of hemivariational types via fixed point techniques without imposing

any monotonicity assumptions. In the first two sections we describe the abstract

framework in which we work, we formulate our problems and the main results,

respectively. The last section presents the wide range of applications of the results

obtained in the previous sections.

35
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WITH LACK OF COMPACTNESS

The results of this chapter are published in the papers of H. Lisei, A. É. Molnár,

Cs. Varga [69], and of A. É. Molnár, O. Vas, [75], the latter being a result of our

cooperation with the Institute of Mathematics from the University of Debrecen

(Hungary).

4.1 On a variational-hemivariational inequality prob-

lem with lack of compactness

The purpose of this paragraph is to discuss the solvability of a variational-

hemivariational inequality problem on a closed and convex set (either bounded or

unbounded) without using critical point theory.

Let (X, ∥ · ∥) be a Banach space and X∗ its topological dual. We denote by ⟨·, ·⟩
the duality pairing between X and X∗. Let Ω ⫅ Rn be an unbounded domain, let p

be such that 1 < p < n and set p∗ =
np

n− p
. We investigate the following problem:

(V-HI) Find u ∈ K such that, for every v ∈ K, it holds

⟨Au, v − u⟩+
∫
Ω

f(x, u(x))(v(x)− u(x))dx+

∫
Ω

j0(x, u(x); v(x)− u(x))dx ≥ 0,

where K ⫅ X is a set and A, f, j are given functionals, which satisfy certain condi-

tions.

In order to establish the existence of at least one solution for the aforementioned

variational-hemivariational problem (V-HI), we impose the following hypotheses:

(CT) Assume that for s ∈ [p, p∗] the embedding X ↪→ Ls(Ω) is continuous, i.e. there

exists a constant C ≥ 0 such that ∥x∥Ls(Ω) ≤ C∥x∥, ∀x ∈ X.

(CP) Suppose that for s ∈ (p, p∗) the embedding X ↪→ Ls(Ω) is compact, this

means that there exists a linear and compact operator T : X → Ls(Ω), i.e. for

each bounded sequence {xn} in X there exists a subsequence {Txn} which is

convergent in Ls(Ω). For simplicity we will write xn instead of Txn.

(A1) Let A : X → X∗ be an operator with the following property: for any sequence

{un}n in X which converges weakly to u ∈ X it holds

⟨Au, u− w⟩ ≤ lim inf
n→∞

⟨Aun, un − w⟩, for all w ∈ X.
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(A2) There exists λ := inf
u∈X\{0}

⟨Au, u⟩
∥u∥p

> 0.

(f1) Let f : Ω × R → R be a Carathéodory function, such that for some α > 0 it

holds

|f(x, y)| ≤ α|y|p−1 + β(x),

for a.e. x ∈ Ω and all y ∈ R, where β ∈ L
p

p−1 (Ω).

(f2) We assume that the constants from (f1) and (A1) satisfy αCp
p < λ.

(j1) Assume that j : Ω × R → R is a Carathéodory function, which is locally

Lipschitz with respect to the second variable, and there exists c > 0, r ∈ [p, p∗)

such that

|ξ| ≤ c(|y|p−1 + |y|r−1)

for a.e. x ∈ Ω, all y ∈ R and for all ξ ∈ ∂j(x, y), where ∂j(x, y) denotes the

generalized gradient of j(x, ·) at y ∈ R;

(j2) There exists k ∈ L
p

p−1 (Ω) such that

|j0(x, y;−y)| ≤ k(x)|y| for all x ∈ Ω, y ∈ R,

where j0(x, u; z) is the generalized directional derivative of j(x, ·) at the point

u ∈ R in the direction z ∈ R.

Now we present two examples for operators which satisfy the condition (A1).

Example 4.1.1 (H. Lisei, A. É. Molnár, Cs. Varga, [69]) Let A′ : X → X∗ be a

linear and continuous operator, which is positive, i.e. ⟨A′u, u⟩ ≥ 0 for all u ∈ X.

These assumptions imply that A′ is weakly sequentially continuous and that (A1) is

satisfied.

Example 4.1.2 (H. Lisei, A. É. Molnár, Cs. Varga, [69]) We assume that the

bilinear form a : X × X → R is compact, which means that for any sequences

{un}n and {vn}n from X such that un ⇀ u and vn ⇀ v (u, v ∈ X) it follows

that a(un, vn) → a(u, v). Under this condition, the operator A′′ : X → X∗ defined

by ⟨A′′u, v⟩ = a(u, v) for all u, v ∈ X (for this representation see the Lax-Milgram

Theorem [25, Corollary 5.8.]) satisfies assumption (A1).
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In the sequel we state two existence results for the solutions of problem (V-HI),

whose proofs are based on the Fan-Knaster-Kuratowski-Mazurkiewicz theorem (see

[50, Theorem 8.2.]). We note that instead of this theorem we can apply an elementary

principle of KKM-mappings given by A. Granas and M. Lassonde in [51, Theorem

5.2] in the framework of super-reflexive Banach spaces. Beside the Ky Fan version

of the well-known Knaster-Kuratowski-Mazurkiewicz theorem, the following lemma

will be needed in proving our main results.

Lemma 4.1.1 (H. Lisei, A. É. Molnár, Cs. Varga, [69]) Suppose that X is a Ba-

nach space.

(1) Assume that (j1) is satisfied and X1 and X2 are nonempty subsets of X.

(1a) If the embedding X ↪→ Ls(Ω) is continuous for each s ∈ [p, p∗], then the

mapping

(u, v) ∈ X1 ×X2 7→
∫
Ω

j0(x, u(x); v(x))dx ∈ R

is upper semicontinuous.

(1b) Moreover, if X ↪→ Ls(Ω) is compact for every s ∈ [p, p∗), then the above

mapping is weakly upper semicontinuous.

(2) Assume that (f1) holds and that X ↪→ Lp(Ω) is compact. Then, for each v ∈ X

the mapping

u ∈ X 7→
∫
Ω

f(x, u(x))(v(x)− u(x))dx ∈ R

is weakly sequentially continuous.

One of our existence theorems is stated below.

Theorem 4.1.1 (H. Lisei, A. É. Molnár, Cs. Varga, [69]) Suppose that X is a re-

flexive Banach space and that K ⊆ X is a nonempty, closed, convex and bounded set

and that the hypotheses (CT), (CP), (A1), (f1), (j1) are fulfilled. Then, problem

(V-HI) admits at least one solution.

In the following we will discuss the case when the set K is unbounded. Let us

assume, without loss of generality, that 0 ∈ K and for any positive integer n let us

set Kn := {w ∈ K : ∥wn∥ ≤ n}. Thus, 0 ∈ Kn for all n ∈ N.
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Let us fix an n ∈ N. Since K is a nonempty, closed, convex and unbounded subset

of X, by applying Theorem 4.1.1 there exists un ∈ Kn such that for all v ∈ Kn it

holds

⟨Aun, v − un⟩ +

∫
Ω

f(x, un(x))(v(x)− un(x))dx (4.1.1)

+

∫
Ω

j0(x, un(x); v(x)− un(x))dx ≥ 0.

Theorem 4.1.2 (H. Lisei, A. É. Molnár, Cs. Varga, [69]) Suppose that X is a

reflexive Banach space and K ⊆ X is a nonempty, closed, and convex set and that

the hypotheses (CT), (CP), (A1), (A2), (f1), (f2), (j1), (j2) are fulfilled. Let

us also consider a sequence un ∈ Kn such that the inequality (4.1.1) is fulfilled for

each n ≥ 1. Then, problem (V-HI) has at least one solution.

Remark 4.1.1 (H. Lisei, A. É. Molnár, Cs. Varga, [69]) If 0 ∈ K and

⟨A0, v⟩+
∫
Ω

f(x, 0)v(x)dx+

∫
Ω

j0(x, 0; v(x))dx ≥ 0 for every v ∈ K, (4.1.2)

then obviously zero is a solution of the inequality (4.1.2). If Theorem 4.1.1 and

Theorem 4.1.2 are applied to (4.1.2), the existence of a nontrivial solution may not

be assured without specific additional assumptions.

4.2 Existence of solutions for a nonlinear system of

hemivariational-like inequalities

The aim of this section is to study inequality problems in a general and uni-

fied framework (as nonlinear hemivariational-like inequalities can be reduced to

variational-like inequalities of standard hemivariational inequalities) and to prove

the existence of at least one solution for the studied system on a closed and convex

set (either bounded or unbounded) without imposing any monotonicity assumptions

or using nonsmooth critical point theory.

Let X1, . . . , Xn be reflexive Banach spaces, Y1, . . . , Yn be Banach spaces and

Di ⊆ Xi for i ∈ {1, . . . , n} be bounded, closed and convex sets, where n ∈ Z+.

In what follows, X∗
i and Y ∗

i will denote the topological dual spaces of Xi and Yi,
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respectively, for every i ∈ {1, . . . , n}. We suppose that for i ∈ {1, . . . , n} there exist

linear compact operators Ai : Xi → Yi, the nonlinear functionals ϕi : X1 × . . . ×
Xi × . . . × Xn × Xi → R and the single-valued functions ηi : Xi × Xi → Xi. We

also assume that J : Y1 × . . . × Yn → R is a regular locally Lipschitz functional.

Throughout this paragraph, we will use the following notations:

• X = X1 × . . .×Xn, Y = Y1 × . . .× Yn and D = D1 × . . .×Dn;

• ui = Ai(ui), ηi(ui, vi) = Ai(ηi(ui, vi)), for each i = 1, n;

• u = (u1, . . . , un) and u = (u1, . . . , un);

• η(u, v) = (η1(u1, v1), . . . , ηn(un, vn)) and η(u, v) = (η1(u1, v1), . . . , ηn(un, vn));

• Φ : X ×X → R, Φ(u, v) =
n∑

i=1

ϕi(u1, . . . , ui, . . . , un, ηi(ui, vi)).

We impose the following assumptions:

(H) For each i ∈ {1, . . . , n} the mapping ηi(·, ·) : Xi × Xi → Xi satisfies the

following conditions:

(i) ηi(ui, ui) = 0, for all ui ∈ Xi;

(ii) ηi(ui, ·) is linear operator for each ui ∈ Xi;

(iii) for each vi ∈ Xi, ηi(u
m
i , vi) ⇀ η(ui, vi) whenever um

i ⇀ ui.

(Φ) For every i ∈ {1, . . . , n}, the functional ϕi : X1× . . .×Xi× . . .×Xn×Xi → R
satisfies

(i) ϕi(u1, . . . , ui, . . . , un, 0) = 0 for all ui ∈ Xi;

(ii) for all vi ∈ Xi the mapping (u1, . . . , un) ⇝ ϕi(u1, . . . , un; ηi(ui, vi)) is

weakly upper semicontinuous;

(iii) the mapping vi ⇝
n∑

i=1

ϕi(u1, . . . , un; ηi(ui, vi)) is convex for each (u1,. . ., un) ∈

X1 × . . .×Xn.

Remark 4.2.1 (A. É. Molnár, O. Vas, [75]) Because J0
,i(u1, . . . , un; vi) is convex

and ηi(ui, ·) is linear for each i ∈ {1, . . . , n} and for each (u1, . . . , un) ∈ X1×. . .×Xn,

it follows that the mapping vi ⇝ J0
,i(u1, . . . , un; ηi(ui, vi)) is convex.
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Using the following two examples, we show that there exists a function which

satisfies the conditions (i)-(iii) from (H).

Example 4.2.1 (A. É. Molnár, O. Vas, [75]) For i ∈ {1, . . . , n} let us choose the

function ηi : Xi ×Xi → Xi as follows:

ηi(ui, vi) = vi − ui, for all ui, vi ∈ Xi.

In this case, ηi(ui, vi) satisfies the assumptions (i)-(iii) from (H). Notice that, with

this choice we get back the problem formulated in D. Repovš and Cs. Varga’s paper

[89].

Example 4.2.2 (A. É. Molnár, O. Vas, [75]) Let Bi : Xi → Xi be a linear compact

operator, αi > 0, βi ∈ Xi, i ∈ {1, . . . , n}. Define a function f : Xi → Xi by

fi(x) = αiBi(x) + βi. If we take the function ηi : Xi ×Xi → Xi as follows:

ηi(ui, vi) = fi(vi)− fi(ui), for all ui, vi ∈ Xi, i ∈ {1, . . . , n},

then it is clear that the conditions (H) (i)-(iii) hold for ηi(ui, vi).

In this section, our intention is to investigate the existence of at least one solution

for the following nonlinear hemivariational-like system of inequalities:

(NHLIS) Find (u1, . . . , un) ∈ D1 × . . .×Dn such that
ϕ1(u1, . . . , un, η1(u1, v1)) + J0

,1(u1, . . . , un; η1(u1, v1)) ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕn(u1, . . . , un, ηn(un, vn)) + J0
,n(u1, . . . , un; ηn(un, vn)) ≥ 0

for all (v1, . . . , vn) ∈ D1 × . . .×Dn.

Recently, in [89], D. Repovš and Cs. Varga established an existence result for a

general class of hemivariational system of inequalities. The next theorem extends this

result and provides sufficient conditions for the existence of the solutions of problem

(NHLIS). We point out the fact that, in [89], the authors provided two proofs:

one using Ky Fan’s version of the Knaster-Kuratowsky-Mazurkiewicz theorem - the

theorem that we also applied in the previous section, and one using Tarafdar’s fixed

point theorem for set-valued maps (see E. Tarafdar [91]). Our approach is slightly

different, as we use Lin’s fixed point theorem (see [68, Theorem 1.]).

Now we present the main result of this section. We deal with the case when the

sets Di are nonempty, bounded, closed and convex.
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Theorem 4.2.1 (A. É. Molnár, O. Vas [75]) Let us consider the nonempty, bounded,

closed and convex sets Di ⊂ Xi for each i ∈ {1, . . . , n}. If the conditions (H)

and (Φ) are fulfilled, then the system of nonlinear hemivariational-like inequalities

(NHLIS) admits at least one solution.

In order to prove this result we need to formulate the following hemivariational

inequality:

(VHI) Find u ∈ D such that for all v ∈ D we have

Φ(u, v) + J0(u; η(u, v)) ≥ 0.

The next proposition proves that problem (VHI) is closely linked to problem

(NHLIS):

Proposition 4.2.1 (A. É. Molnár, O. Vas, [75]) If (H)-(i) and (Φ)-(i) hold and

u0 = (u0
1, . . . , u

0
n) ∈ D1 × . . .×Dn is a solution of the inequality (VHI), then u0 is

also a solution of the system (NHLIS).

We observe that if we take into consideration Proposition 4.2.1, it is enough to

prove that problem (VHI) has at least one solution.

Remark 4.2.2 (A. É. Molnár, O. Vas, [75]) It is known that the solutions of sys-

tems of inequalities of hemivariational type on unbounded domains exist, if we ex-

tend the assumptions for the bounded domains with a coercivity condition. So, if

we impose coercivity conditions, Theorem 4.2.1 will also hold when the sets Di are

unbounded (for details, see [89, Remark 3.3]).

4.3 Applications

Concerning the applicability of our abstract results, presented in Sections 4.1

and 4.2, we provide some possible applications.

4.3.1 Nash generalized derivative points

Let us consider the Banach spaces E1, . . . , En for each i ∈ {1, . . . , n} and the

nonempty set Di ⊂ Ei. Let D′
i ⊂ Ei be an open set such that for each i ∈ {1, . . . , n}
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we have that Di ⊂ D′
i. Let fi : D1 × . . .×D′

i × . . .×Dn → R be a functional such

that for all i ∈ {1, . . . , n} the mapping ui ⇝ fi(u1, . . . , ui, . . . , un) is continuous and

locally Lipschitz.

In the following, we show the applicability of Theorem 4.2.1. To achieve this

purpose, let us take in Theorem 4.2.1

ϕi(u1, . . . , ui, . . . , un, ηi(ui, vi)) = f 0
i,i(u1, . . . , ui, . . . , un; ηi(ui, vi)), for i ∈ {1, . . . , n}

and J = 0. Moreover, let us suppose that the function (u1, . . . , ui, . . . , un; vi) ⇝
fi,i(u1, . . . , ui, . . . , un; ηi(ui, vi)) is weakly upper semicontinuous for each vi ∈ Di,

i = 1, n. Under these conditions, we obtain the following existence result for a type

of Nash generalized derivative points:

Theorem 4.3.1 (A. É. Molnár, O. Vas [75]) For each i ∈ {1, . . . , n} let Di ⊂ Xi

be a nonempty, bounded, closed and convex set. Let us assume that conditions (H)

and (Φ) hold true. Then, there exists a point (u0
1, . . . , u

0
i , . . . , u

0
n) ∈ D1 × · · · ×Dn

such that for all (u1, . . . , un) ∈ D1 × · · · ×Dn and i ∈ {1, . . . , n} we have

g0i,i(u
0
1, . . . , u

0
i , . . . , u

0
n; ηi(u

0
i , vi)) ≥ 0.

The following remark highlights the importance of the previous result:

Remark 4.3.1 (A. É. Molnár, O. Vas, [75]) If we choose η(u0
i , vi) = vi − u0

i for

i ∈ {1, . . . , n}, then we give back the existence result for Nash generalized derivative

points from D. Repovš and Cs. Varga’s paper [89].

To get the second application, in Theorem 4.2.1 we require that the functionals

ϕi : Y1 × · · · × Yi × · · · × Yn × Yi → R are differentiable in the ith variable for

i ∈ {1, . . . , n} and their derivatives ϕ′
i : Y1 × · · · × Yi × · · · × Yn × Yi → R are

continuous for i ∈ {1, . . . , n}. The following result shows that there exists at least

one solution for a general nonlinear system of hemivariational-like inequalities:

Corollary 4.3.1 (A. É. Molnár, O. Vas, [75]) Consider the regular, locally Lip-

schitz function J : Y1 × Y2 × · · · × Yi × · · · × Yn → R and the nonlinear func-

tionals ϕi : Y1 × · · · × Yi × · · · × Yn × Yi → R with their continuous derivatives

ϕ′
i : Y1×· · ·×Yi×· · ·×Yn×Yi → R for i ∈ {1, . . . , n}. Let also Di ⊂ Xi be bounded,

closed and convex sets for i ∈ {1, . . . , n} and let us assume that conditions (H) and
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(Φ) hold true. Then, there exists a point u0 = (u0
1, . . . , u

0
n) ∈ D1 × · · · × Dn such

that

Φ′
i(u

0, ηi(u
0
i , ui)) + J0

i (u
0; ηi(u

0
i , ui)) ≥ 0,

for each u = (u1, . . . , un) ∈ D1 × · · · ×Dn and i ∈ {1, . . . , n}.

4.3.2 Schrödinger type problems

The following three examples show the applicability of our results obtained in

Sections 4.1. and 4.2:

a) Let a1, a2 : Rn → R (n > 2) be two continuous functions which satisfy the

conditions below:

• inf
x∈Rn

ai(x) > 0, i = 1, 2;

• meas({x ∈ Rn : ai(x) ≤ Mi}) < ∞, for every Mi > 0, i = 1, 2.

The spaces

X1 :=

{
u ∈ W 1,2(Rn) :

∫
Rn

(
|∇u(x)|2 + a1(x)u

2(x)
)
dx < ∞

}
and

X2 :=

{
u ∈ W 1,2(Rn) :

∫
Rn

(
|∇u(x)|2 + a2(x)u

2(x)
)
dx < ∞

}
with the inner products

⟨u, v⟩X1 =

∫
Rn

[∇u(x)∇v(x) + a1(x)u(x)v(x)] dx

and

⟨u, v⟩X2 =

∫
Rn

[∇u(x)∇v(x) + a2(x)u(x)v(x)] dx,

respectively, are Hilbert spaces.

It is known, that the space W 1,2(Rn) is continuously embedded in Lp(Rn), p ∈
[2, 2∗] . Hence, in the case of q, r ∈ [2, 2∗], the product space X1×X2 is continuously

embedded in the space Lq(Rn)× Lr(Rn). On the other hand, T. Bartsch and Z.-Q.

Wang proved in [14] that for q, r ∈ [2, 2∗), X1 and X2 are compactly embedded

into Lq(Rn) and Lr(Rn), respectively. Therefore, X1 × X2 is compactly embedded

in Lq(Rn)× Lr(Rn).
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Let G : R2 → R be a regular, locally Lipschitz-function satisfying the following

condition:

(G1) There exist c > 0 and q ∈ (2, 2∗), r ∈ (2, 2∗) such that

|wu| ≤ c(|u|+ |v|+ |u|q−1),

|wv| ≤ c(|v|+ |u|+ |v|r−1),

for all (u, v) ∈ R2, wu ∈ ∂1G(u, v), wv ∈ ∂2G(u, v), i = 1, 2, where ∂1G(u, v) and

∂2G(u, v) denote the (partial) generalized gradient of G(·, v) at the point u and v,

respectively, while 2∗ = 2N
N−2

, N > 2 is the Sobolev critical exponent.

Let K1, K2 be two nonempty, bounded, closed and convex subsets of X1 and X2,

respectively. We shall denote by G0
1(u(x), v(x);w1(x)) and G0

2(u(x), v(x);w2(x)) the

directional derivatives of G in the first and the second variable along the direction

w1 and w2, respectively. Our first Schrödinger-type problem is formulated as follows:

(Sch-S) Find (u1, u2) ∈ K1 ×K2 such that for every (v1, v2) ∈ K1 ×K2
⟨u1, η1(u1, v1)⟩+

∫
Rn

G0
1(u1(x), v1(x), η1(u1(x), v1(x)))dx ≥ 0, ∀v1 ∈ K1;

⟨u2, η2(u2, v2)⟩+
∫
Rn

G0
2(u2(x), v2(x), η2(u2(x), v2(x)))dx ≥ 0, ∀v2 ∈ K2.

As another application of Theorem 4.2.1, we show the existence of at least one

solution of this problem.

Corollary 4.3.2 (A. É. Molnár, O. Vas [75]) If K1 ⊂ X1 and K2 ⊂ X2 are two

nonempty, convex, closed and bounded subsets and η1, η2 satisfy the condition (H)

and G satisfies (G1), respectively, then the problem (Sch-S) has at least one solu-

tion.

b) Let n > 2. Consider the function a1 : Rn → R and the space X1, equipped

with the inner product ⟨u, v⟩X1 and, defined in the same way as in point a). Clearly,

assumptions (CT) and (CP) are satisfied for p = 2.

Suppose that the function A : X1 → X1 is defined as follows: ⟨Au, v⟩ := (u, v)X1 .

By the properties of the norm and of the weak convergence, it follows that (A1)

and (A2) are satisfied. In this case, if we assume that K ⊆ X1 is chosen properly

and f and j satisfy the same conditions as in Theorem 4.1.1 and Theorem 4.1.2,
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respectively, then we can apply these main results, concluding that problem (V-HI)

has at least one solution.

c) Analogously to the previous example, it is possible to formulate another

Schrödinger type problem, if we consider for n > 2 the Hilbert space

H := {u ∈ L2(Rn) :

∫
Rn

[|∇u(x)|2 + |x|2u2(x)]dx < ∞}

endowed with the inner product

(u, v) =

∫
Rn

[∇u(x)∇v(x) + |x|2u(x)v(x)]dx.

Note that H ↪→ Ls(Rn) is compact for s ∈ [2, 2∗) (see O. Kavian, [57]). Hence the

conditions (CT) and (CP) hold. So, if we consider the space H instead of the space

X1 from the point b), we can easily derive the results of Theorem 4.1.1 and Theorem

4.1.2.

4.3.3 A problem with radially symmetric functions

In Theorem 4.1.1 and Theorem 4.1.2 it is very important that the assumptions

(CP), (j1) and (j2) are satisfied. In the sequel, we focus our attention to the case

when we replace the conditions (j1) and (j2) with certain conditions and we shall

prove that in this case the assertions of Theorem 4.1.1 and Theorem 4.1.2 remain

true.

Let a : RL × RM → R (L ≥ 2) be a non-negative continuous function satisfying

the following assumptions:

(a1) a(x, y) ≥ a0 > 0 if |(x, y)| ≥ R for a large R > 0;

(a2) a(x, y) → +∞, when |y| → +∞ uniformly for x ∈ RL;

(a3) a(x, y) = a(x′, y) for all x, x′ ∈ RL with |x| = |x′| and all y ∈ RM .

Consider the following subspaces of W 1,p(RL × RM)

Ẽ = {u ∈ W 1,p(RL × RM) : u(s, t) = u(s′, t) ∀ s, s′ ∈ RL, |s| = |s′|, ∀t ∈ RM},

E = {u ∈ W 1,p(RL × RM) :

∫
RL+M

a(x)|u(x)|pdx < ∞},



CHAPTER 4. FIXED POINT TECHNIQUES USED IN THE STUDY OF
DIFFERENT CLASSES OF INEQUALITIES AND SYSTEMS OF
INEQUALITIES OF HEMIVARIATIONAL TYPE 47

X := Ẽ ∩ E = {u ∈ Ẽ :

∫
RL+M

a(x)|u(x)|pdx < ∞}

equipped with the norm

∥u∥p =
∫

RL+M

|∇u(x)|pdx+

∫
RL+M

a(x)|u(x)|pdx.

D. C. de Morais Filho, M. A. S. Souto, J. Marcos Do proved in [76] the following

result: X is continuously embedded in Ls(RL × RM) if s ∈ [p, p∗], and compactly

embedded if s ∈ (p, p∗).

Let

Γ =

{
g : E → E : g(v) = v ◦

(
R 0

0 IdRM

)
, R ∈ O(RL)

}
,

where O(RL) is the set of all rotations on RL and IdRM denotes the M ×M identity

matrix.

Next, we assume that j : RL × RM × R → R is a Carathéodory function, which

is locally Lipschitz in the real variable (i.e. the second variable) and satisfies the

following conditions:

(j1’) j(x, 0) = 0, and there exist c > 0 and q ∈ (p, p⋆) such that

|ξ| ≤ c(|y|p−1 + |y|q−1), ∀ξ ∈ ∂j(x, y), (x, y) ∈ RL+M × R;

(j3) lim
y→0

max{|ξ| : ξ ∈ ∂j(x, y)}
|y|p−1 = 0 uniformly for every x ∈ RL+M ;

(j4) j(·, y) is Γ-invariant for all y ∈ R.

In order to derive a new existence result, we use the following proposition instead

of Lemma 4.1.1:

Proposition 4.3.1 (H. Lisei, Cs. Varga, [70]) If j : RL×RM ×R → R verifies the

conditions (j1’), (j3) and (j4) then

u ∈ X 7→
∫
RL+M

j(x, u(x))dx

is weakly sequentially continuous.

Now we are in the position to state the following existence result.
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Theorem 4.3.2 (H. Lisei, A. É. Molnár, Cs. Varga, [69])

(i) Let K ⊂ X be a nonempty, closed, convex and bounded set. Let A : E → E∗

be an operator satisfying (A1). Assume that j satisfies (j1’), (j3) and (j4). Then,

there exists u ∈ K such that

⟨Au, v − u⟩+
∫
RL+M

j0(x, u(x); v(x)− u(x))dx ≥ 0 for all v ∈ K. (4.3.1)

(ii) Moreover, if K ⊂ X is a nonempty, closed and convex set and A : X → X∗

is an operator satisfying (A1), (A2) and if we assume that j satisfies (j1’), (j2),

(j3) and (j4), then there exists u ∈ K such that (4.3.1) holds.

Remark 4.3.2 (H. Lisei, A. É. Molnár, Cs. Varga, [69]) In [70, Theorem 3.1] the

authors proved by using a Mountain Pass Theorem combined with the principle of

symmetric criticality for Motreanu-Panagiotopoulos type functionals the existence

of nontrivial positive solutions for (4.3.1), when K is the cone {v ∈ E : v ≥
0 a.e. in RL × RM} and A : X → X⋆ is the duality mapping.
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