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Chapter 1

Introduction

The existence of optimization methods can be traced to the days of Newton,

Lagrange, and Cauchy. The development of differential calculus methods for optimiza-

tion was possible because of the contributions of Newton and Leibnitz to calculus. The

foundations of calculus of variations, which deals with the minimization of functions,

were laid by Bernoulli, Euler, Lagrange and Weierstrass. The method of optimization

for constrained problems, which involve the addition of unknown multipliers, became

known by the name of its inventor, Lagrange. Cauchy made the first application of the

steepest descent method to solve unconstrained optimization problems. By the mid-

dle of the twentieth century, the high-speed digital computers made implementation

of the complex optimization procedures possible and stimulated further research on

newer methods. Spectacular advances followed, producing a massive literature on op-

timization techniques. This advancement also resulted in the emergence of several well

defined new areas in optimization theory [67].

In recent years several splitting algorithms [43] have emerged for solving mono-

tone inclusion problems involving parallel sums and compositions with linear continu-

ous operators, which eventually are reduced to finding the zeros of the sum of a maximal

monotone operator and a cocoercive or a monotone and Lipschitz continuous operator.

The later problems were solved by employing in an appropriate product space forward-

backward or forward-backward-forward algorithms, respectively, and gave rise to so-

called primal-dual splitting methods (see [9, 16,20,23,61] and the references therein).
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Recently, one can remark the interest of researchers in solving systems of mono-

tone inclusion problems [1,5,6,22]. This is motivated by the fact that convex optimiza-

tion problems arising, for instance, in areas like image processing [13], multifacility

location problems [18, 31], average consensus in network coloring [46, 47] and support

vector machines classification [27,28] are to be solved with respect to multiple variables,

very often linked in different manners, for instance, by linear equations.

The present research is motivated by the investigations made in [1]. The au-

thors propose there an algorithm for solving coupled monotone inclusion problems,

where the variables are linked by some operators which satisfy jointly a cocoercivity

property. Our aim is to overcome the necessity of having differentiability for some of

the functions occurring in the objective of the convex optimization problems in [1]. To

this end we consider first a more general system of monotone inclusions, for which the

coupling operator satisfies a Lipschitz continuity property, along with its dual system

of monotone inclusions in an extended sense of the Attouch-Théra duality (see [2]). The

simultaneous solving of the primal and dual system of monotone inclusions is reduced

to the problem of finding the zeros of the sum of a maximal monotone operator and

a monotone and Lipschitz continuous operator in an appropriate product space. The

latter problem is solved by a forward-backward-forward algorithm, fact that allows us

to provide for the resulting iterative scheme, which proves to have a high parallelizable

formulation, both weak and strong convergence assertions.

The thesis is organized in five chapters and a bibliography. In the first chapter

we state the initial problem that stimulated this research. H. Attouch, L.M. Briceno-

Arias and P.L. Combettes proposed in [1] a parallel splitting method for solving systems

of coupled monotone inclusions in Hilbert spaces, establishing its convergence under

the assumption that solutions exist. The method can handle an arbitrary number of

variables and nonlinear coupling schemes.

In the second chapter we give some necessary notations and preliminary re-

sults in order to facilitate the reading of the manuscript and to help the reader to

understand easily the following parts. Notions like nonexpansive operators, parallel

sum, cocoercivity, conjugation, Fenchel duality, subdifferentiability and maximal mono-

tone operators are introduced together with some essential splitting algorithms like
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the Douglas-Rachford algorithm, forward-backward algorithm and Tseng’s algorithm.

These algorithms have been studied more extensively in [4].

Chapter three is devoted to the primal-dual splitting algorithm for solving the

problem considered in this thesis and investigates its convergence behaviour. The op-

erators arising in each of the inclusions of the system are processed in every iteration

separately, namely, the single-valued are evaluated explicitly, which is equivalent to a

forward step, while the set-valued ones via their resolvents, which is equivalent to a

backward step. In addition, most of the steps in the iterative scheme can be executed

simultaneously, this making the method applicable to a variety of convex minimization

problems. The solving of convex optimization problems with multiple variables is also

presented in this chapter.

In Chapter four, the numerical performances and effectiveness of the proposed

splitting algorithm are emphasized through several numerical experiments, like image

processing, where a noisy and blurry image is cleared; multifacility location problems,

where the objective is to minimize the energy path between existing facilities and

multiple new facilities, which have to be located among the existing ones; average

consensus on colored networks, which consists in calculating the average of the value

of each node in a recursive and distributed way; image classification via support vector

machines, where the aim is to construct a decision function with the help of training

data, which should assign every new data correctly with a low misclassification rate.

Finally, the last part of the thesis presents a collaboration with a research team

in biology studying the presence of picoalgae in Transylvanian salt lakes. The aim

was to adapt the proposed algorithm for image processing and pattern recognition

for microscopic images and electrophoretograms. The developing process included the

work with epifluorescence microscopic images of picoalgae and the goal was to count

and distinguish picoalgae from the background noise.

Keywords

convex optimization, coupled systems, forward-backward-forward algorithm, Lipschitz

continuity, monotone inclusion, operator splitting, pattern recognition



Chapter 2

Background of the theory of

monotone operators

The mathematical notion of a Hilbert space was named after the German mathe-

matician David Hilbert. The earliest Hilbert spaces were studied as infinite-dimensional

function spaces in the first decade of the 20th century by David Hilbert, Frigyes Riesz

and Erhard Schmidt. Throughout this work R+ denotes the set of non negative real

numbers, R++ the set of strictly positive real numbers and R = R ∪ {±∞} the ex-

tended real-line. We consider Hilbert spaces endowed with the scalar (or inner) product

〈·|·〉 and the associated norm ‖·‖ =
√
〈·|·〉. In order to avoid confusion, when needed,

appropriate indices will be used for the inner product and norm. The symbols ⇀ and

→ denote weak and strong convergence, respectively.

2.1 Operators

Let H be a real Hilbert space and let 2H be the power set of H, i.e., the family of

all subsets of H. The notation M : H → 2H means that M is a set-valued operator, i.e.

M maps every point x ∈ H to a setMx ⊂ H . We denote by zerM = {x ∈ H : 0 ∈Mx}

the set of zeros of M and by graM = {(x, u) ∈ H×H : u ∈Mx} the graph of M . The

domain and the range of M are

domM = {x ∈ H : Mx 6= ∅} and ranM = M(H),
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respectively. In addition, the closure of domM is denoted by domM and the closure

of ranM is denoted by ranM . The reversal of M is M̌ : x 7→M(−x).

The inverse of M , denoted by M−1 : H → 2H, is defined through its graph

graM−1 = {(u, x) ∈ H ×H : (x, u) ∈ graM} .

Thus, for every (x, u) ∈ H ×H, u ∈ Mx ⇔ x ∈ M−1u. Moreover, domM−1 = ranM

and ranM−1 = domM .

The sum and the parallel sum of two set-valued operators M, N : H → 2H are

defined as

M +N : H → 2H, (M +N)(x) = M(x) +N(x), ∀x ∈ H (2.1.1)

and

M �N : H → 2H,M �N =
(
M−1 +N−1

)−1
. (2.1.2)

Let G be another real Hilbert space and consider the single-valued operator

L : H → G (also called mapping), that maps every point x in H to a point Lx in G.

The norm of the linear continuous operator L is defined as ‖L‖ = sup{‖Lx‖ : x ∈

H, ‖x‖ ≤ 1}, while L∗ : G → H, defined by 〈Lx|y〉 = 〈x|L∗y〉 for all (x, y) ∈ H × G,

denotes the adjoint operator of L.

2.2 Functions

Let H be a real Hilbert space.

Definition 2.2.1. Consider the function f : H → R. The effective domain of f is

dom f = {x ∈ H : f(x) < +∞} ,

the graph of f is

gra f = {(x, ξ) ∈ H × R : f(x) = ξ} ,
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the epigraph of f is

epi f = {(x, ξ) ∈ H × R : f(x) ≤ ξ} ,

the lower level set of f at height ξ ∈ R is

lev
≤ξ
f = {x ∈ H : f(x) ≤ ξ} ,

and the strict lower level set of f at height ξ ∈ R is

lev
<ξ
f = {x ∈ H : f(x) < ξ} .

The function f is called proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ H.

Furthermore, the closures of dom f and epi f are respectively denoted by domf and

epif .

We denote by Γ(H) the set of proper, convex and lower semicontinuous functions

f : H → R.

The indicator function δC : H → R of a set C ⊆ H is defined by

δC(x) =

 0, for x ∈ C;

+∞, otherwise.
(2.2.1)

Note that the indicator function δC is lower semicontinuous if and only if C is closed.

Definition 2.2.2. Let f and g be two proper functions from H to R. The infimal

convolution (or epi-sum) of f and g is defined by

f � g : H → R, f � g(x) = inf
y∈H
{f(y) + g(x− y)} .

Definition 2.2.3. Let f : H → R. The conjugate function (or Fenchel conjugate) of f

is f ∗ : H → R, f ∗(u) = sup {〈u, x〉 − f(x) : x ∈ H} for all u ∈ H and the biconjugate

of f is f ∗∗ = (f ∗)∗.

Note that, if f ∈ Γ(H), then f ∗ ∈ Γ(H), as well.

The following version of Fenchel’s duality theorem was obtained by R. T. Rock-

afellar [53].
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Theorem 2.2.1. Let H be a Hilbert space. Let f, g : H → R ∪ +∞ be proper convex

functions.

(i) If dom f ∩ dom g contains a point at which f or g is continuous, then

(f + g)∗ = f ∗� g∗

with exact infimal convolution.

(ii) Suppose that f and g belong to Γ(H). If dom f ∗ ∩ dom g∗ contains a point at

which f ∗ or g∗ is continuous, then

f � g = (f ∗ + g∗)∗

with exact infimal convolution.

Definition 2.2.4. The primal problem associated with the sum of two proper functions

f : H → R and g : H → R is

min
x∈H
{f(x) + g(x)},

its dual problem is

min
u∈H
{f ∗(u) + g ∗ (u)},

the primal optimal value is µ = inf(f + g)(H), the dual optimal value is µ∗ = inf(f ∗ +

ǧ∗)(H), and the duality gap is

∆(f, g) =

 0, µ = −µ∗ ∈ R;

µ+ µ∗, otherwise.
(2.2.2)



Chapter 3

The primal-dual splitting technique

The following results presented in th thesis are based on the article [10], that

resulted from my cooperation with professor Radu Ioan Boţ and Ernő Robert Csetnek.

3.1 Monotone inclusion problem formulation

The problem under consideration is a more general system of monotone inclu-

sions, than the one presented in [1], for which the coupling operator satisfies a Lipschitz

continuity property, along with its dual system of monotone inclusions in an extended

sense of the Attouch-Théra duality [2].

Problem 3.1.1. Let m ≥ 1 be a positive integer, (Hi)1≤i≤m be real Hilbert spaces and

for i = 1, ...,m let Bi : H1× . . .×Hm → Hi be a µi-Lipschitz continuous operator with

µi ∈ R++ jointly satisfying the monotonicity property

∀(x1, . . . , xm) ∈ H1 × . . .×Hm, ∀(y1, . . . , ym) ∈ H1 × . . .×Hm

m∑
i=1

〈xi − yi|Bi(x1, . . . , xm)−Bi(y1, . . . , ym)〉Hi
≥ 0. (3.1.1)

For every i = 1, . . . ,m, let Gi be a real Hilbert space, Ai : Gi → 2Gi a maximal monotone

operator, Ci : Gi → 2Gi a monotone operator such that C−1i is νi-Lipschitz continuous

with νi ∈ R+ and Li : Hi → Gi a linear continuous operator. The problem is to solve
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the system of coupled inclusions

find x1 ∈ H1, . . . , xm ∈ Hm such that


0 ∈ L∗1(A1�C1)(L1x1) +B1(x1, . . . , xm)
...

0 ∈ L∗m(Am�Cm)(Lmxm) +Bm(x1, . . . , xm)

(3.1.2)

together with its dual system

find v1 ∈ G1, . . . , vm ∈ Gm such that

∃x1 ∈ H1, . . . ,∃xm ∈ Hm



0 = L∗1v1 +B1(x1, . . . , xm)
...

0 = L∗mvm +Bm(x1, . . . , xm)

v1 ∈ (A1�C1)(L1x1)
...

vm ∈ (Am�Cm)(Lmxm)

. (3.1.3)

We say that (x1, . . . , xm, v1, . . . , vm) ∈ H1× . . .×Hm×G1 . . .×Gm is a primal-

dual solution to Problem 3.1.1, if

0 = L∗i vi +Bi(x1, . . . , xm) and vi ∈ (Ai�Ci)(Lixi), i = 1, . . . ,m. (3.1.4)

If (x1, . . . , xm, v1, . . . , vm) ∈ H1 × . . . ×Hm × G1 . . . × Gm is a primal-dual solution to

Problem 3.1.1, then (x1, . . . , xm) is a solution to (3.1.2) and (v1, . . . , vm) is a solution

to (3.1.3). Notice also that

(x1, . . . , xm) solves (3.1.2)⇔ 0 ∈ L∗i (Ai�Ci)(Lixi) +Bi(x1, . . . , xm), i = 1, . . . ,m⇔

∃ v1 ∈ G1, . . . , vm ∈ Gm such that

 0 = L∗i vi +Bi(x1, . . . , xm), i = 1, . . . ,m

vi ∈ (Ai�Ci)(Lixi), i = 1, . . . ,m.
.

Thus, if (x1, . . . , xm) is a solution to (3.1.2), then there exists (v1, . . . , vm) ∈ G1× . . .Gm
such that (x1, . . . , xm, v1, . . . , vm) is a primal-dual solution to Problem 3.1.1 and, if

(v1, . . . , vm) ∈ G1 × . . .Gm is a solution to (3.1.3), then there exists (x1, . . . , xm) ∈

H1 × . . .×Hm such that (x1, . . . , xm, v1, . . . , vm) is a primal-dual solution to Problem

3.1.1.
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3.2 The primal-dual splitting algorithm

The aim of this section is to provide an algorithm for solving Problem 3.1.1

and to furnish weak and strong convergence results for the sequences generated by

it. The proposed iterative scheme has the property that each single-valued operator

is processed explicitly, while each set-valued operator is evaluated via its resolvent.

Absolutely summable sequences make the algorithm error-tolerant.

Algorithm 3.2.1.

For every i = 1, . . . ,m let (a1,i,n)n≥0, (b1,i,n)n≥0, (c1,i,n)n≥0 be absolutely summable

sequences in Hi and (a2,i,n)n≥0, (b2,i,n)n≥0, (c2,i,n)n≥0 absolutely summable sequences in

Gi. Furthermore, set

β = max


√√√√ m∑

i=1

µ2
i , ν1, . . . , νm

+ max
i=1,...,m

‖Li‖ , (3.2.1)

let ε ∈]0, 1/(β + 1)[ and (γn)n≥0 be a sequence in [ε, (1− ε)/β]. For every i = 1, . . . ,m

let the initial points xi,0 ∈ Hi and vi,0 ∈ Gi be chosen arbitrary and set

∀n ≥ 0



For i = 1, . . . ,m

yi,n = xi,n − γn(L∗i vi,n +Bi(x1,n, . . . , xm,n) + a1,i,n)

wi,n = vi,n − γn(C−1i vi,n − Lixi,n + a2,i,n)

pi,n = yi,n + b1,i,n

ri,n = JγnA−1
i
wi,n + b2,i,n

qi,n = pi,n − γn(L∗i ri,n +Bi(p1,n, . . . , pm,n) + c1,i,n)

si,n = ri,n − γn(C−1i ri,n − Lipi,n + c2,i,n)

xi,n+1 = xi,n − yi,n + qi,n

vi,n+1 = vi,n − wi,n + si,n.

The convergence of Algorithm 3.2.1 is established by showing that its iterative

scheme can be reduced to the error-tolerant version of the forward-backward-forward

algorithm of Tseng (see [59] for the error-free case) recently provided in [16]. Our algo-
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rithmic framework will hinge on the following splitting algorithm, which is of interest

in its own right.

Theorem 3.2.1. [16] Let H be a real Hilbert space, let M : H → 2H be maximal

monotone, and let L : H → H be monotone. Suppose that zer(M + L) 6= ∅ and that

L is β-Lipschitz continuous for some β ∈]0,+∞[. Let (an)n∈N, (bn)n∈N and (cn)n∈N be

sequences in H such that

∑
n∈N

‖an‖ < +∞,
∑
n∈N

‖bn‖ < +∞ and
∑
n∈N

‖cn‖ < +∞,

let x0 ∈ H, let ε ∈]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1− ε)/β], and set

∀n ∈ N


yn = xn − γn(Lxn + an)

pn = JγnMyn + bn

qn = pn − γn(Lpn) + cn)

xn+1 = xn − yn + qn.

Then the following hold for some x ∈ zer(M + L):

(i)
∑

n∈N ‖xn − pn‖
2 < +∞ and

∑
n∈N ‖yn − qn‖

2 < +∞.

(ii) xn ⇀ x and pn ⇀ x.

(iii) Suppose that one of the following is satisfied:

(a) M + L is demiregular at x.

(b) M or L is uniformly monotone at x.

(c) int zer(M + L) 6= ∅.

Then xn → x and pn → x.

For a more detailed insight on the problem of simultaneously solving a large class

of composite monotone inclusions and their duals, while reducing it to the problem of

finding a zero of the sum of a maximal monotone operator and a linear skew-adjoint

operator, we recommend the work of Luis M. Briceño-Arias and Patrick L. Combettes

in [16].

The following theorem establishes the convergence of Algorithm 3.2.1:
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Theorem 3.2.2. [10] Suppose that Problem 3.1.1 has a primal-dual solution. For the

sequences generated by Algorithm 3.2.1 the following statements are true:

(i) ∀i ∈ {1, . . . ,m}
∑
n≥0
‖xi,n − pi,n‖2Hi

< +∞ and
∑
n≥0
‖vi,n − ri,n‖2Gi < +∞.

(ii) There exists a primal-dual solution (x1, . . . , xm, v1, . . . , vm) to Problem 3.1.1 such

that:

(a) ∀i ∈ {1, . . . ,m} xi,n ⇀ xi, pi,n ⇀ xi, vi,n ⇀ vi and ri,n ⇀ vi as n→ +∞.

(b) if C−1i , i = 1, ...,m, is uniformly monotone and there exists an increasing

function φB : R+ → R+ ∪ {+∞} vanishing only at 0 and fulfilling

∀(x1, . . . , xm) ∈ H1 × . . .×Hm, ∀(y1, . . . , ym) ∈ H1 × . . .×Hm

m∑
i=1

〈xi − yi|Bi(x1, . . . , xm)−Bi(y1, . . . , ym)〉Hi
≥

φB

(
‖(x1, . . . , xm)− (y1, . . . , ym)‖

)
, (3.2.2)

then ∀i ∈ {1, . . . ,m} xi,n → xi, pi,n → xi, vi,n → vi and ri,n → vi as

n→ +∞.

3.3 Applications to convex minimization problems

In this section we turn our attention to the solving of convex minimization prob-

lems with multiple variables via the primal-dual algorithm presented and investigated

in this thesis.

Problem 3.3.1. Let m ≥ 1 and p ≥ 1 be positive integers, (Hi)1≤i≤m, (H′i)1≤i≤m and

(Gj)1≤j≤p be real Hilbert spaces, fi, hi ∈ Γ(H′i) such that hi is ν−1i -strongly convex with

νi ∈ R++, i = 1, ...,m, and gj ∈ Γ(Gj) for i = 1, ...,m, j = 1, ..., p. Further, let be

Ki : Hi → H
′
i and Lji : Hi → Gj, i = 1, ...,m, j = 1, ..., p linear continuous operators.

Consider the convex optimization problem

inf
(x1,...,xm)∈H1×...×Hm

{
m∑
i=1

(fi�hi)(Kixi) +

p∑
j=1

gj

(
m∑
i=1

Ljixi

)}
. (3.3.1)
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In what follows we show that under an appropriate qualification condition solv-

ing the convex optimization problem (3.3.1) can be reduced to the solving of a system

of monotone inclusions of type (3.1.2).

Let us define the following proper convex and lower semicontinuous function

f : H′1 × . . .×H
′

m → R, (y1, . . . , ym) 7→
m∑
i=1

(fi�hi)(yi),

and the linear continuous operator

K : H1 × . . .×Hm → H
′

1 × . . .×H
′

m, (x1, . . . , xm) 7→ (K1x1, . . . , Kmxm),

having as adjoint

K∗ : H′1 × . . .×H
′

m → H1 × . . .×Hm, (y1, . . . , ym) 7→ (K∗1y1, . . . , K
∗
mym).

Further, consider the linear continuous operators

Lj : H1 × . . .×Hm → Gj, (x1, . . . , xm) 7→
m∑
i=1

Ljixi, j = 1, ..., p,

having as adjoints

L∗j : Gj → H1 × . . .×Hm, y 7→ (L∗j1y, . . . , L
∗
jmy), j = 1, ..., p,

respectively. We have

(x1, . . . , xm) is an optimal solution to (3.3.1)

⇔ (0, . . . , 0) ∈ ∂

(
f ◦K +

p∑
j=1

gj ◦ Lj

)
(x1, . . . xm). (3.3.2)

In order to split the above subdifferential in a sum of subdifferentials a so-called

qualification condition must be fulfilled. In this context, we consider the following
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interiority-type qualification conditions:

(QC1)

∣∣∣∣∣∣∣∣∣
there exists x′i ∈ Hi such that

Kix
′
i ∈ (dom fi + domhi) and fi�hi is continuous at Kix

′
i, i = 1, ...,m,

and
∑m

i=1 Ljix
′
i ∈ dom gj and gj is continuous at

∑m
i=1 Ljix

′
i, j = 1, ..., p

and

(QC2)

∣∣∣∣∣∣∣∣∣
(0, . . . , 0) ∈ sqri

(∏m
i=1(dom fi + domhi)×

∏p
j=1 dom gj

−{(K1x1, . . . , Kmxm,
∑m

i=1 L1ixi, . . . ,
∑m

i=1 Lpixi) :

(x1, . . . , xm) ∈ H1 × . . .×Hm}
)
.

We notice that (QC1) ⇒ (QC2), these implications being in general strict, and refer

the reader to [4, 7, 8, 29, 58, 68, 69] and the references therein for other qualification

conditions in convex optimization.

Remark 3.3.1. As already pointed out, for i = 1, ...,m, fi�hi ∈ Γ(H′i), hence, it is

continuous on int(dom fi + domhi), providing this set is nonempty (see [29, 69]). For

other results regarding the continuity of the infimal convolution of convex functions we

invite the reader to consult [57].

Remark 3.3.2. In finite-dimensional spaces the qualification condition (QC2) is equiv-

alent to

(QC2)

∣∣∣∣∣∣ there exists x′i ∈ Hi such that Kix
′
i ∈ ri dom fi + ri domhi, i = 1, ...,m,

and
∑m

i=1 Ljix
′
i ∈ ri dom gj, j = 1, ..., p.

Assuming that one of the qualification conditions above is fulfilled, we have that

(x1, . . . , xm) is an optimal solution to (3.3.1)

⇔ (0, . . . , 0) ∈ K∗∂f
(
K(x1, . . . xm)

)
+

p∑
j=1

L∗j∂gj
(
Lj(x1, . . . xm)

)
⇔ (0, . . . , 0) ∈

(
K∗1∂(f1�h1)(K1x1), . . . , K

∗
m∂(fm�hm)(Kmxm)

)
+

p∑
j=1

L∗j∂gj
(
Lj(x1, . . . xm)

)
. (3.3.3)
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The strong convexity of the functions hi imply that domh∗i = H′i and so ∂(fi�hi) =

∂fi�∂hi, i = 1, ...,m. Thus, (3.3.3) is further equivalent to

(0, . . . , 0) ∈
(
K∗1(∂f1�∂h1)(K1x1), . . . , K

∗
m(∂fm�∂hm)(Kmxm)

)
+

p∑
j=1

L∗jvj,

where

vj ∈ ∂gj
(
Lj(x1, . . . xm)

)
⇔ vj ∈ ∂gj

( m∑
i=1

Ljixi
)
⇔

m∑
i=1

Ljixi ∈ ∂g∗j (vj), j = 1, ..., p.

Then (x1, . . . , xm) is an optimal solution to (3.3.1) if and only if (x1, . . . , xm, v1, . . . , vp)

is a solution to 

0 ∈ K∗1(∂f1�∂h1)(K1x1) +
∑p

j=1 L
∗
j1vj

...

0 ∈ K∗m(∂fm�∂hm)(Kmxm) +
∑p

j=1 L
∗
jmvj

0 ∈ ∂g∗1(v1)−
∑m

i=1 L1ixi
...

0 ∈ ∂g∗p(vp)−
∑m

i=1 Lpixi.

(3.3.4)

One can see now that (3.3.4) is a system of coupled inclusions of type (3.1.2),

by taking

Ai = ∂fi, Ci = ∂hi, Li = Ki, i = 1, ...,m,

Am+j = ∂g∗j , Cm+j(x) =

 Gj, x = 0

∅, otherwise
,

Lm+j = IdGj , j = 1, ..., p,

and, for (x1, ..., xm, v1, ..., vp) ∈ H1 × . . .Hm × G1 × . . .× Gp, as coupling operators

Bi(x1, . . . , xm, v1, . . . , vp) =

p∑
j=1

L∗jivj, i = 1, . . . ,m,
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and

Bm+j(x1, . . . , xm, v1, . . . , vp) = −
m∑
i=1

Ljixi, j = 1, . . . , p.

Define

B(x1, . . . , xm, v1, . . . , vp) = (B1, . . . , Bm+p)(x1, . . . , xm, v1, . . . , vp) (3.3.5)

=

(
p∑
j=1

L∗j1vj, . . . ,

p∑
j=1

L∗jmvj,−
m∑
i=1

L1ixi, . . . ,−
m∑
i=1

Lpixi

)
.

(3.3.6)

It follows that C−1i = (∂hi)
−1 = ∂h∗i = {∇h∗i } is νi-Lipschitz continuous for

i = 1, ...,m. On the other hand, C−1m+j is the zero operator for j = 1, ..., p, thus 0-

Lipschitz continuous.

Furthermore, the operators Bi, i = 1, ...,m + p are linear and Lipschitz contin-

uous, having as Lipschitz constants

µi =

√√√√ p∑
j=1

‖Lji‖2, i = 1, ...,m, and µm+j =

√√√√ m∑
i=1

‖Lji‖2, j = 1, ..., p,

respectively. For every (x1, . . . , xm, v1, . . . , vp), (y1, . . . , ym, w1, . . . , wp) ∈ H1 × . . . ×

Hm × G1 × . . .× Gp it holds

m∑
i=1

〈xi − yi|Bi(x1, . . . , xm, v1, . . . , vp)−Bi(y1, . . . , ym, w1, . . . , wp)〉Hi

+

p∑
j=1

〈vj − wj|Bm+j(x1, . . . , xm, v1, . . . , vp)−Bm+j(y1, . . . , ym, w1, . . . , wp)〉Gj

=
m∑
i=1

〈
xi − yi|

p∑
j=1

L∗jivj −
p∑
j=1

L∗jiwj

〉
Hi

−
p∑
j=1

〈
vj − wj|

m∑
i=1

Ljixi −
m∑
i=1

Ljiyi

〉
Gj

= 0,

thus (3.1.1) is fulfilled. This proves also that the linear continuous operator B is skew

(i.e. B∗ = −B).

Remark 3.3.3. Due to the fact that the operator B is skew, it is not cocoercive, hence,
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the approach presented in [1] cannot be applied in this context. On the other hand, in the

light of the characterization given in (3.3.2), in order to determine an optimal solution

of the optimization problem (3.3.1) (and an optimal solution of its Fenchel-type dual as

well) one can use the primal-dual proximal splitting algorithms which have been recently

introduced in [23, 61]. These approaches have the particularity to deal in an efficient

way with sums of compositions of proper, convex and lower semicontinuous function

with linear continuous operators, by evaluating separately each function via a backward

step and each linear continuous operator (and its adjoint) via a forward step. However,

the iterative scheme we propose in this section for solving (3.3.1) has the advantage of

exploiting the separable structure of the problem.

Let us also mention that the dual inclusion problem of (3.3.4) reads (see (3.1.3))

find w1 ∈ H
′
1, . . . , wm ∈ H

′
m,

wm+1 ∈ G1, . . . , wm+p ∈ Gp such that

∃x1 ∈ H1, . . . ,∃xm ∈ Hm,∃v1 ∈ G1, . . . ,∃vp ∈ Gp



0 = K∗1w1 +
∑p

j=1 L
∗
j1vj

...

0 = K∗mwm +
∑p

j=1 L
∗
jmvj

0 = wm+1 −
∑m

i=1 L1ixi
...

0 = wm+p −
∑m

i=1 Lpixi

w1 ∈ (∂f1�∂h1)(K1x1)
...

wm ∈ (∂fm�∂hm)(Kmxm)

wm+1 ∈ ∂g∗1(v1)
...

wm+p ∈ ∂g∗p(vp).

(3.3.7)

Then (x1, ...xm, v1, ..., vp, w1, ..., wm, wm+1, ..., wm+p) is a primal-dual solution to (3.3.4)

- (3.3.7), if

wi ∈ (∂fi�∂hi)(Kixi), wm+j ∈ ∂g∗j (vj),

0 = K∗i wi +

p∑
j=1

L∗jivj and 0 = wm+j −
m∑
i=1

Ljixi, i = 1, ...,m, j = 1, ..., p.
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Provided that (x1, ...xm, v1, ..., vp, w1, ..., wm, wm+1, ..., wm+p) is a primal-dual solution

to (3.3.4) - (3.3.7), it follows that (x1, ...xm) is an optimal solution to (3.3.1) and

(w1, ..., wm, v1, ..., vp) is an optimal solution to its Fenchel-type dual problem

sup
(w1,...,wm,wm+1,...,wm+p)∈H

′
1×...×H

′
m×G1×...×Gp

K∗i wi+
∑p

j=1 L
∗
jiwm+j=0,i=1,...,m

{
−

m∑
i=1

(f ∗i (wi) + h∗i (wi))−
p∑
j=1

g∗j (wm+j)

}
.

(3.3.8)

Algorithm 3.2.1 gives rise to the following iterative scheme for solving (3.3.4) - (3.3.7).

Algorithm 3.3.1.

For every i = 1, . . . ,m and every j = 1, . . . , p let (a1,i,n)n≥0, (b1,i,n)n≥0, (c1,i,n)n≥0,

be absolutely summable sequences in Hi, (a2,i,n)n≥0, (b2,i,n)n≥0, (c2,i,n)n≥0 be absolutely

summable sequences in H′i and (a1,m+j,n)n≥0, (a2,m+j,n)n≥0, (b1,m+j,n)n≥0, (b2,m+j,n)n≥0,

(c1,m+j,n)n≥0 and (c2,m+j,n)n≥0 be absolutely summable sequences in Gj. Furthermore,

set

β = max


√√√√m+p∑

i=1

µ2
i , ν1, . . . , νm

+ max {‖K1‖ , . . . , ‖Km‖ , 1} , (3.3.9)

where

µi =

√√√√ p∑
j=1

‖Lji‖2, i = 1, . . . ,m, and µm+j =

√√√√ m∑
i=1

‖Lji‖2, j = 1, . . . , p, (3.3.10)

let ε ∈]0, 1/(β + 1)[ and (γn)n≥0 be a sequence in [ε, (1 − ε)/β]. Let the initial

points (x1,1,0, . . . , x1,m,0) ∈ H1 × . . . × Hm, (x2,1,0, . . . , x2,m,0) ∈ H
′
1 × . . . × H′m and
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(v1,1,0, . . . , v1,p,0), (v2,1,0, . . . , v2,p,0) ∈ G1 × . . .× Gp be arbitrary chosen and set

∀n ≥ 0



For i = 1, . . . ,m
y1,i,n = x1,i,n − γn

(
K∗i x2,i,n +

∑p
j=1 L

∗
jiv1,j,n + a1,i,n

)
y2,i,n = x2,i,n − γn(∇h∗ix2,i,n −Kix1,i,n + a2,i,n)

p1,i,n = y1,i,n + b1,i,n

p2,i,n = Proxγnf∗i y2,i,n + b2,i,n

For j = 1, . . . , p
w1,j,n = v1,j,n − γn (v2,j,n −

∑m
i=1 Ljix1,i,n + a1,m+j,n)

w2,j,n = v2,j,n − γn(−v1,j,n + a2,m+j,n)

r1,j,n = w1,j,n + b1,m+j,n

r2,j,n = Proxγngj w2,j,n + b2,m+j,n

For i = 1, . . . ,m
q1,i,n = p1,i,n − γn

(
K∗i p2,i,n +

∑p
j=1 L

∗
jir1,j,n + c1,i,n

)
q2,i,n = p2,i,n − γn(∇h∗i p2,i,n −Kip1,i,n + c2,i,n)

x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n

x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

For j = 1, . . . , p
s1,j,n = r1,j,n − γn (r2,j,n −

∑m
i=1 Ljip1,i,n + c1,m+j,n)

s2,j,n = r2,j,n − γn(−r1,j,n + c2,m+j,n)

v1,j,n+1 = v1,j,n − w1,j,n + s1,j,n

v2,j,n+1 = v2,j,n − w2,j,n + s2,j,n.

The following convergence result for Algorithm 3.3.1 is a consequence of Theo-

rem 3.2.2.

Theorem 3.3.1. [10] Suppose that the optimization problem (3.3.1) has an optimal

solution and that one of the qualification conditions (QCi), i = 1, 2, is fulfilled. For the

sequences generated by Algorithm 3.3.1 the following statements are true:

(i) ∀i ∈ {1, . . . ,m}
∑
n≥0
‖x1,i,n − p1,i,n‖2Hi

< +∞,
∑
n≥0
‖x2,i,n − p2,i,n‖2Hi

< +∞ and

∀j ∈ {1, . . . , p}
∑
n≥0
‖v1,j,n − r1,j,n‖2Gj < +∞,

∑
n≥0
‖v2,j,n − r2,j,n‖2Gj < +∞.

(ii) There exists an optimal solution (x1, . . . , xm) to (3.3.1) and an optimal solution



24 Chapter 3. The primal-dual splitting technique

(w1, . . . , wm, wm+1, . . . , wm+p) to (3.3.8), such that ∀i ∈ {1, . . . ,m} x1,i,n ⇀ xi,

p1,i,n ⇀ xi, x2,i,n ⇀ wi and p2,i,n ⇀ wi and ∀j ∈ {1, . . . , p} v1,j,n ⇀ wm+j and

r1,j,n ⇀ wm+j as n→ +∞.

Remark 3.3.4. Recently, in [22], another iterative scheme for solving systems of

monotone inclusions, that is also able to handle with the solving of optimization prob-

lems of type (3.3.1), in case when the functions gj, j = 1, ..., p, are not necessarily

differentiable, was proposed. Different to our approach, which assumes that the vari-

ables are coupled by the single-valued operator B, in [22] the coupling is made by some

compositions of parallel sums of maximal monotone operators with linear continuous

ones.
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Numerical experiments

The obtained theoretical results are highly applicable in various fields of math-

ematics. In this section we present four numerical experiments which emphasize the

performances of the primal-dual algorithm and some of its variants for systems of cou-

pled monotone inclusions, namely image processing, multifacility location problems,

average consensus for colored networks and image classification via support-vector ma-

chines.

4.1 Image processing

The first numerical experiment solves the problem of image processing via the

primal-dual splitting algorithm developed in this thesis. The aim is to estimate the

unknown original image form the blurred and noisy image, with the help of the algo-

rithm.

4.1.1 Image deblurring

Let H and (H′i)1≤i≤m be real Hilbert spaces, where m ≥ 1. For every i ∈

{1, . . . ,m}, let fi ∈ Γ(H′i) and let Ki : H → H′i be continuous linear operators.

Consider the initial convex optimization problem

inf
x∈H

{ m∑
i=1

fi(Kix)
}
. (4.1.1)
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In the case of multiple variables, (4.1.1) can be reformulated as:

inf
x1,...,xm+1

{ m∑
i=1

fi(Kixi) +
m∑
i=1

δ{0}(xi − xm+1)
}
. (4.1.2)

This is a special instance of Problem 3.3.1 with (m, p) := (m + 1,m), fm+1 = 0,

Km+1 = 0 and ∀i ∈ {1, . . . ,m + 1}, hi = δ{0} and ∀j ∈ {1, . . . ,m}, Gj = H, gj = δ{0}

and

Lji : Hi → Hj 7→


Id, if i = j;

− Id, if i = m+ 1;

0, otherwise.

(4.1.3)

Let (x1,1,0, . . . , x1,m+1,0), (x2,1,0, . . . , x2,m+1,0) ∈ H1 × . . . × Hm+1 and

(v1,1,0, . . . , v1,m,0), (v2,1,0, . . . , v2,m,0) ∈ H1 × . . .×Hm. In this case (3.3.9) yields

β = 2
√
m+ max

{
‖K1‖ , . . . , ‖Km+1‖ , 1

}
. (4.1.4)

Algorithm 4.1.1.

Hence, the iterative scheme in Algorithm 3.3.1 reads

∀n ≥ 0



For i = 1, . . . ,m
y1,i,n = x1,i,n − γn

(
K∗i x2,i,n + v1,i,n

)
w1,i,n = v1,i,n − γn

(
v2,i,n − x1,i,n + x1,m+1,n

)
y2,i,n = x2,i,n + γnKix1,i,n

w2,i,n = v2,i,n + γnv1,i,n

y1,m+1,n = x1,m+1,n + γn
∑m

i=1 v1,i,n

For i = 1, . . . ,m
x1,i,n+1 = x1,i,n − γn

(
K∗i proxγnf∗i y2,i,n + w1,i,n

)
v1,i,n+1 = v1,i,n + γn

(
y1,i,n − y1,m+1,n

)
x2,i,n+1 = x2,i,n − y2,i,n + proxγnf∗i y2,i,n + γnKiy1,i,n

v2,i,n+1 = v2,i,n − w2,i,n + γnw1,i,n

x1,m+1,n+1 = x1,m+1,n + γn
∑m

i=1w1,i,n
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Then (x1,1,n, . . . , x1,m+1,n)→ (x, . . . , x).

Consider a matrix A ∈ Rn×n representing the blur operator and a given vector

b ∈ Rn describing the blurred and noisy image. The goal is to estimate x∗ ∈ Rn, which

is the unknown original image and fulfills the following

Ax = b.

The problem to be solved can be equivalently written as

inf
x∈S

{
f1(x) + f2(Ax)

}
, (4.1.5)

for f1 : Rn → R, f1(x) = λ ‖x‖1 + δS(x) and f2 : Rn → R, f2(y) = ‖y − b‖2.

Thus f is proper, convex and lower semicontinuous with bounded domain and g is a 2-

strongly convex function with full domain, differentiable everywhere and with Lipschitz

continuous gradient having as Lipschitz constant 2. λ > 0 represents the regularization

parameter and S ⊆ Rn is an n-dimensional cube representing the range of the pixels.

Since each pixel furnishes a greyscale value which is between 0 and 255, a natural

choice for the convex set S would be the n-dimensional cube [0, 255]n ⊆ Rn. In order

to reduce the Lipschitz constant which appears in the developed approach, we scale

the pictures that we use to exemplify the application, such that each of their pixels

ranges in the interval
[
0, 1

10

]
.
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4.1.2 Experimental setting

We concretely look at the 256×256 Cameraman, Lena and Barbara test images.

The Cameraman test image is part of the image processing toolbox in Matlab

and its vectorized and scaled image dimension equals n = 2562 = 65536. By making

use of the Matlab functions imfilter and fspecial, this image is blurred as follows:

1 H=f s p e c i a l ( ’ gauss ian ’ , 9 , 4 ) ; % gauss ian b lur o f s i z e 9 t imes 9

2 % and standard dev i a t i on 4

3 B=i m f i l t e r (X,H, ’ conv ’ , ’ symmetric ’ ) ; % B=observed b lur r ed image

4 % X=o r i g i n a l image

In row 1 the function fspecial returns a rotationally symmetric Gaussian lowpass

filter of size 9 × 9 with standard deviation 4. The entries of H are nonnegative and

their sum adds up to 1. In row 3 the function imfilter convolves the filter H with

the image X ∈ R256×256 and outputs the blurred image B ∈ R256×256 . The boundary

option ”symmetric” corresponds to reflexive boundary conditions. For more interesting

applications concerning Matlab test images deblurred with different techniques, we refer

the reader to [11–15,19].

Thanks to the rotationally symmetric filter H, the linear operator A ∈ Rn×n

given by the Matlab function imfilter is symmetric, too. After adding a zero-mean

white Gaussian noise with standard deviation 10−4, we obtain the blurred and noisy

image b ∈ Rn.

In this particular case m := 2, K1 = Id, K2 = A and β equals

β = 2
√

2 + max
{
‖A‖ , 1

}
. (4.1.6)

By making use of the real spectral decomposition of A, it shows that ‖A‖2 = 1. Hence

β = 2
√

2 + 1.
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Algorithm 4.1.2.

Algorithm 4.1.1 can be written as

∀n ≥ 0



y1,1,n = x1,1,n − γn
(
x2,1,n + v1,1,n

)
w1,1,n = v1,1,n − γn

(
v2,1,n − x1,1,n + x1,3,n

)
y2,1,n = x2,1,n + γnx1,1,n

w2,1,n = v2,1,n + γnv1,1,n

y1,2,n = x1,2,n − γn
(
A∗x2,2,n + v1,2,n

)
w1,2,n = v1,2,n − γn

(
v2,2,n − x1,2,n + x1,3,n

)
y2,2,n = x2,2,n + γnAx1,2,n

w2,2,n = v2,2,n + γnv1,2,n

y1,3,n = x1,3,n + γn(v1,1,n + v1,2,n)

x1,1,n+1 = x1,1,n − γn
(
proxγnf∗1 y2,1,n + w1,1,n

)
v1,1,n+1 = v1,1,n + γn

(
y1,1,n − y1,3,n

)
x2,1,n+1 = x2,1,n − y2,1,n + proxγnf∗1 y2,1,n + γny1,1,n

v2,1,n+1 = v2,1,n − w2,1,n + γnw1,1,n

x1,2,n+1 = x1,2,n − γn
(
A∗proxγnf∗2 y2,2,n + w1,2,n

)
v1,2,n+1 = v1,2,n + γn

(
y1,2,n − y1,3,n

)
x2,2,n+1 = x2,2,n − y2,2,n + proxγnf∗2 y2,2,n + γnAy1,2,n

v2,2,n+1 = v2,2,n − w2,2,n + γnw1,2,n

x1,3,n+1 = x1,3,n + γn(w1,1,n + w1,2,n).

Then (x1,1,n, x1,2,n, x1,3,n)→ (x, x, x).

Figure 4.1 shows the reconstructed images with 500 and 1000 iterations.

Another test image which is very popular and is often used in image processing

is the 256 × 256 Lena test image. The picture undergoes the same blur as described

in the previous case. Figure 4.2 shows the reconstructed images with 500 and 1500

iterations.

A third example in image processing is the 256 × 256 Barbara test image. We

ran our algorithm on this test image too in order to demonstrate the applicability of

the method on different images. Figure 4.3 shows the reconstructed images in the case
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(a) Blurred and noisy image (b) 500 iterations

(c) 1000 iterations (d) Original image

Figure 4.1: Figure (a) is the obtained image after multiplying with a blur operator and
adding white Gaussian noise, (b) shows the averaged sequence generated by Algorithm 4.1.2
after 500 iterations. Figure (c) is the reconstructed image after 1000 iterations, (d) shows the
clean 256× 256 Cameraman test image.

of 400 and 800 iterations.

A valuable tool for measuring the quality of these images is the so-called im-

provement in signal-to-noise ratio (ISNR), which is defined as

ISNR(k) = 10 log10

(
‖x− b‖2

‖x− xk‖2

)
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(a) Blurred and noisy image (b) 500 iterations

(c) 1500 iterations (d) Original image

Figure 4.2: Figure (a) is the obtained image after multiplying with a blur operator and
adding white Gaussian noise, (b) shows the averaged sequence generated by Algorithm 4.1.2
after 500 iterations. Figure (c) is the reconstructed image after 1500 iterations, (d) shows the
clean 256× 256 Lena test image.

where x, b and xk denote the original, observed and estimated image at iteration k,

respectively. Figure 4.4 shows the evolution of the ISNR values for the three images

presented.
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(a) Blurred and noisy image (b) 400 iterations

(c) 800 iterations (d) Original image

Figure 4.3: Figure (a) is the obtained image after multiplying with a blur operator and
adding white Gaussian noise, (b) shows the averaged sequence generated by Algorithm 4.1.2
after 400 iterations. Figure (c) is the reconstructed image after 800 iterations, (d) shows the
clean 256× 256 Barbara test image.

4.2 Multifacility location problems

The second numerical experiment solves the multifacility location problem. It

was as early as the 17th century that mathematicians, notably Fermat, were concerned

with what are known as single facility location problems. However, it was not until

the 20th century that normative approaches to solving symbolic models of these and

related problems were addressed in the literature. Each of these solution techniques
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Figure 4.4: Evolution of the signal-to-noise ratio (ISNR) for the Cameraman, Lena and
Barbara test images.

concerned themselves with determining the location of a new facility, or new facilities,

with respect to the location of existing facilities so as to minimize a cost function based

on a weighted interfacility distance measure [17,18,49,51,52,64–66].

The Euclidean distance problem for the case of single new facilities was ad-

dressed by Weiszfeld [63], Miehle [45], Kuhn and Kuenne [42], and Cooper [24–26] to

name a few. However, it was not until the work of Kuhn [41] that the problem was

considered completely solved. A computational procedure for minimizing the Euclidean

multifacility problem was presented by Vergin and Rogers [60] in 1967; however, their

techniques sometimes give suboptimum solutions. Two years later, Love [44] gave a

scheme for solving this problem which makes use of convex programming and penalty

function techniques. One advantage to this approach is that it considers the existence

of various types of spatial constraints. In 1973, Eyster, White and Wierwille [31] pre-

sented the hyperboloid approximation procedure (HAP) for both rectilinear and Eu-

clidean distance measures which extended the technique employed in solving the single

facility problem to the multifacility case [18].

If one studies a list of references of the work done in the past decade involving

facility location problems, it becomes readily apparent that there exists a strong in-
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terdisciplinary interest in this area within the fields of applied mathematics, operation

research, civil engineering, architecture, management science, systems engineering, lo-

gistics, economics, regional science, transportation systems, urban design and industrial

engineering, among others. As a result, the term ”facility” has taken on a very broad

connotation in order to suit applications in each of these areas. For example, a facility

can be a hospital, an ambulance, an airport, a police cruise, a manned space vehicle, a

machine tool, a school, a student to be bused to a school in an urban environment, a

remote computer terminal, a home appliance, a planned community, a warehouse, an

office building, a pump in a pipeline, a sewage treatment plant, and so on [31, 33, 37].

Francis and Goldstein [34] provide a fairly recent bibliography of the facility location

literature. One of the most complete classifications of these problems is provided in a

book by Francis and White [35].

4.2.1 Problem manipulation

We proceed with the presentation of an efficient solution procedure for solving

a multifacility location problem, which can be formulated mathematically as follows:

inf
x1,x2

{ k∑
i=1

λi ‖x1 − ci‖2 +
k∑
i=1

γi ‖x2 − ci‖2 + α ‖x1 − x2‖
}
, (4.2.1)

where we use the following notations

xj =vector location of a new facility j, 1 ≤ j ≤ 2;

ci =vector location of an existing facility i, 1 ≤ i ≤ k;

λi =non negative weight between the new facility x1 and an existing facility i,

1 ≤ i ≤ k;

γi =non negative weight between the new facility x2 and an existing facility i,

1 ≤ i ≤ k;

α =non negative weight between the two new facilities x1 and x2.
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The discussed multifacility location problem 4.2.1 is in fact a special instance

of Problem 3.3.1 with (m, p) := (2, 2k + 1), fi = 0, hi = δ{0}, Ki = 0, where i = 1, 2,

and

gj(x) =


λj ‖x− cj‖2 , if j = 1, . . . , k;

γj ‖x− cj‖2 , if j = k + 1, . . . , 2k;

α ‖x‖ , if j = 2k + 1,

Lj1 =


Id, if j = 1, . . . , k;

0, if j = k + 1, . . . , 2k;

Id, if j = 2k + 1,

and Lj2 =


0, if j = 1, . . . , k;

Id, if j = k + 1, . . . , 2k;

− Id, if j = 2k + 1.

Algorithm 4.2.1.

Hence, the iterative scheme in Algorithm 3.3.1 reads

∀n ≥ 0



For i = 1, 2 y1,i,n = x1,i,n − γn
(
x2,i,n +

∑2k+1
j=1 L∗jiv1,j,n

)
y2,i,n = x2,i,n + γnx1,i,n

For j = 1, . . . 2k + 1
w1,j,n = v1,j,n − γn

(
v2,j,n − Lj1x1,1,n − Lj2x1,2,n

)
w2,j,n = v2,j,n + γnv1,j,n

r2,j,n = proxγngjw2,j,n

For i = 1, 2 x1,i,n+1 = x1,i,n − γn
(∑2k+1

j=1 L∗jiw1,j,n

)
x2,i,n+1 = x2,i,n − y2,i,n + γny1,i,n

For j = 1, . . . , 2k + 1 v1,j,n+1 = v1,i,n − γn
(
r2,j,n − Lj1y1,1,n − Lj2y1,2,n

)
v2,j,n+1 = γn

(
w1,j,n − v1,j,n

)
+ r2,j,n.

The algorithm implemented in the MatLab programming language works with

the parameter β = 2 ∗
√
k + 1 + 1. We choose ε to be as small as possible from the

interval ]0, 1/(β+ 1)[ and the value of the parameter γ equals (1− ε)/β, for an optimal
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solution.

4.2.2 Computational experience

As an illustration of Algorithm 4.2.1, consider a location problem involving two

new facilities and five existing facilities. This example is also used for illustrating the use

of the hyperboloid approximation procedure presented in [31]. Since distances between

facilities are Euclidean, the facilities might be machines connected by straight-line

conveyors, military base connected by air travel, or industrial plants and warehouses

where strait line travel can be reasonably approximated. For the example, assume the

existing facilities are located at the coordinate points:

P1 = (0, 0);P2 = (2, 4);P3 = (6, 2);P4 = (6, 10) and P5 = (8, 8).

Also, let λi = (4, 2, 3, 0, 0), γi = (0, 2, 1, 3, 2), i = 1, . . . , 5 and α = 2. With a starting

location of x01 = (0, 0) and x02 = (0, 0), the result of the algorithm is illustrated in

Figure 4.5.

Most current techniques used for solving location problems, including Algorithm

4.2.1, define the stopping criterion based on successive changes in the value of the

objective function, which is more efficient than the one based on successive changes in

the location of the new facilities (convergent solution). The projection technique used

in the proposed method takes full advantage of the structure of the location problem

and can easily be extended to accommodate problems involving other item movements

as well.
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(a) Starting location (b) 2 iterations

(c) 5 iterations (d) 10 iterations

(e) 25 iterations (f) 50 iterations

Figure 4.5: A multifacility location problem involving two new facilities and five existing
facilities. The existing facilities are located at the coordinate points P1 = (0, 0), P2 = (2, 4),
P3 = (6, 2), P4 = (6, 10) and P5 = (8, 8). The non negative weight α between the two
new facilities equals 2 and the weights between a new facility and an existing facility equals
λi = (4, 2, 3, 0, 0) and γi = (0, 2, 1, 3, 2), i = 1, . . . , 5.
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4.3 Average consensus for colored networks

The third numerical experiment that we consider concerns the problem of av-

erage consensus on colored networks.

Given a network, where each node possesses a measurement in form of a real

number, the average consensus problem consists in calculating the average of these

measurements in a recursive and distributed way, allowing the nodes to communicate

information along only the available edges in the network.

4.3.1 Proposed algorithm

Consider a connected network G = (V , E), where V represents the set of nodes

and E represents the set of edges. Each edge is uniquely represented as a pair of nodes

(i, j), where i < j. The nodes i and j can exchange their values if they can communicate

directly, in other words, if (i, j) ∈ E . The set of neighbors of node k is represented with

Nk and its degree with Dk = |Nk|. We assume that each node possesses a measurement

in form of a real number, also called color, and that no neighboring nodes have the same

color. Let C denote the number of colors the network is colored with and Ci the set of

the nodes that have the color i, i = 1, . . . , C. Without affecting the generality of the

problem we also assume that the first C1 nodes are in the set C1, the next C2 nodes are

in the set C2, etc. Furthermore, we assume that a node coloring scheme is available. For

more details concerning the mathematical modeling of the average consensus problem

on colored networks we refer the reader to [46,47].

Let P and E denote the number of nodes and edges in the network, respectively,

hence,
∑C

i=1Ci = P . Denoting by θk the measurement assigned to node k, k = 1, . . . , P ,

the problem we want to solve is

min
x∈R

{ P∑
k=1

1

2
(x− θk)2

}
. (4.3.1)

The unique optimal solution to the problem (4.3.1) is θ∗ = 1
P

∑P
k=1 θk, namely the

average of the measurements over the whole set of nodes in the network. The goal is to

make this value available in each node in a distributed and recursive way. To this end,
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we replicate copies of x throughout the entire network, more precisely, for k = 1, ..., P ,

node k will hold the k-th copy, denoted by xk, which will be updated iteratively during

the algorithm. At the end we have to guarantee that all the copies are equal and we

express this constraint by requiring that xi = xj for each (i, j) ∈ E . This gives rise to

the following optimization problem

min
x=(x1,...,xP )∈RP

xi=xj , ∀{i,j}∈E

{ P∑
k=1

1

2
(xk − θk)2

}
. (4.3.2)

Let A ∈ RP×E be the node-arc incidence matrix of the network, which is the

matrix having each column associated to an edge in the following manner: the column

associated to the edge (i, j) ∈ E has 1 at the i-th entry and −1 at the j-th entry,

the remaining entries being equal to zero. Consequently, constraints in (4.3.2) can be

written with the help of the transpose of the node-arc incidence matrix as ATx = 0.

Taking into consideration the ordering of the nodes and the coloring scheme, we can

write ATx = AT1 x1 + . . .+ATCxC , where xi ∈ RCi , i = 1, ..., C, collects the copies of the

nodes in Ci, i.e.

x = (x1, ..., xC1︸ ︷︷ ︸
x1

, ..., xP−CC+1, ..., xP︸ ︷︷ ︸
xC

).

Hence, the optimization problem (4.3.2) becomes

min
x=(x1,...,xC)

AT
1 x1+...+A

T
CxC=0

{ C∑
i=1

fi(xi)
}
, (4.3.3)

where for i = 1, ..., C, the function fi : RCi → R is defined as fi(xi) =
∑

l∈Ci
1
2
(xl−θl)2.

One can easily observe that problem (4.3.3) is a particular instance of the op-

timization problem (3.3.1), when taking

m = C, p = 1, hi = δ{0}, Ki = Id, L1i = ATi ∈ RE×Ci , i = 1, ..., C, and g1 = δ{0}.

Algorithm 4.3.1.

Using that h∗i = 0, i = 1, ..., C, and Proxγg(x) = 0 for all γ > 0 and x ∈ RE, the

iterative scheme in Algorithm 3.3.1 reads, after some algebraic manipulations, in the
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error-free case:

∀n ≥ 0



For i = 1, . . . , C
y1,i,n = x1,i,n − γn

(
x2,i,n + Aiv1,1,n

)
y2,i,n = x2,i,n + γnx1,i,n

p2,i,n = Proxγnf∗i y2,i,n

w1,1,n = v1,1,n − γn
(
v2,1,n −

∑C
i=1A

T
i x1,i,n

)
For i = 1, . . . , C
q1,i,n = y1,i,n − γn

(
p2,i,n + Aiw1,1,n

)
q2,i,n = p2,i,n + γny1,i,n

x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n

x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

v1,1,n+1 = v1,1,n + γn
∑C

i=1A
T
i y1,i,n

v2,1,n+1 = γ2n
(∑C

i=1A
T
i x1,i,n − v2,1,n

)
.

Let us notice that for i = 1, ..., C and γ > 0 it holds Proxγf∗i (xi) = (1+γ)−1(xi−

γθi), where θi is the vector in RCi whose components are θl with l ∈ Ci.

4.3.2 Performance evaluation

In order to compare the performances of our method with other existing al-

gorithms in literature, we used the networks generated in [47] with the number of

nodes ranging between 10 and 1000. The measurement θk associated to each node was

generated randomly and independently from a normal distribution with mean 10 and

standard deviation 100. We worked with networks with 10, 50, 100, 200, 500, 700 and

1000 nodes and measured the performance of our algorithm from the point of view

of the number of communication steps, which actually coincides with the number of

iterations. As stopping criterion we considered

‖xn − 1P θ
∗‖∣∣∣√Pθ∗∣∣∣ ≤ 10−4,

where 1P denotes the vector in RP having all entries equal to 1.
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Figure 4.6: The chart shows the communication steps needed by the four algorithms for
a Watts-Strogatz network with different number of nodes. ALG stands for the primal-dual
algorithm proposed in this work.
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Figure 4.7: The chart shows the communication steps needed by the four algorithms for a
Geometric network with different number of nodes. ALG stands for the primal-dual algorithm
proposed in the thesis.
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Figure 4.8: Comparison of the four algorithms over six networks with 10 nodes. Here, ALG
stands for the proposed primal-dual algorithm.

We present in Figure 4.6 and Figure 4.7 the communication steps needed when

dealing with the Watts-Strogatz network with parameters (2,0.8) and with the Geo-

metric network with a distance parameter 0.2. The Watts-Strogatz network is created

from a lattice where every node is connected to 2 nodes, then the links are rewired with

a probability of 0.8, while the Geometric network works with nodes in a [0, 1]2 square

and connects the nodes whose Euclidean distance is less than the given parameter 0.2.

As shown in Figure 4.6 and in Figure 4.7, our algorithm performed comparable to D-

AMM, presented in [47], but it performed better then the algorithms presented in [48]

and [70].

In order to observe the behavior of our algorithm on different networks, we

tested it on 6 models, shown in Table 4.1, with a different number of nodes. The used

models and the role of its parameters are explained in Table 4.2. Observing the needed

communication steps, we can conclude that our algorithm is communication-efficient

and it performs better than or similarly to the algorithms in [47], [48] and [70] (as

exemplified in Figure 4.8).
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Number Model Parameters

1 Erdős-Rényi 0.25

2 Watts-Strogatz (2, 0.8)

3 Watts-Strogatz (4, 0.6)

4 Barabasi-Albert —
5 Geometric 0.2

6 Lattice —

Table 4.1: Network parameters.

Name Parameters Description

Erdős-Rényi [30] p Every pair of nodes {i,j} is connected or not with

probability p.

Watts-Strogatz [62] (n, p) First, it creates a lattice where every node is con-

nected to n nodes; then, it rewires every link with

probability p. If link {i,j} is to be rewired, it

removes the link and connects node i or node j

(chosen with equal probability) to another node

in the network, chosen uniformly.

Barabasi-Albert [3] — It starts with one node. At each step, one node

is added to the network by connecting it to two

existing nodes: the probability to connect it to

node k is proportional to Dk.

Geometric [50] d It drops P points, corresponding to the nodes of

the network, randomly in a [0, 1]2 square; then, it

connects node whose Euclidean distance is less

than d.

Lattice — Creates a lattice of dimensions m× n; m and n

are chosen to make the lattice as square as pos-

sible.

Table 4.2: Network models.

4.4 Support-vector machines classification

The fourth numerical experiment we present in this section addresses the prob-

lem of classifying images via support vector machines.

Having a set training data ai ∈ Rn, i = 1, . . . , k, belonging to one of two given

classes, denoted by “-1” and “+1”, the aim is to construct by it a decision function

given in the form of a separating hyperplane which should assign every new data to

one of the two classes with a low misclassification rate.
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4.4.1 The soft-margin hyperplane

We construct the matrix A ∈ Rk×n such that each row corresponds to a data

point ai, i = 1, ..., k and a vector d ∈ Rk such that for i = 1, ..., k its i-th entry is equal

to −1, if ai belongs to the class “-1” and it is equal to +1, otherwise. Consider the case

where the training data cannot be separated without error. In this case one may want

to separate the training set with a minimal number of errors. In order to cover the

situation when the separation cannot be done exactly, we consider non-negative slack

variables ξi ≥ 0, i = 1, . . . , k, thus the goal will be to find (s, r, ξ) ∈ Rn × R × Rk
+ as

optimal solution of the following optimization problem (also called soft-margin support

vector machines problem)

min
(s,r,ξ)∈Rn×R×Rk

+

D(As+1kr)+ξ=1k

{
‖s‖2 + C ‖ξ‖2

}
, (4.4.1)

where 1k denotes the vector in Rk having all entries equal to 1, the inequality z = 1k

for z ∈ Rk means zi ≥ 1, i = 1, ...k, D = Diag(d) is the diagonal matrix having the

vector d as main diagonal and C is a trade-off parameter. Each new data a ∈ Rn

will by assigned to one of the two classes by means of the resulting decision function

z(a) = sTa+r, namely, a will be assigned to the class “-1”, if z(a) < 0, and to the class

“+1”, otherwise. For more theoretical insights in support vector machines we refer the

reader to [28,32].

The soft-margin support vector machines problem (4.4.1) can be written as a

special instance of the optimization problem (3.3.1), by taking

m = 3, p = 1, f1(·) = ‖·‖2 , f2 = 0, f3(·) = C ‖·‖2 + δRk
+

(·), hi = δ{0}, Ki = Id, i = 1, 2, 3,

g1 = δ{z∈Rk:z=1k}, L11 = DA,L12 = D1k and L13 = Id .
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Algorithm 4.4.1.

Thus, Algorithm 3.3.1 gives rise in the error-free case to the following iterative scheme:

∀n ≥ 0



For i = 1, 2, 3
y1,i,n = x1,i,n − γn

(
x2,i,n + LT1iv1,1,n

)
y2,i,n = x2,i,n + γnx1,i,n

p2,i,n = Proxγnf∗i y2,i,n

w1,1,n = v1,1,n − γn
(
v2,1,n −

∑3
i=1 L1ix1,i,n

)
w2,1,n = v2,1,n + γnv1,1,n

r2,1,n = Proxγng1 w2,1,n

For i = 1, 2, 3
q1,i,n = y1,i,n − γn

(
p2,i,n + LT1iw1,1,n

)
q2,i,n = p2,i,n + γny1,i,n

x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n

x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

s1,1,n = w1,1,n − γn(r2,1,n −
∑3

i=1 L1ip1,i,n)

s2,1,n = r2,1,n + γnw1,1,n

v1,1,n+1 = v1,1,n − w1,1,n + s1,1,n

v2,1,n+1 = v2,1,n − w2,1,n + s2,1,n

We would also like to notice that for the proximal points needed in the algorithm

one has for γ > 0 and (s, r, ξ, z) ∈ Rn × R× Rk × Rk the following exact formulae:

Proxγf∗1 (s) = (2 + γ)−12s,Proxγf∗2 (r) = 0,Proxγf∗3 (ξ) = ξ − γPRk
+

(
(2C + γ)−1ξ

)
and

Proxγg1(z) = P{x∈Rk:x=1k}(z).

4.4.2 Experiments with digit recognition

We made use of a data set of 11907 training images and 2041 test images of size

28×28 from the website http://www.cs.nyu.edu/~roweis/data.html. The problem

http://www.cs.nyu.edu/~roweis/data.html
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consisted in determining a decision function based on a pool of handwritten digits

showing either the number two or the number nine, labeled by −1 and +1, respectively

(see Figure 4.9). We evaluated the quality of the decision function on a test data set

by computing the percentage of misclassified images. Notice that we use only a half of

the available images from the training data set, in order to reduce the computational

effort.

(a) A sample of data for number 2 (b) A sample of data for number 9

Figure 4.9: A sample of images belonging to the classes -1 and +1, respectively.

With respect to the considered data set, we denote by D= {(Xi, Yi), i =

1, ..., 6000} ⊆ R784 × {+1,−1} the set of available training data consisting of 3000

images in the class −1 and 3000 images in the class +1. A sample from each class of

images is shown in Figure 4.9. The images have been vectorized and normalized by

dividing each of them by the quantity
(

1
6000

∑6000
i=1 ‖Xi‖2

) 1
2 .

Number of iterations 100 1000 2000 3000 5000

Training error 2.95 2.6 2.3 1.95 1.55
Test error 2.95 2.55 2.45 2.15 2

Table 4.3: Misclassification rate in percentage for different numbers of iterations for both
the training data and the test data.

We stopped the primal-dual algorithm after different numbers of iterations and

evaluated the performances of the resulting decision functions. In Table 4.3we present

the misclassification rate in percentage for the training and for the test data (the error

for the training data is less than the one for the test data) and observe that the quality

of the classification increases with the number of iterations. However, even for a low

number of iterations the misclassification rate outperforms the ones reported in the
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literature dealing with numerical methods for support vector classification. Let us also

mention that the numerical results are given for the case C = 1. We tested also other

choices for C, however we did not observe great impact on the results.



Chapter 5

Interdisciplinary application of our

algorithm

During my studies, I collaborated with a team of researchers in biology, studying

the biodiversity of picoalgae in Romanian salt lakes. We investigated the phytoplankton

communities in several hypersaline lakes in the Transylvanian basin, with the latest

microscopy and molecular biological techniques [38–40]. The aim was to adapt our

algorithm for image processing and pattern recognition for microscopic images and

electrophoretograms. The developing process included the work with epifluorescence

microscopic images of picoalgae in order to count and to distinguish them from the

background noise.

5.1 Optimization in biology

Most of the molecular techniques lead to the method of electrophoresis in which

DNA or proteins can be separated in a gel using electricity. In our case DNA fragments

from different organisms collected from the saline lakes were migrated, using agarose gel

electrophoresis, in order to separate the DNA fragments. Agarose is a polysaccharide

polymer material, generally extracted from seaweed and is frequently used in molecu-

lar biology, biochemistry and clinical chemistry for the separation of large molecules,

especially a mixed population of DNA, in a matrix of agarose.

After the patterns of the migrated DNA fragments are obtained (see Figure
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Figure 5.1: Denaturated gradient gel electrophoresis pattern of DNA samples from the
salt lakes of the Transylvanian-Basin. Columns represent different water samples and
the horizontal bands within the columns represent different species.

5.1), they are analyzed and the different samples are compared to establish differences

between the salt lakes. Also, the patterns can be used to establish differences within

a lake between different water depths [38]. Molecular processing such as cloning and

sequencing can be an expensive and time consuming method. Our aim is to optimize

our algorithm to find specific patterns, in order to make the process cheaper and faster.

Patterns can be distinguished with a method called pattern recognition. This is actually

a classification, which attempts to assign each input value to one of a given set of

classes. The procedure is a non-probabilistic binary linear classifier, very similar to

the classification via support vector machines (see 4.4). In our case, epifluorescence

microscopic images were taken in order to count the cyanobacterial cells from the

water samples, as shown in Figure 5.2.

5.2 Pattern recognition techniques

Enumerating the algae content of a water sample typically involves manual

counts through a microscope. Recent advanced pattern recognition software enable
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these counts to be automated. The new techniques have the potential to advance the

sensitivity of monitoring systems by providing much more information on the state of

the water supply in near-real time, with more statistical significance than conventional

microscopy. The availability of this information can yield significant cost savings by

allowing system operators to proactively treat water supplies.

In general, different species of picoalgae can seem quite clearly different to the

human eye, but they are not as easily distinguished mathematically. Automated pattern

recognition in images has been a complex area of research within computer science for

many years, because many distinctions we make regularly through our eyes and brain

remain very difficult to accomplish computationally.

Our work in this area has a great progress with good results. In the future, we

propose to develop our optimization technique for pattern recognition, in order to elim-

inate the unclassified particles and to obtain better classification results of microscopic

images.

Figure 5.2: Epifluorescence microscopic images (magnification = ×1000) of pikocyanobacte-
ria. The first image shows the pikocyanobacteria with blue-violet excitation and in the second
image they are shown with green excitation.
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[11] R.I. Boţ and C. Hendrich. A double smoothing technique for solving unconstrained

nondifferentiable convex optimization problems. Computational Optimization and

Applications, 54(2):239–262, 2013.
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on colored networks. 2012 IEEE 51st Annual Conference on Decision and Control

(CDC), 5116-5121, 2012.

[47] J.F.C. Mota, J.M.F. Xavier, P.M.Q. Aguiar and M. Püschel. D-ADMM: A
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