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Introduction

This Ph.D. thesis is the result of my research in the field of machine learning, specifically focusing
on machine learning models for solving problems in bioinformatics. This research was started in 2010,
under the supervision of Prof. Dr. Gabriela Czibula.

The primary research direction we are focusing on is applying machine learning models to solve
complex problems in the field of bioinformatics.

Machine Learning (ML) [Mit97], a branch of artificial intelligence, is concerned with the develop-
ment of algorithms that enable computers to learn and improve automatically through experience. ML
is an interdisciplinary field which uses knowledge and results obtained in a high variety of fields, like
artificial intelligence, mathematics, probability and statistics, information theory, psychology, neuro-
biology and others. Even though computers are yet not capable to learn as well as human beings, a
multitude of theoretical methods and algorithms that improve from experience have been developed,
which are very effective for a wide range of complex problems.

Bioinformatics is an object of interdisciplinary research and it tries to solve problems from fields
like biology, biochemistry or medicine by applying computational techniques for the collection, man-
agement, organization and especially for the analysis of biological information. Some of the most
important problems in bioinformatics are too complex to be solved from first principles. For such
difficult tasks, ML methods have proven to be very well suited.

The particular problems we have decided to approach are among the greatest challenges in bioin-
formatics and various computational intelligence algorithms were designed to find good solutions to
these problems. Our main goal is to find new ML models and algorithms that could offer solutions
that are comparable and even better than the existing ones, in terms of solution quality as well as of
computational time.

Therefore, our research is mainly focused on two directions. The first one is the application of
relational association rules learning [SCC06] to solve classification problems in bioinformatics. The
second direction refers to applying reinforcement learning based techniques in order to solve NP-
complete combinatorial optimization problems in bioinformatics.

In addition to the above mentioned primary research directions, we present in this thesis a novel
methodology targeting a specific problem in bioinformatics (the temporal ordering problem) and a par-
ticular type of biological data. This approach was developed in collaboration with the BIMIB research
group from University Milano-Bicocca, Italy. Finally, this thesis also presents a new programming
interface for solving optimization problems using reinforcement learning techniques.

The thesis is structured in four chapters, as follows.
The first chapter, Bioinformatics Problems. Background, shortly describes the field of bioin-

formatics and presents some of its most challenging problems. We begin by providing a brief introduc-
tion to molecular biology. Further, we present how some fundamental modern machine learning and
computational intelligence techniques and algorithms have been successfully applied to various prob-
lems in bioinformatics. The four major problems approached in this thesis are described in greater
detail: the promoter sequences prediction, the DNA (Deoxyribonucleic Acid) fragment assembly, the
protein tertiary structure prediction and the biological temporal ordering problem.

Chapters 2, 3 and 4 contain our original contributions that have been carried out towards proposing
new ML based models for solving complex problems in bioinformatics.

Chapter 2, Novel Relational Association Rules based Mining Approach for Promoter
Sequences Prediction, presents a new classification model based on relational association rules min-
ing, that we propose for the identification of promoter sequences in the DNA. We begin by offering
a description of relational association rules, along with an algorithm for identifying the relevant or-
dinal association rules [CSTM06]. We then introduce our supervised learning technique for promoter
sequences recognition, based on relational association rules mining. We describe the classification al-
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INTRODUCTION 5

gorithm and two of its extensions. All three algorithms are experimentally evaluated and the obtained
results are analyzed. The main classifier is compared with other classifiers from the literature and we
also offer comparisons between this algorithm and its other two extensions. The conclusions of the
chapter and possible further work are outlined in its last section.

Chapter 3, New Reinforcement Learning Based Approaches in Bioinformatics, intro-
duces two new reinforcement learning based models and a distributed reinforcement learning based
approach, used to offer solutions to two important problems in bioinformatics. We begin by presenting
basic theoretical notions about reinforcement learning and continue to introduce three new general re-
inforcement learning based models for a certain class of combinatorial optimization problems. We also
present a new intelligent action selection mechanism to be used in the reinforcement learning process.
These models are particularized, applied and experimentally evaluated on two bioinformatics prob-
lems: DNA fragment assembly and protein tertiary structure prediction. The proposed approaches
are analysed and compared one against the other, as well as with other approaches existing in the
literature. Finally, the chapter contains its conclusions and the research directions that will be further
investigated.

Chapter 4, New Approaches to the Biological Temporal Ordering Problem, presents two
different approaches that we proposed for the biological temporal ordering problem. Furthermore,
this chapter also introduces a new programming interface for solving optimization problems using re-
inforcement learning techniques, which is applied to find solutions to the temporal ordering problem.
The first approach, which was developed in collaboration with a research team during my research
internship at the University of Milano-Bicocca, introduces a new methodology developed for the tem-
poral ordering problem. An experimental evaluation of the algorithm implementing this methodology
on a colorectal cancer case study is presented and the results are analyzed. Then, we show how one of
the reinforcement learning based models introduced in Chapter 3 is adapted and modified to approach
the biological temporal ordering problem. The approach is experimentally evaluated on several real
life gene expression data sets. The obtained results are analyzed and compared with other approaches
existing in the literature. Several variations to this original approach are proposed and the results
are compared against each other. The last subchapter introduces a new reinforcement learning based
software framework and shows how this can be used to develop an application for the temporal order-
ing problem. In the end, we present the conclusions of the chapter, as well as other research directions
that will be further investigated.

The original contributions introduced in this thesis are contained in Chapters 2, 3 and 4 and they
are as follows:

• A supervised learning model for predicting promoter sequences, based on relational association
rules mining - PCRAR (Subchapter 2.2) [CBC12].

• Supervised learning algorithms for predicting promoter sequences, based on relational associa-
tion rules mining (Section 2.2.4 and Subsections 2.2.4.2, 2.2.4.3) [CBC12, Boc12c, Boc12b].

• Experimental evaluations of the algorithms on a case study, a comparison of the proposed
approach with similar existing ones (Section 2.3.2) [CBC12] and comparisons of the algorithms
(Subsection 2.3.2.2) [Boc12c, Boc12b].

• Two general reinforcement learning based models, the path finding model and the permutation
model and a distributed reinforcement learning based approach for a specific type of combinato-
rial optimization problems (Sections 3.2.1, 3.2.2) [CBC13, CCB13, Boc12a, BCC11a, BCC11b,
CBC11c, CBC11b].

• A new intelligent action selection policy defined so as to better guide the reinforcement learning
agent towards good solutions (Section 3.2.4) [CBC13].

• Particularization of the three models for the DNA fragment assembly problem, as well as ex-
perimental evaluations on several DNA sequences, analysis of the results and comparisons with
other approaches from the literature (Sections 3.3.1, 3.3.2, 3.3.4) [BCC11b, BCC11a].

• A comparison between the path finding model and the permutation model, applied on a small
DNA sequence and analysis of the results (Sections 3.3.3, 3.3.4) [CCB13].

• A particularization of the path finding model and of the distributed approach for the protein
tertiary structure prediction problem, as well as experimental evaluations on several small pro-
tein sequences, analysis of the results and comparisons with other approaches from the literature
(Subchapter 3.4) [CBC11c, CBC11b, CBC11d, CBC11a].
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• A new methodology which adapts a solution that was previously proposed for gene expression
data [GBJ08] to chromosomal copy number alterations (Section 4.1.2) [BCG+12, BCG+13].

• Experimental evaluations of the newly introduced methodology on a set of static copy number
alteration data taken from patients at different stages of colorectal cancer and comparisons of
the results (Section 4.1.3) [BCG+12].

• A particularization of the path finding model for the biological temporal ordering problem
(Section 4.2.1) [CBC13] and experimental evaluations on several real-life gene expression data
sets, a new evaluation measure to quantify the performance of our algorithm (Section 4.2.2),
as well as analysis of the results and comparisons with other approaches from the literature
(Section 4.2.4) [CBC13].

• Q-Learning based algorithms implementing the path finding model for solving the temporal
ordering problem (Section 4.2.3) [CBC13, Boc12a] and experimental evaluations of all these
algorithms on a real-life gene expression yeast data set, analyses and comparisons of the obtained
results (Sections 4.2.3, 4.2.4) [Boc12a].

• A generic, reinforcement learning based software framework and a particular application de-
veloped using this framework for the temporal ordering problem (Subchapter 4.3) [CCB11a,
CCB11b].



Chapter 1

Bioinformatics Problems.
Background

Bioinformatics is an object of interdisciplinary research and it tries to solve problems from fields
like biology, biochemistry or medicine using methods from mathematics, statistics and computer sci-
ence [HMTA08]. It is the application of computational techniques for the management, organization
and especially for the analysis of biological information. Bioinformatics is an interface between com-
putational sciences and biology. Its major goal is to process the huge amounts of information in order
to elucidate the functioning of living organisms.

1.1 Fundamental Concepts of Molecular Biology

In order to understand the subject of bioinformatics we present the basic elements that are studied
in molecular biology and which are used in bioinformatics problems. The concepts described in the
following are taken from the work of Brazma et al. [BPSS01].

The genome of all living organisms is encoded in the DNA (Deoxyribonucleic Acid) and it repre-
sents the totality of their hereditary information. DNA may be single of double stranded. A strand
of DNA is a chain composed of four types of complex organic molecules, called nucleotides - ade-
nine (A), guanine (G), cytosine (C) and thymine (T). Here is an example of such a DNA strand:
AGTCCAAGCTT . When two DNA chains are linked together, they form a stable structure which
is known as the DNA double helix. RNA, or ribonucleic acid, is composed of a single chain formed
of 4 types of nucleotides: adenine, guanine, cytosine and uracil (that replaces the thymine from the
DNA).

Genes are segments of the DNA material, being considered the basic molecules that carry the
hereditary information. They code for specific proteins. A gene may or may not be expressed in a
certain cell, meaning that it leads or not to the synthesis of a gene product (this can be a protein or
RNA). As all cells in an organism contain the same genetic information (the DNA is identical), the
differences in gene expression are responsible for cell differentiation.

Amino acids are small molecules. They can be integrated into the large molecules (macro-
molecules), or may have independent roles. Amino acids link in a specific order to form a protein,
therefore they may also be considered the building blocks of proteins. There are 22 amino acids that
compose proteins of the human body, being denoted using the letters of the alphabet.

Proteins are very important molecules, composed of sequences of amino acids that can link in
any order. The amino acids sequence forms the primary structure of the protein, which can be
represented as a string of symbols representing the 22 amino acids (a protein can be seen as a word
over the alphabet that is formed of the 22 letters representing the amino acids). As soon as it is
synthesized as a linear sequence of amino acids, a protein folds in a matter of seconds to a stable
three dimensional structure called the protein’s native state. It is assumed that the information for
the folding process is contained exclusively in the sequence of amino acids. The secondary structure
of a protein is the general three dimensional form of local segments. It consists of local interactions
between the amino acids. As a result of these interactions, certain parts of the protein chain come in
contact with each other and because of the forces of attraction and repulsion the molecule adopts a
fixed and relatively stable three dimensional structure - the tertiary structure. This structure of the
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protein is very important, as it defines the protein’s function.

1.2 Computational Intelligence and Machine Learning in Bioin-
formatics. Challenges and Perspectives

Some of the most important problems in bioinformatics are too complex to be solved from first
principles. The huge amounts of data, the fact that significant parts of it are unlabeled or that the data
contains much noise are obstacles that make it impossible to solve these problems with traditional
methods and algorithms. For these reasons, computational intelligence (CI) and machine learning
(ML) methods seem to be very well suited for such tasks [PPN09]. These methods also have a certain
degree of flexibility regarding the data inputs, and have the possibility to progressively expand in
order to meet the requirements of rapidly accumulating data resulted from biology research.

There is a great number of examples that illustrate how CI and ML techniques can be applied to
solve bioinformatics problems.

Gene expression refers to the process by which the information from a gene is converted into
functional gene products (RNA or proteins). Modern microarray technology is used experimentally to
detect the levels of expression of thousands of genes, across different conditions and over time. After
gathering the data, one of the first steps in analyzing it is clustering. Various CI and ML related
algorithms have been proposed to cluster gene expression data: an associative clustering neural net-
work (ACNN) [YLGW02], a hybrid clustering approach based on particle swarm optimisation (PSO)
and self organizing maps (SOM) [XDE+03], a fuzzy k-means method [AHO03] or k-nearest neighbour
techniques [NMB+03, OP09]. Another type of analysis of gene expression data refers to selecting
differentially expressed genes. For gene selection the literature offers different methods: probabilistic
neural networks with a feature selection method [HL03], evolutionary computation coupled with arti-
ficial neural networks (ANNs) [Fog05] or bayesian networks, radial basis function networks and neural
trees [HCP+00].

The secondary structure of proteins or RNA is the general three dimensional form of local segments,
obtained due to interactions between the smaller molecules. The problem of determining this structure
can be mapped to a standard classification problem. Several classification approaches that predict
the secondary structure exist in the literature: methods that use ANNs [NT88, Ste93], k-nearest
neighbor and fuzzy k-nearest neighbor [GP08, BS06], support vector machines (SVMs) [LHJYFHB04]
and hidden Markov models (HMMs) [MGR06, YV04].

Protein sequence classification refers to characterizing new proteins based on their sequences and
detecting close evolutionary relationships among sequences. Generative and discriminative methods
have been proposed in the literature to solve this classification problem: a generative HMM for a
protein family [JDH99], a SVM technique [LEN02] or a methodology for constructing a neural network
classifier [WLD03].

Sequence alignment plays an important role in molecular sequence analysis. It refers to the pro-
cess of arranging the primary sequences of DNA, RNA or protein to identify regions of similarity that
may be a consequence of functional, structural or evolutionary relationships between the sequences.
For this problem, several methods have been proposed: genetic algorithms [HYYY02, CL05], an ant
colony optimization (ACO) method [CPCC06], HMMs [RK03] or a fuzzy logic method [NVNM07].

Other major problems in bioinformatics that will be approached in this thesis using different ma-
chine learning models that we introduced will be presented in greater detail in the following subchap-
ters. These problems are: promoter sequences prediction, DNA fragment assembly, protein tertiary
structure prediction and the biological temporal ordering problem.

1.3 Promoter Sequences Prediction

Promoters are regions of the DNA sequence that signal the start of a gene during the process of
transcription, a first process involved in protein synthesis. The problem of promoter identification is
of major importance within bioinformatics, for two main reasons. First, identifying promoters is a
significant step in the process of detecting genes. Second, promoters are essential in the regulation
of the expression of genes. As the conditions for a DNA sequence to function as a promoter are not
known, machine learning methods are suitable to approach this problem because they can learn useful
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descriptions of concepts when given only instances - DNA sequences that are assumed to contain
underlying but unknown patterns of base pairs [TYA08].

In the context of supervised machine learning, the identification of promoters can be stated as
follows [CS94]: given two sets of DNA sequences of fixed length, one containing sequences with known
promoter regions and the other one containing sequences without the presence of this signal, generate a
classifier able to predict whether a fixed length “window” of a DNA sequence contains or not promoter
regions.

Several machine learning approaches have been applied in order to recognize biological sequences
(such as promoters) that enable the transcription process: a hybrid learning system called KBANN
(Knowledge-Based Artificial Neural Networks), that combines explanation based learning and em-
pirical learning [TSN90], other neural network approaches [PE95], a grey relational analysis method
[TPAG11], SVM approaches [KP04]. To our knowledge, association rule mining has not been used in
the literature for the specific task of identifying promoters.

1.4 The DNA Fragment Assembly Problem

Determining the order of nucleotide bases, or the process of DNA sequencing, has nowadays
become of great importance in basic biology research, as well as in medicine, biotechnology or forensic
biology. In order to sequence large strands of DNA, they are first broken into smaller pieces, which
can be directly sequenced. The fragment assembly problem consists in reconstructing the original
molecule’s sequence from the smaller fragment sequences [LK04], based on the fragments’ overlaps.
This problem is known to be NP-complete [Pev00], therefore accurate solutions are very difficult to
obtain. Moreover, different sequencing errors that affect the fragments raise new obstacles in solving
the problem.

Next, we will illustrate the assembly process, by using a simple example, taken from [Kos07]. Let us
assume that, for the DNA sequence TTACCGTGC, we are given the set of fragments: F1 = ACCGT ,
F2 = CGTGC, F3 = TTAC and F4 = TACCGT . First we need to determine the overlap of each
fragment with the other three fragments. This is usually done using an alignment algorithm and
a similarity measure. Then, we need to find the order of these fragments, based on the computed
similarities. The order is: F3F4F1F2.

F3 → T T A C − − − − −
F4 → − T A C C G T − −
F1 → − − A C C G T − −
F2 → − − − − C G T G C

T T A C C G T G C

Various heuristic methods have been developed in the literature to approach the DNA fragment
assembly problem: (improved) genetic algorithms [KC06, PFB95, LATK06], clustering heuristic al-
gorithms [LK04], ACO algorithms [MC03, WCT06] and also supervised learning approaches, like
recurrent neural networks [AAdFG99].

1.5 Protein Tertiary Structure Prediction

Protein structure prediction is one of the the greatest challenges of bioinformatics, being an impor-
tant research direction due to its numerous applications in medicine (drug design, disease prediction)
and genetic engineering (cell modelling, modification and improvement of the functions of certain
proteins). As soon as it is synthesized as a linear sequence of amino acids, a protein folds, in a matter
of seconds, to a stable three-dimensional structure, called the protein’s native state, which determines
the protein’s function.

An important class of abstract models for proteins are lattice-based models - composed of a lattice
that describes the possible positions of amino acids in space and an energy function of the protein, that
depends on these positions. The goal is to find this function’s global minimum, as it is assumed that a
protein in its native state has a minimum free energy and the process of folding is the minimization of
this energy [Anf73]. One of the most popular bidimensional lattice-models is Dill’s Hydrophobic-Polar
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(HP) model [Dil85], which is based on the observation that the hydrophobic forces are very important
factors in the protein folding process, guiding the protein to its native three dimensional structure.
In this model, each amino acid is regarded as either hydrophobic (repelled by water) or polar (having
an affinity for water) and the energy function is defined so as to capture the interactions between
neighboring hydrophobic amino acids.

The protein tertiary structure prediction in the HP model has been shown to be NP-complete
[BL98], therefore various approximation and heuristics methods approach this problem. Among these,
we remark ACO algorithms [SH05, TMM08], genetic algorithms [UM93], hybrid algorithms - that
combine genetic algorithms and tabu search [ZWL+09], evolutionary models with hill-climbing genetic
operators [Chi10] and also supervised machine learning techniques, like SVMs and ANNs [DD01].

1.6 The Biological Temporal Ordering Problem

Temporal modeling and analysis and more specifically, temporal ordering are very important prob-
lems within the fields of bioinformatics and computational biology, as the temporal analysis of the
events characterizing a certain biological process could provide significant insights into its develop-
ment and progression. In many situations, ordering a given data set of instances in time provides more
significant information than assigning them to certain classes. Therefore, from a machine learning per-
spective, the general problem of temporal ordering is comparable, as importance, to the classification
problem [CSS99].

The temporal ordering problem can be expressed in various forms. One definition of this problem
refers to determining and describing the sequence of events that characterize a biological process. If
the process in question is cancer, for instance, the goal is to find a temporal order for the genetic
and pathway alterations that occur during the genesis and evolution of this disease. It is known that
most tumors develop as a result of mutations that appear in certain key genes (oncogenes or tumor
suppressor genes) [Fra07]. Therefore, studying the order in which these mutations happen could lead
to a better understanding of the evolution of cancer. Several works exist in the literature that approach
the temporal ordering problem as described above. Some of these methods are probabilistic [HHL06],
based on bayesian networks [GBHB09, GEL+11], others focus on building tree models of possible
genetic events [DJK+99, DJK+00, BJK+05a, BJK+05b, PSBM09] or on constructing mathematical
models [ACB+10, CBL+12] to identify the order of gene mutations on cancer development.

A second research direction focuses on a different form of the temporal ordering problem, which
refers to constructing a sorted collection of multi-dimensional biological data that reflects an accurate
temporal evolution of a biological process. There are mainly two works in the literature that approach
the problem as formulated here, both of them using gene expression data. The first one [GBJ08] uses
the travelling salesman problem in order to retrieve a correct ordering of gene expression samples,
while the second [MLK03] is based on minimum spanning trees and PQ-trees.



Chapter 2

Novel Relational Association Rules
based Mining Approach for
Promoter Sequences Prediction

In this chapter we are approaching the problem of promoter sequences prediction and we are
proposing a classification model based on relational association rules (RARs) mining for the identifi-
cation of promoter sequences in the DNA.

The approaches presented in this chapter are original works published in [CBC12, Boc12c, Boc12b].
Relational association rules [SCC06] were introduced in order to be able to capture various kinds

of relationships between record attributes. Based on the idea of discovering RARs within a data
set, we propose a classification model for the problem of promoter sequences prediction. We have
started from the intuition that in the problem of deciding if a DNA sequence contains or not promoter
regions, relationships between the nucleotides that form the DNA sequence may be relevant. These
relationships could express quantitative information that may exist in a DNA sequence and it is likely
that this type of relationships could significantly influence the classification task. We are focusing on
developing a machine learning based computational model that will be powerful enough to capture
aspects that are relevant in distinguishing between DNA sequences that contain or not a promoter
region. In building our classifier, we try to interpret DNA sequences both by their biological and
chemical properties and to exploit the benefit of data mining techniques to uncover hidden patterns
in data.

2.1 Relational Association Rules. Background

Association rule learning is a popular method for discovering interesting relations or correlations
that exist between data in large data sets. Given a set of attributes, called items, and a set of transac-
tions, composing the input data set, where each transaction contains a subset of items, an association
rule is an implication of two item sets. There are several types of association rules that can be dis-
covered in data (binary, quantitative, fuzzy), one of these being ordinal association rules, which were
introduced in [MML01]. However, there are real world situations in which ordinal association rules
are not powerful enough to describe data regularities. Therefore, the definition of ordinal association
rules was extended in [SCC06] towards relational association rules, in order to be able to capture
various kinds of relationships between record attributes.

As in [SCC06], let R = {r1, r2, . . . , rn} be a set of instances (entities or records in the relational
model), where each instance is characterized by a list of m attributes, (a1, . . . , am). We denote by
Φ(rj , ai) the value of attribute ai for the instance rj , i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Each attribute
ai takes values from a domain Di, which contains the empty value. We denote by M the set of all
possible relations that can be defined on Di ×Dj . In [SCC06], a relational association rule is defined
as an expression (ai1 , ai2 , ai3 , . . . , ai`)⇒ (ai1 µ1 ai2 µ2 ai3 . . . µ`−1 ai`), where {ai1 , ai2 , ai3 , . . . , ai`} ⊆
A = {a1, . . . , am}, aij 6= aik , j, k = 1..`, j 6= k and µi ∈ M is a relation over Dij ×Dij+1

, Dij being
the domain of the attribute aij . The support of a rule is the percent of cases (out of the n instances)
when ai1 , ai2 , ai3 , . . . , ai` occur together. As in [SCC06], we denote by R′ ⊆ R the set of instances
where ai1 , ai2 , ai3 , . . . , ai` occur together and Φ(rj , ai1) µ1 Φ(rj , ai2) µ2 Φ(rj , ai3) . . . µ`−1 Φ(rj , ai`)

11
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is true for each instance rj from R′. Then c = |R′|/|R| is the confidence of the rule.
The length of a relational association rule is the number of attributes in the rule. This length can

be at most equal to the number m of the attributes describing the data.
The users usually need to uncover interesting RARs that hold in a data set, i. e. relational rules

which hold in a minimum number of instances, having the support at least smin, and the confidence
at least cmin (smin and cmin are user-provided thresholds).

2.1.1 The DOAR algorithm

An A-Priori [AS94] like algorithm, called DOAR - Discovery of Ordinal Association Rules, for iden-
tifying the relevant ordinal association rules that hold within a data set was introduced in [CSTM06].
It efficiently finds all ordinal association rules (i.e. RARs in which the relations are ordinal) of any
length, that hold over a data set.

The DOAR algorithm identifies ordinal association rules using an iterative process that consists in
length-level generation of candidate rules, followed by the verification of the candidates for minimum
support and confidence compliance. DOAR performs multiple passes over the data set. In the first
pass, it calculates the support and confidence of the 2-length rules and determines which of them are
interesting. Then, each subsequent pass starts with a seed set of (k − 1)-length (k ≥ 3) interesting
rules, found in the previous pass, which is used to generate new possible k-length interesting rules,
called candidate rules. The candidate generation process is a key element of the DOAR algorithm. A
scan over the data is performed in order to compute the actual support and confidence of the candidate
rules. At the end of this step, the algorithm keeps the rules that are deemed interesting, which will be
used in the next iteration. The process stops when no new interesting rules were found in the latest
iteration. More about the DOAR algorithm and its theoretical validation is given in [CSTM06].

The DOAR algorithm is extended in our approach towards the DRAR algorithm (Discovery of
Relational Association Rules) for finding interesting RARs, i.e. association rules which are able to
capture various kinds of relationships between record attributes. Our current implementation is able
to find all interesting RARs of any length, as well as all maximal interesting relational association
rules of any length, i.e. if an interesting rule of a certain length can be extended with one attribute
and it remains interesting, only the extended rule is kept.

2.2 A New Method For Promoter Sequences Prediction

In this subchapter we propose a supervised learning technique in order to predict promoter se-
quences, based on relational association rules mining, called PCRAR (Promoter sequences Classifier
using Relational Association Rules). The classifier was built with the purpose of distinguishing DNA
sequences that contain promoters from those that do not. Our PCRAR classifier is not based on
any particular biological mechanisms, its strength consisting in its ability to automatically learn the
differences between DNA sequences that include or not promoter regions, when given as input only
these sequences and no other extra biological information.

The problem that we are focusing on is a binary classification problem. There are two possible
classes: one contains the positive instances, or the DNA sequences containing promoters and the other
one contains the negative instances, or the non-promoters.

The main idea of our approach is the following. In a supervised learning scenario for predicting
promoter sequences, two sets containing positive and negative instances are given. These sets will
be used for training the classifier. During training, the DRAR algorithm will be used. Even if this
algorithm can be used to discover all the relational rules, of any length in a data set, at first we used
it to discover only the binary RARs, i.e. rules of length two. We detect in the training data sets
all the interesting binary relational rules (rules between two attributes), with respect to the user-
provided support and confidence thresholds). After the training is completed, when a new instance
(DNA sequence) has to be classified (as positive or negative), we reason as follows. Considering the
binary rules discovered during training in the set of positive and negative instances, we compute a
score for each instance, defined so as to range between 0 and 1 and which denotes the degree to which
an instance can be considered positive. If this score is greater than or equal to 0.5, then the query
instance will be classified as a positive instance, otherwise it will be classified as a negative instance.

We consider a DNA sequence (instance) as an n-dimensional chain S = (s1, s2, . . . , sn) containing
the four letters A, T, G and C, which represent the nucleotides composing the DNA (see Subchapter
1.1). Consequently, the attribute (feature) set characterizing the instances is an n-dimensional list
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where the i-th attribute corresponds to the i-th nucleotide from the DNA sequence, i ∈ {1, . . . , n}.
Therefore, each attribute has 4 possible values: the characters A, T, G and C.

For classifying a DNA sequence as containing or not a promoter region, the following steps will
be performed:

1. Relations definition.

2. Data pre-processing.

3. Training/building the classifier.

4. Testing/classification.

2.2.1 Relations Definition

This step deals with defining the relations between the attributes’ values that will be used in the
RAR mining process. More exactly, we are focusing on identifying relations between two nucleotides
from a DNA sequence (A, T, G or C), relations that would be relevant for deciding if the sequence
contains or not a promoter region.

A first stage refers to searching for several computed chemical and physical properties that may
characterize each nucleotide. We extracted from PubChem [BWTB08] 5 measurable properties: molar
mass, density, topological polar surface area, heavy atom count and complexity. To these, we added
base composition, one of the most fundamental features of a DNA sequence which refers to the
percentages of each of the four different nucleotides, on one strand of DNA. Consequently, we associate
to each nucleotide (attribute value) a list of six numerical codes, representing the values of the six
above enumerated properties.

The second stage consists in identifying which of the six types of codes associated to the attributes
would be relevant for the classification task. In this direction, a statistical analysis is performed on the
training data sets to determine those codes that provide attributes highly correlated with the target
output. To determine the dependencies between attributes and the target output, the Spearman’s
rank correlation coefficient [Spe04] is used. Only the codes that provide the highest correlations to
the target output will be further considered in order to define the relations between attributes and to
mine the interesting RARs.

2.2.2 Data Pre-processing

After a set containing types of codes that are relevant in defining the relational association rule
model was identified (Section 2.2.1), another statistical analysis is carried out on the training data
sets in order to reduce the dimensionality of the input data, by eliminating attributes which do
not influence the output value. To determine the dependencies between attributes and the target
output, the Spearman’s rank correlation coefficient is used. The goal of this step is to remove from
the attribute set those attributes (nucleotides at a certain position, in our example) that have no
significant influence on the target output, i.e. are slightly correlated with it (the absolute value of the
correlation is below a small positive threshold).

2.2.3 Building the Classifier

At this step, the interesting RARs are discovered in the training data sets. The classification model
consisting of interesting RARs discovered in the training data sets will be further used to classify all
test instances.

The training consists in applying the DRAR algorithm to determine two sets of RARs having
a minimum support and confidence: a positive RAR set, denoted RAR+, from the data set with
the positive instances and a negative RAR set, denoted RAR−, from the data set containing non-
promoters.

2.2.4 Classification

After the training was completed and the PCRAR classifier was built, when a new DNA sequence
S has to be classified, we calculate the score P+(S) (simply denoted as P+), a value specifying whether
S contains a promoter region and P−(S) (simply denoted as P−), another score, which indicates that
S does not contain a promoter region. We propose two techniques for computing these scores. The



CHAPTER 2. PROMOTER PREDICTION USING ASSOCIATION RULES 14

first one depends solely on the total number of generated association rules (positive and negative)
and on the number of rules that the new sequence verifies or not, without taking into consideration
the confidences of the rules. The second one, on the other hand, is based on the confidences of the
generated RARs. We have started from the intuition that the more relevant the RARs detected in the
training data, the more precise the scores will be. That is why our main focus is toward identifying
accurate and significant relations in the training data.

2.2.4.1 Score computation based on the number of rules

The score P+ to determine if an instance should be classified as a positive one is:

P+ =
n+ +m−

|RAR+|+ |RAR−|
(2.1)

where by n+ we denote the number of positive RARs that are verified by the instance and m− denotes
the number of negative rules that are not verified by the given instance.

If P+ ≥ 0.5 then the instance S will be classified as a positive instance, otherwise it will classified
as a negative instance.

Similarly, the score P− to determine if an instance should be classified as a negative one can be
computed. However, this step can be skipped as it can be easily proven that the results provided by
the PCRAR classifier are logically consistent, meaning that for a given instance S, P+ + P− = 1.

The algorithm using the score computation described above is PCRAR.

2.2.4.2 Score computation based on the confidence of the rules

A second method for computing the scores is based on the confidences of verified/unverified rules.
The score P+ for a DNA instance S is computed as:

P+ =
1

2
(
s+(S)

s+
+
sn−(S)

s−
) (2.2)

where s+(S) is the sum of confidences of the rules from the set RAR+ which are verified by S, sn−(S)
is the sum of confidences of the rules from RAR− which are not verified by S, while s+ and s− are
the total sums of the confidences of all the rules from the sets RAR+ and RAR−, respectively.

As for the other case, if P+ ≥ 0.5 then the instance S will be classified as a positive instance,
otherwise it will classified as a negative instance. The score P− can be computed analogously, but
this step can be skipped as it can be proven that for a given instance P+ + P− = 1.

The algorithm using the score computation described above is called BRSC (Binary Rules, with
Score computation based on the Confidence of the rules).

Remark 1 In the case of PCRAR it is enough to generate only the binary interesting relational
rules, as a certain rule with a length greater than two is verified if its binary subrules are verified.
This significantly reduces the training time of the classifier. Where confidence is also involved in
the score calculation, we can either consider only binary rules or rules of any length. BRSC uses
binary rules. Another algorithm, called KRSC (K-length Rules, with Score computation based on the
Confidence of the rules), which uses rules of any length is presented in the following.

2.2.4.3 K -length Rules Generation

As another extension of PCRAR, we propose the generation of rules of any length k, the maximum
length being the number of attributes of an instance (for any instance S, let us denote its number of
attributes |S|). A k-length rule is verified by an instance if all its k − 1 binary subrules are verified.
As soon as all k-length rules (k ∈ {2, 3, . . . , |S|}) have been generated, when a new DNA sequence
must be classified, we compute the scores for this sequence as described in Subsection 2.2.4.2.

2.3 Experimental Evaluation

In this subchapter we aim at experimentally evaluating our approach for promoter sequences
recognition using RARs, as well as providing a comparison with other existing similar approaches.
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Figure 2.1: Comparative results. Our PCRAR classifier proves to outperform other classifiers in
literature [TSN90] that have been applied to the promoter sequences prediction problem.

2.3.1 Data Set

The data set we used to test the efficiency of the classifiers is entitled “E. coli promoter gene
sequences (DNA) with associated imperfect domain theory”. This data set was taken from the UCI
Repository [FA10] and contains a set of 106 promoter and non-promoter instances, each one having a
length of 57 nucleotides. Half of the sequences represent positive instances and half are negative ones.
We have considered this data set in our experimental evaluation for two reasons: first, because infor-
mation about this data set (including its previous usage) are publicly available; second, as classifiers
were already developed and validated on this data set, comparisons of our PCRAR classifier with the
models existing in the literature can be conducted.

2.3.2 Results and Discussion

The methodology and algorithms described in Subchapter 2.2 is applied to the considered data
set and the results are presented in the following.

2.3.2.1 PCRAR - Results and analysis

We executed the PCRAR classification algorithm introduced in Subchapter 2.2 with minimum
support threshold smin = 0.9 and different values for the minimum confidence threshold cmin :
{0.6, 0.55, 0.52, 0.5, 0.48, 0.47, 0.45, 0.42, 0.4, 0.38, 0.36}. For evaluating the performance of our ap-
proach, we have used the data set described in Section 2.3.1 and a cross-validation using a “leave-one-
out” methodology was applied. The best result was obtained for a confidence threshold of 0.4, for
which a classification error of 0.018867 (2/106) was reported after the validation was completed in
64.430 seconds. Compared to the classifiers already applied in the literature for promoter sequences
recognition [TSN90], the classifier introduced in this paper outperforms the best existing classifier for
promoter sequences prediction. This comparison is illustrated in Figure 2.1 [CBC12]. In this figure,
the hatched bar indicates the performance of our PCRAR classifier. Another advantage of this ap-
proach compared to the existing approaches is that the training step of PCRAR is very fast, as it is
enough to discover only binary relational association rules.

2.3.2.2 PCRAR and its extensions - Comparative results

The other two algorithms presented in Subsections 2.2.4.2 and 2.2.4.3 were tested on the same
data set and we compared them with PCRAR.

Concerning the number of generated RARs (for the entire positive and negative data sets), both
PCRAR and BRSC determine binary rules, that only depend on the input data set, therefore these
two algorithms will always generate the same number of rules, for a certain value of the confidence
threshold. However, the number of rules generated by KRSC will be significantly greater, as this
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(a) Comparative running times: PCRAR and BRSC
(in seconds). It can be observed that the running
times of the two algorithms are quite similar, the
maximum difference being for the minimum confi-
dence of 0.45.

(b) Running time for KRSC. It can be noticed that
the confidence-time function is exponential.

Figure 2.2: Comparative running times for the three RAR based algorithms.

algorithm determines rules of any length, starting from the set of generated binary rules. The maxi-
mum possible length for a k-length rule is k = 57 (the number of attributes in an instance), but the
maximum length of the rules that were actually generated was k = 8.

The best result obtained by BRSC is the same as the one obtained by the PCRAR: 104 correctly
classified instances, out of 106, for the minimum confidence cmin = 0.4. KRSC, on the other hand,
has proven a worse performance, as the best obtained result is 97 correctly classified instances, out of
106 (an error of 0.084905), for a confidence of 0.6.

We will now refer to the running times of the algorithms. It is important to know that these
are actually validation times, i.e. overall times in which each classifier performs the validation (this
including the training time). Both the algorithms that only consider binary rules have very low
computational times (∼ 2 minutes), as illustrated in Figure 2.2a [Boc12c]. The one that generates
rules of any length clearly runs much slower (from 5 minutes to 250 hours), as can be seen in Figure
2.2b [Boc12c].

The obtained results demonstrate that the algorithms that generate and use only binary RARs
perform better than the one generating rules of any length, both in terms of classification accuracy
and validation times. This leads us to the conclusion that, for the considered problem, binary rules
are sufficiently relevant in order to obtain a good classification of a DNA sequence as a promoter or
a non-promoter.

2.4 Conclusions and Further Work

This chapter introduced a classification model based on relational association rules discovery for
promoter sequences prediction, presented in our original paper [CBC12]. The experimental evaluation
of the proposed model has shown that our classifier is better than the classifiers already applied
for the considered problem, indicating the potential of our proposal. We have also introduced two
extensions to the RARs classification model, presented in the original papers [Boc12c], [Boc12b]. We
experimentally evaluated and compared the three algorithms.

The good performance of the classification model introduced in this chapter leads us to the conclu-
sion that machine learning models and data mining techniques are significant soft computing tools able
to recognize patterns in biological data, that are hard to be identified using conventional techniques.

Further work will be made in order to identify and consider in the RARs discovery different types
of relations between the nucleotides from a DNA sequence. Also, we intend to improve the accuracy
of the RARs based classifiers by using supervised learning to identify the most appropriate values
for the used parameters. Directions to hybridize our classification model, by combining it with other
machine learning based predictive models [Mit97] will be further considered.



Chapter 3

New Reinforcement Learning Based
Approaches in Bioinformatics

This chapter starts by introducing the main aspects of reinforcement learning and then continues
to present our original contributions, i.e. two new reinforcement learning based models and a dis-
tributed reinforcement learning based approach, used to offer solutions to two important problems
in bioinformatics: the DNA fragment assembly problem (Subchapter 1.4) and the protein tertiary
structure prediction problem (Subchapter 1.5).

The two new reinforcement learning based models and the distributed reinforcement learning based
approach presented in this chapter, as well as their applications within the field of bioinformatics
are original works published in [CBC13, CCB13, BCC11a, CBC11a, BCC11b, CBC11c, CBC11b,
CBC11d].

3.1 Reinforcement Learning. Background

Reinforcement Learning (RL) [SB98] is an approach to machine intelligence that combines two
disciplines to successfully solve problems that neither discipline can address individually: dynamic
programming and supervised learning. In the machine learning literature, RL is considered to be the
most reliable type of learning, as it is the most similar to human learning.

RL deals with the problem of how an autonomous agent that perceives and acts in its environment
can learn to choose optimal actions to achieve its goals [Mit97]. In a RL scenario, the learning system
selects actions to perform in the environment and receives rewards (or reinforcements) in the form of
numerical values that represent an evaluation of the selected actions [PU98]. The computer is simply
given a goal to achieve and it learns how to achieve that goal by trial and error interactions with its
environment. The learner is not told which actions to take, but instead must discover which actions
yield the highest reward by trying them. In a RL task the agent’s goal is to maximize the sum of the
reinforcements received when starting from some initial state and proceeding to a terminal state.

A RL problem has three fundamental parts [SB98], as follows. The environment is represented by
“states”. By interactions with the environment, a RL system will learn a function that maps states to
actions. The goal of the RL system is defined using the concept of a reinforcement function, which is
the function of reinforcements the agent tries to maximize. This function maps states or state-action
pairs to reinforcements. The agent will learn to perform those actions that will maximize the total
amount of reward received on a path from the initial state to a final state [HH96]. The value (utility)
function is a mapping from states to state values. The value of a state indicates the desirability of
the state and is defined as the sum of rewards received on a path from that state to a final state. The
agent will learn to choose the actions that lead to states having a maximum utility [HH96].

A general RL task is characterized by four components: a state space S that specifies all possible
configurations of the system; an action space A that lists all available actions for the learning agent to
perform; a transition function δ that specifies the possibly stochastic outcomes of taking each action
in any state; a reward function that defines the possible reward of taking each of the actions.

The two basic concepts behind reinforcement learning are trial and error, search and delayed
reward [CK91]. The agent’s task is to learn a control policy, π : S → A, that maximizes the expected
sum E of the received rewards, with future rewards discounted exponentially by their delay, where E
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is defined as r0 + γ · r1 + γ2 · r2 + ... (0 ≤ γ < 1 is the discount factor for the future rewards).
There are two basic RL designs to consider. The agent can either learn a utility function (U ) on

states (or states histories) and use this to select actions that maximize the expected utility of their
outcomes, or it can learn an action-value function (Q) giving the expected utility of taking a given
action in a given state. The latter is called Q-learning.

3.1.1 Q-learning - An Action-Value Function Reinforcement Learning Al-
gorithm

One of the most used RL algorithms is Q-learning, in which the agent learns an action-value
function. Rather than finding a mapping from states to state values, Q-learning finds a mapping
from state/action pairs to values (called Q-values). Instead of having an associated value function,
Q-learning makes use of the Q-function. In each state, there is a Q-value associated with each action.
The definition of a Q-value is the sum of the (possibly discounted) reinforcements received when
performing the associated action and then following the given policy thereafter. An optimal Q-value
is the sum of the reinforcements received when performing the associated action and then following
the optimal policy thereafter.

If Q(s, a) denotes the value of doing the action a in state s, r(s, a) denotes the reward received
in state s after performing action a and s′ represents the state of the environment reached by the
agent after performing action a in state s, the equation that is most often used for the value iteration
update is the following [WD92]:

Q(s, a) = (1− α) ·Q(s, a) + α · (r(s, a) + γ ·max
a′

Q(s′, a′)). (3.1)

where γ is the discount factor for the future rewards and α ∈ [0, 1] is the learning rate.
The Q-learning algorithm has been proven to converge to an optimal policy and action-value

function as long as all stat-action pairs are visited an infinite number of times and the policy converges
in the limit to the greedy policy [PS94].

3.1.2 Action Selection Policies

An important aspect in reinforcement learning is maintaining an equilibrium between exploitation
and exploration [Thr92]. The agent has to be able to accumulate a lot of reward, by choosing the best
experienced actions, but it must also explore its environment, by trying new actions (maybe not the
optimal ones) that may lead to better future action selections. Several rules (policies) for choosing
actions in order to make transitions among states during the learning process exist in the literature.

The greedy policy implies that the learning agent choose the highest-valued action in each state
[SB98]. Another method, which balances the exploration of new states with exploitation of current
knowledge, is ε-Greedy [SB98]. An agent following this policy will choose, in most cases (with prob-
ability 1 − ε), the action having the highest reward, but with a small probability (ε), it will explore
new actions from a given state by selecting an action at random, uniformly, independently of the
action-value estimates. This policy also has a disadvantage, specifically the fact that when selecting
a random action the worst action is as likely to be chosen as the second best one. A way to counter
this disadvantage is to use a policy that chooses better actions more often - the softmax policy. This
selection mechanism has the advantage that actions are ranked according to their value estimates and
each action is chosen with a probability computed using its value [SB98].

3.1.3 Eligibility Traces

Eligibility traces were firstly introduced in [Klo72] and they are a basic mechanism used in RL
for handling delay [SS96]. The idea is that each time a state is visited it is marked by a trace, which
then gradually decays over time, exponentially, according to a decay parameter λ (0 ≤ λ ≤ 1) and to
the discount rate parameter γ. The trace makes the state eligible for learning [SS96].

There are two types of possible implementations for eligibility traces. The first one is accumulating
eligibility traces - the trace increases each time a state is visited. States that are visited more recently
and more often are assigned more credit. The second type is replacing eligibility traces - each time a
state is visited its trace is reset to 1, disregarding the previous trace information.
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3.2 Proposed Reinforcement Learning Based Models. Theo-
retical Considerations

In this subchapter we aim to introduce two new RL based models and a distributed RL based
approach, which will subsequently be used to tackle three important problems in bioinformatics.

From a computational perspective, each of the three problems we are aiming to approach using
RL techniques (the DNA fragment assembly problem - Subchapter 1.4, the protein tertiary structure
prediction problem - Subchapter 1.5 and the temporal ordering problem - Subchapter 1.6) is a com-
binatorial optimization, NP-complete problem. Another characteristic shared by all three problems
is that each one can be regarded as a generalized permutation finding problem, meaning that the so-
lution can be encoded into a generalized permutation of a given set of objects, which satisfies certain
conditions and optimizes a given objective function. Here, by generalized permutation, we denote all
ordinary permutations (in which each object is distinct) joint with all permutations with repetitions,
in which multiple copies of the same object are allowed.

Let us give a general definition of an optimum permutation finding problem. We are given an
input set of n objects and a generic objective function, defined on the set of all possible generalized
permutations of the input objects, which associates to each permutation a real value, indicating its
quality and relevance. The goal is to determine a generalized permutation σ of {1, 2, . . . , n} that
optimizes the objective function of the sequence of objects considered in the order given by σ. We
denote by m the length of the permutation σ, where m ≥ n (m = n for the cases in which the objects
cannot be repeated).

3.2.1 Path Finding Model

In the following, we introduce a first RL based model, called the path finding model. Its main idea
is based on constructing a generalized permutation of the given objects that optimizes the objective
function by starting from an empty sequence and iteratively adding the most appropriate objects until
the permutation is completely formed.

The environment in the path finding model may be visualized as a tree, containing nm+1−1
n−1 vertices,

each vertex corresponding to a state. The initial state is represented by the root. The action space
consists of n actions corresponding to the n possible values 1, 2, . . . , n used to represent a solution.
At a given moment the agent can cause a transition from a state to any of the n successor states,
by executing one of the n possible actions. The transitions between the states are equiprobable, the
transition probability being equal to 1/n. The reward the agent receives for each transition is problem
related and in most cases it is defined so as to optimize the objective function.

A graphical representation of the states space associated to path finding model is given in Figure
3.1a. From the initial state s1, the agent will choose one of the n actions to transition to the next
state. This process will be repeated for each new state, causing the agent to “descend” one level at
a time (on the tree), until it reaches a final state - one of the states positioned on the last level. In
this tree-like environment, a path to the final state consists of distinct vertices (states) in which each
adjacent pair of vertices is linked by an arc (action). The sequence of actions obtained following the
transitions between the successive states from this path will be referred to as the action configuration
associated to the path and it gives a sequence (or a generalized permutation) of the input objects.

For each generalized permutation problem, during some training episodes, the agent will be trained
to find a path having the optimum associated value of the objective function, using the Q-learning
algorithm. After the RL training process, the agent learns to execute those transitions that maximize
the sum of rewards received on a path from the initial to a final state.

3.2.2 Permutation Model

The second RL based model, called the permutation model, is presented below. This model
particularly refers to ordinary permutations, in which all elements must be distinct (i.e. m = n).
The idea is to reach a permutation of objects having an optimum value of the objective function
by starting from the identical permutation and iteratively refining it (by deriving new permutations)
until reaching a final permutation having the associated values of the objective function sufficiently
close to a goal value.

In this case, each state represents a possible solution, i.e. a permutation of the input objects. The
environment is graphically represented in Figure 3.1b. It consists of n! states. The initial state is the
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(a) Environment for the path finding model. The
circles represent states and the transitions between
states are indicated by arrows labeled with the ac-
tion leading from one state to another.

(b) Environment for the permutation model. Oi
denotes the i-th object in the input data set. The
states are represented within the ellipses and the
transitions are indicated by arrows labeled with the
action leading from one state to another.

Figure 3.1: Graphical representation of the environments for the two RL based models.

identical permutation of the objects and we consider s state final (terminal) if the associated value of
the objective function is sufficiently close to a goal value. A priori knowledge about the problem is
needed to be able to define a final state. To transition from one state to another, the agent may choose

one the
(
n
2

)
= n(n−1)

2 actions. Each action is a pair of indices specifying that the objects located at
those indices in the current state will be interchanged to reach the successor state. The transitions
between the states are equiprobable. The reward function will be based on the objective function for
a sequence of objects and must be defined for each specific problem so as to optimize this function.

Unlike for the path finding model, in this case we are not interested in the sequence of actions
the agent determines in order to reach a final state, but rather in the final state of the environment
after the agent executes the learned policy. This final state, representing a permutation of the initial
objects, should have an associated value very close to the optimum value for the defined objective
function.

3.2.3 Distributed Reinforcement Learning Based Model

In order to speed up the trainig process, we extend the proposed RL based models towards a
distributed RL approach. We propose a kind of concurrent Q-learning approach, where multiple
cooperative agents learn to coordinate in order to find the optimal policy in their environment.

In our distributed architecture we have two types of agents: local agents, which run in separate
processes or threads and are trained using the Q-learning algorithm; a supervisor agent, which su-
pervises the learning process and synchronizes the computations of the individual local agents. It
keeps a blackboard [GBF+07] that stores the global Q-values estimations. This supervisor updates
the global Q-value estimation only if the new estimation received from the local agents are better than
the Q-values existing in the blackboard.

During some training episodes, the individual local agents will experiment some paths from the
initial to a final state, updating the Q-values estimations according to the Q-learning algorithm
(Section 3.1.1) and using either of the two models presented earlier in this section (the path finding
model or the permutation model). After the training of the multi-agent system has been completed,
the solution learned by the supervisor agent is constructed by starting from the initial state and
following the greedy mechanism until reaching a final state.

3.2.4 A New Intelligent Action Selection Policy

We introduce a new intelligent action selection policy aiming to better guide the reinforcement
learning agent towards good solutions. This action selection mechanism is derived from the ε-Greedy
mechanism (Section 3.1.2) and it uses a one step look-ahead procedure in order to better guide the
exploration of the search space. When selecting an action from a given state, the following selection
mechanism is used: with probability 1− ε select the action that maximizes the Q-value of the reached
neighboring state (ε-Greedy selection); with probability ε, select the action that optimizes the objective
function corresponding to the current configuration (look-ahead).
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3.3 Reinforcement Learning Based Model for the DNA Frag-
ment Assembly Problem

In this subchapter, the three RL based models that were introduced in Sections 3.2.1, 3.2.2
and 3.2.3 are adapted to approach the DNA fragment assembly (FA) problem. This problem was
presented in Subchapter 1.4 and it refers to reconstructing an original DNA sequence from smaller
DNA fragments.

3.3.1 Methodology

Let us consider, in the following, that Seq is a DNA sequence and FS = {F1, F2, . . . , Fn} is a set
of fragments. Each fragment is a small DNA subsequence and fragments contain overlapping regions.
The FA problem consists of determining the order in which these fragments have to be assembled back
into the original DNA molecule, based on common subsequences of fragments. Consequently, the FA
problem can be viewed as the problem of generating a permutation σ of {1, 2, . . . , n} that optimizes
the performance of the alignment σFS = (Fσ1

, Fσ2
, . . . , Fσn) (n > 1). The objective function that

must be maximized is a performance measure PM , which sums the overlap scores over all adjacent
fragments [PFB95].

First, we adapted and applied the path finding model to solve this problem. The state and action
spaces, as well as the transition function remain the same. We offer two possible definitions for the
reward function, both depending on the performance measure for an alignment. The first reward
function, as defined in Formula (3.2), illustrates situations when feedback is given at the end of each
trial episode. This function can be modified so as to give feedback to the agent after each transition
to a new state, even if the state is not final. Therefore, the second definition of the reward function
is given in Formula (3.3).

r(πk) =

{
PM(Faπ ) if k = n
τ otherwise

(3.2) r(πk) =

{
0 if k = 0 or k = 1
w(Faπk−1

, Faπk−2
) otherwise

(3.3)

where by r(πk) we denote the reward received by the agent in state πk, k ∈ {1, . . . , n}, after its history
in the environment is π0 = s1, π1, π2, ...πk−1, aπ = (aπ0

aπ1
. . . aπn−1

) is a possible action configuration
and w(a, b) is the similarity score of the fragments a and b.

3.3.2 Experimental Evaluation and Results

The computational experiments are performed on a toy example, a small DNA sequence belonging
to the bacterium Escherihia coli (E. coli), as well as on a human DNA sequence.

3.3.2.1 Experiment 1 - Toy example

We first tested our approach on the example described in Subchapter 1.4. The DNA sequence
is TTACCGTGC and the set of fragments is: F1 = ACCGT , F2 = CGTGC, F3 = TTAC, F4 =
TACCGT . The correct order of fragments which gives the original DNA sequence is: F3F4F1F2.

We have trained the agent using as reward function the function defined in Formula (3.2). We
used the ε-Greedy action selection mechanism and 240 training episodes. Two optimal solutions were
reported after the training of the agent was completed: F3F4F1F2 and F2F1F4F3, both of them having
the maximum associated performance.

On this toy example, we have also applied the distributed RL model introduced in Section 3.2.3.
We used two local agents, each one using a path finding Q-learning based approach. The two optimal
solutions were reported by the supervisor agent after the training of the local agents.

3.3.2.2 Experiment 2 - E. coli small DNA sequence

In this second example, we have chosen a small section of DNA belonging to the bacterium Es-
cherichia coli (E. coli). The DNA sequence contains 25 nucleotides: TACTAGCAATACGCTTGCGTT
CGGT . Using the Perl scrips from [ZCY+11] we obtained 10 fragments, each having 8 nucleotides.
These are ordered in the following way to form the original DNA sequence: F6F3F10F5F7F9F1F8F2F4.

Experiments were made with both the reward functions defined in Section 3.3.1 and using both
the ε-Greedy policy, as well as the intelligent action selection policy introduced in Section 3.2.4. The
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solution reported after the training of the agent was completed is the correct one, having the maximum
performance measure, for all the tests.

In the first series of tests we used the reward function defined in Formula (3.2) and the ε-Greedy
selection policy, with the ε parameter set to 0.8. The solution, i.e. the alignment having the optimal
performance measure, is reached after 486 · 103 episodes, on average. Second, we tested the RL based
model using the reward function defined in Formula (3.3) and the ε-Greedy policy, with the same value
of ε. As the agent is rewarded after each step, the learning happens faster. As a result, the correct
fragment alignment is obtained after an average of 334 ·103 episodes. Lastly, the RL based model was
tested using the reward function defined in Formula (3.3) and the intelligent action selection policy
introduced in Section 3.2.4. By employing this selection mechanism, the agent reaches the optimal
solution even faster, on average, after less than 103 episodes.

3.3.2.3 Experiment 3 - Human DNA

To evaluate our algorithm on larger sequences, we have chosen a human DNA sequence. It was
taken from NCBI (National Center for Biotechnology Information) [LAR+10]. The sequence refers
to a “Human MHC class III region DNA with fibronectin type-III repeats” and it has a length of
3835 nucleotides. We used a software called GenFrag [EB96] to generate 20 fragments for the above
mentioned sequence. The average length of a fragment is 766 nucleotides.

In order to avoid the grouping together of fragments which have long overlaps, but should not
be neighbors in the final assembly, in this situation we use a different performance function, which
was introduced by Parsons et. al [PFB95] and that penalizes solutions in which strong overlaps occur
between fragments that are further apart in the alignment. This function must be minimized.

Considering the performance measure mentioned above, the reward function is also modified,
being defined as in Formula 3.4:

r(πk) =


0 if k = 0 or k = 1

−2 ·
k−2∑
i=0

(k − 1− i) · w(Faπi , Faπk−1
) otherwise

(3.4)

where by r(πk) we denote the reward received by the agent in state πk, k ∈ {1, . . . , n}, aπ =
(aπ0

aπ1
. . . aπn−1

) is a possible action configuration and w(a, b) is the similarity score of the fragments
a and b.

It can be proven that the total sum of rewards is actually the opposite of the performance measure.
The reward will be maximized, therefore the performance function of an alignment will be minimized.

We evaluated the obtained alignment in terms of number of contiguous sequences. The recovered
optimal permutation composes a single contiguous sequence which will then be used to obtain the
target DNA. Our RL based algorithm was run 5 times and it converges to this solution quite rapidly,
after 32 · 103 episodes, on average.

3.3.3 A Comparison of the Path Finding and the Permutation Models

To compare the performances of the two models, we consider the same section of DNA from the
bacterium Escherichia coli (E. coli), but in this case we generated only 8 fragments, which compose
the DNA sequence as follows: F4F7F5F6F8F3F2F1.

Both RL based models are applied to find the optimum permutation of the fragments. The path
finding model is applied similarly to the previous two experiments, using as reinforcement function
the one defined in Formula (3.3). Regarding the permutation model, the state and action spaces as
well as the transition are the ones presented in Section 3.2.2. The reinforcement function associated
to a transition from a state sj = σjFS to a state sl = σlFS (j, l ∈ {1, · · · , n!}, l 6= j), by executing
action ak, 1 ≤ k ≤ Na, will be:

r(sl = Fσl |sj , ak) =

{
PM(σlFS)− PM(σjFS) if sl is non-terminal

PM(σlFS)− PM(σjFS) + PM(s0) otherwise
(3.5)

where s0 is the identical permutation.
We compare the two models by running the corresponding implementations, using the Q-learning

algorithm [SB98] in conjunction with three action selection mechanisms: ε-Greedy, softmax (Section
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3.1.2) and the intelligent action selection mechanism (Section 3.2.4). The permutation model proved
to outperform the path finding approach, for the considered case study, when inspecting the number
of epochs, as well as the the computational time. Still, in the case of the permutation model, we note
that because it is difficult to determine a final state, we need a priori information about the possible
values of the performance measure for permutations.

For the permutation model the number of states of the environment is smaller than for the path
finding approach. However, an important drawback of this model is the fact that a priori knowledge
about the problem is needed in order to define a final state and this information is not available in all
types of situations. Therefore, the path finding approach is more general and, as the results it obtains
are good both in terms of accuracy and in terms of computational time, we conclude that it is better.

3.3.4 Discussion

We have experimentally evaluated each RL based model that we introduced on several DNA
sequences, using the Q-learning algorithm with two different reinforcement functions and three action
selection policies with different values for the parameters.

Regarding the path finding RL based approach applied for solving the DNA fragment assembly
problem, the training process during an episode has a time complexity of θ(n) (n is the number of
fragments), when the Q-learning algorithm is used with the ε-Greedy action selection policy. For the
case when the agent performs an intelligent action selection mechanism (the look-ahead procedure),
the training process during an episode has a time complexity of θ(n2). Consequently, assuming that
the number of training episodes is k, the overall complexity of the algorithm for training the agent is
θ(k · n) or θ(k · n2), depending on the used policy.

We have introduced two reinforcement functions for an agent who learns using the path finding
model. The function rewarding the agent after each transition leads to faster learning than the function
which offers the reward only at the end of a trial episode. As soon as the intelligent action selection
policy (Section 3.2.4) is introduced, the learning is even more accelerated.

To avoid considering a very large number of episodes for obtaining a solution, a distributed RL
based model was introduced. The main advantage of the distributed approach is that, by using
multiple agents during the training step, the overall computational time is reduced. Still, the problem
that has to be further investigated is how to preserve the accuracy of the results in the distributed
approach.

3.4 Reinforcement Learning Based Model for the Protein Ter-
tiary Structure Prediction Problem

This subchapter describes how two of the RL based models introduced in Subchapter 3.2, more
specifically the path finding (Section 3.2.1) and the distributed models (Section 3.2.3) are applied
to solve the protein tertiary structure prediction (PTSP) problem, which, from a computational
perspective, refers to predicting the three dimensional structure of a protein from its amino acid
sequence. This problem was presented in more detail in Subchapter 1.5.

3.4.1 Methodology

To define the RL task, we use the Hydrophobic-Polar (HP) model [Dil85] (Subchapter 1.5). For
a given protein, composed of amino acids (each amino acid being either hydrophobic or polar), the
problem is to find the position of each amino acid in a two dimensional lattice so as to minimize an
energy function.

A solution for the bidimensional HP PTSP problem, corresponding to an q-length protein P could
be represented by a q − 1 length sequence, where each position encodes the direction of the current
amino acid relative to the previous one (L - left, R -right, U - up, D - down).

We present in the following how the path finding RL based model introduced in Section 3.2.1 is
adapted and applied to solve the PTSP problem. Given that a solution can be seen as a sequence
composed of the four symbols (L, R, U , D) expressing directions of amino acids, the PTSP problem
can be regarded as the problem of generating a generalized permutation π that minimizes the energy
function in the HP model. In this case, the permutation is not an ordinary one, but is a permutation
with repetitions, as each of the four symbols may appear as many times as necessary. Hence, we
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remark that the objects mentioned in Subchapter 3.2 are here represented by the four directions, i.e.
n = 4 and the length of a permutation m is one unity less the number of amino acids forming the
protein’s primary sequence.

The state and action spaces, as well as the transition function are similar to the ones presented in
Section 3.2.1. The reward function is defined so as to ensure the minimization of the protein’s energy.
Therefore, after a transition to a non-terminal state the agent receives a small positive constant and
when transiting to a final state the agent receives as reward the opposite value of the energy function
associated to the obtained configuration. In this way, by trying to maximize the sum of rewards, the
agent actually tries to minimize the energy function.

3.4.2 Experimental Evaluation and Results

The path finding and the distributed RL based models (Section 3.2) are experimentally evaluated
using some artificially generated HP protein sequences, as well as a benchmark generally used for the
bidimensional protein structure prediction.

3.4.2.1 Experiment 1

We consider an easy to follow example, a HP protein sequence P = HHPH, consisting of four
amino acids, i.e q = 4. The agent was trained using the Q-learning algorithm. We used the ε-Greedy
action selection mechanism was used, with ε = 1 and 100 training episodes.

The solution reported after the training of the agent was completed has a minimum associated
energy of −1. This optimal solution is the configuration (ULD). This solution is actually equivalent
to the following configurations: (RUL), (DRU) and (LDR), which are all its rotations around the
fixed point in the lattice where the first amino acid is mapped. Also, this solution is equivalent to the
configuration (URD), which is its mirrored version, as well as with the mirrored equivalent rotations
(LUR), (RDL) and (DLU). The agent may reach any of these solutions, which are all correct and
have the minimum associated energy of E∗ = −1.

On this simple example, we have also applied the distributed RL model introduced in Section
3.2.3. Two local agents are trained during 40 episodes, using a path finding approach. After their
training is completed, the solution reported by the supervisor agent is the same configuration: (ULD).

3.4.2.2 Experiment 2

In this second experiment the protein is composed of q = 11 amino acids: P = HHHPHPPPPPH.
This example is taken from [Chi10] and the minimum value of the energy function is E∗ = −2.

The agent was trained during 105 training episodes and using the ε-Greedy action selection mech-
anism, with ε = 0.8, to allow the exploration of the search space, but also the exploitation of the
learned Q-values. The agent needs, on average, 43 · 103 epochs to obtain a configuration having
the minimum energy. The reported results are averaged over 5 runs of the algorithm. There are
several optimal solutions (having an energy value of −2) reported by the agent after the training
was completed: (DRDLDLULUR), (DDRUUULLDD), (DLDRDRRUUL), (RURDRRDLLL),
(ULURRRDDLU), (URULLLDDRU), (ULURURRDLD), together with their rotations and their
mirrored versions.

3.4.2.3 Experiment 3

In this third example, we consider a bidimensional HP protein instance P = HPHPPHHP
HPPHPHHPPHPH, consisting of twenty amino acids, i.e. q = 20. This is a benchmark instance
generally used for the two-dimensional HP PTSP problem. It can be found in [UM93] and its known
optimal energy value is E∗ = −9.

We have trained the agent using the same parameter setting as for the previous experiment. The
only difference is that when using the ε-Greedy action selection mechanism we started with ε = 1 in
order to favor exploration, then after the training progresses ε is decreased until it reaches a small
value, which means that at the end of the training exploitation is favored.

Using the above defined parameters and under the assumptions that the state action pairs are
equally visited during training, the solution reported after the training of the agent was completed is
the configuration (RUULDLULLDRDRDLDRRU). Figure 3.2 [CBC11b] illustrates this configura-
tion.
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Figure 3.2: A protein configuration for the sequence P = HPHPPHHPHPPHPHHPPHPH, of
length 20. The configuration learned is (RUULDLULLDRDRDLDRRU). Black circles represent
hydrophobic amino acids, while white circles represent hydrophilic ones. The value of the energy
function for this configuration is −9.

3.4.3 Discussion

The bidimensional protein tertiary structure prediction was approached in this subchapter, using
two reinforcement learning based models that were previously introduced. These models are adapted
to tackle the PTSP problem, which can be regarded, from a computational point of view, as the
problem of generating an optimum permutation with repetitions, consisting of directions of the amino
acids composing the protein.

Regarding the path finding RL based approach for solving the bidimensional PTSP problem, we
remark the following. For the Q-learning approach that we used in conjunction with the ε-Greedy
action selection policy, the training process during an episode has a time complexity of θ(n), where
by n we denote the length of the HP protein sequence. Consequently, assuming that the number of
training episodes is k, the overall complexity of the algorithm for training the agent is θ(k · n). If the
dimension n of the HP protein sequence is large and consequently the state space becomes very large,
a function approximation method (e.g. neural network, support vector machine) should be used in
order to store the Q-values estimates.

The main drawback of our approach is that a very large number of training episodes has to be
considered in order to obtain accurate results and this leads to a slow convergence. In order to speed
up the convergence process, further improvements will be considered.

3.5 Conclusions and Further Work

In this chapter we have introduced new reinforcement learning based models for solving a general
class of combinatorial optimization problems and we have adapted and applied these models to solve
two major problems in bioinformatics: the DNA fragment assembly problem (Subchapter 1.4) and
the protein tertiary structure prediction problem (Subchapter 1.5). The approaches presented in
this chapter are original works published in [CBC13, CCB13, BCC11a, CBC11a, BCC11b, CBC11c,
CBC11b, CBC11d].

The techniques we introduced were experimentally evaluated on several data sets from the domain
of each of the two problems and the obtained results were presented and analyzed. These results prove
a good performance of the RL based models, which demonstrates the potential of our proposals.

We plan to extend the evaluation of all the Q-learning based algorithms for larger DNA and
protein sequences, to further develop the analysis. We will also investigate possible improvements of
these models by adding various local search mechanisms, by combining the softmax policy with the
intelligent action selection procedure (Section 3.2.4), by modifying the action selection parameters
during the training process or by considering an extension of the RL based permutation model to a
distributed approach in order to solve the fragment assembly problem.



Chapter 4

New Approaches to the Biological
Temporal Ordering Problem

This chapter presents two different approaches that we proposed for the biological temporal order-
ing (TO) problem (Subchapter 1.6). The first approach, developed in collaboration with a research
team during my research internship at the University of Milano-Bicocca, tackles the TO problem
from a computational point of view, focusing on biological aspects of the problem in question as well
[BCG+12, BCG+13]. The second approach tackles the TO problem from a computational perspec-
tive and it focuses on applying one of the reinforcement learning (RL) models we introduced in the
previous chapter to the temporal ordering problem [CBC13, Boc12a]. Furthermore, this chapter also
introduces a new programming interface for solving optimization problems using RL techniques, which
is applied to find solutions to the TO problem [CCB11a, CCB11b].

4.1 Temporal Ordering of Colorectal Cancer Samples through
Copy Number Alteration Data

This subchapter presents a new approach to the TO problem. The method introduced here was
developed during my research internship at the University of Milano-Bicocca, in collaboration with
the BIMIB research group.

4.1.1 Biological Concepts

This section presents some basic biological concepts needed for a better understanding of the
methodology that we propose for the temporal ordering of a copy number alterations data set.

Colorectal cancer (CRC) is the third most common type of cancer worldwide and the second most
frequent cause of cancer-related death [JSXW10]. Most CRCs develop through a series of distinct
morphological stages that are strongly correlated with the malfunctioning of the complex signaling
networks ruling the intestinal crypt dynamics and homeostasis, which is induced by the accumulation
of alterations in the function of key regulatory genes and genetic instability [VFH+88, FV90, Fra07,
Net12].

Chromosomal copy number alterations (CNAs) refer to regions of the DNA that have either been
deleted (losses or deletions) or duplicated a certain number of times (gains or amplifications) on
chromosomes. These alterations may affect the function of certain genes by modifying their expression
and have been associated with susceptibility or resistance to certain diseases. In cancer, chromosomal
CNAs can also lead to activation of oncogenes and inactivation of tumor suppressor genes. During
the progression from high-grade adenomas to invasive carcinomas, specific chromosomal aberrations
become common, such as gains and deletions on certain chromosomes [ASD+10]. CNAs are directly
correlated with cancer and the analysis of CNAs that happen in tumor cells could provide further
insights into the process of CRC progression.

26
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Figure 4.1: Representation of the proposed methodology. Starting from the input data set, different
subsets are defined, using abstraction mechanisms. A TSP instance is built for each new data set and
finally, the solution to the TSP represents the temporal ordering of the given samples.

4.1.2 Methodology

This section introduces the methodology we propose for obtaining a temporal ordering of a set of
static copy number alteration data taken from patients at different stages of colorectal cancer. Our
work is more focused on a specific approach to the TO problem, previously proposed by Gupta and
Bar-Joseph [GBJ08], which has been shown to work for gene expression data. The technique presented
in [GBJ08] is based on the reduction of the sorting problem to the travelling salesman problem (TSP),
under two biologically realistic assumptions over the gene expression data set. As we can assume that
the CNAs data also fulfils these two assumptions, we develop a methodology which enables us to apply
the technique on a CNAs data set.

Figure 4.1 [BCG+12] briefly illustrates our methodology, highlighting the most important steps
that were used to determine a temporal ordering for a set of biological samples. These steps will be
detailed in the following.

In order to capture distinct aspects of the complex CNAs phenomenon, we define several chromosome-
related measures and certain filters targeting significant portions of chromosomes. We also aim to
identify which of these measures performs best regarding tumour progression or whether chromoso-
mal gains or losses, considered separately, could influence the outcome. As chromosome measures, we
introduce the following notions: value, intensity, number and the averaged analogous: average of the
values and average of the intensities, all these referring to alterations, deletions and amplifications.
Furthermore, we propose two filtering methods to be applied on the initial data set, which could lead
towards obtaining more accurate orderings: (i) recurrent CNAs - we consider those CNAs that belong
to regions of the chromosomes that have suffered alterations in a higher number of different samples;
(ii) recurrent CNAs, as well as CNAs belonging to regions that include at least one of the genes known
to be involved in tumor progression (cancer driver genes).

To build the TSP instance, we consider the cities to be represented by the 22-dimensional samples
(each dimension corresponding to one chromosome, not considering the gender-linked chromosome)
and a distance matrix is used to define distances between any two samples. Two types of metrics are
used: the L1 distance and the Euclidean distance.
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Figure 4.2: The best recovered ordering for the CRC data set. In the first figure, the ordering is
plotted against the histological stages: I (yellow), II (orange), III (pink) and IV (red). In the second
one, the same ordering is plotted against the overall survival time. The samples in the left part have
higher survival times, as expected.

4.1.3 Experiments

This section presents the experiments developed in order to test the efficiency of our methodology.
Evaluations are performed on the colorectal cancer CNAs data set.

The data set we used was taken from the study of Reid et al. [RGS+09]. It contains 44 biological
samples extracted from patients in different stages of CRC.

Three types of tests were made, one for the initial input data set and two for the subsets obtained
by applying the above mentioned filters, therefore obtaining several different orderings. As soon as the
values for the chromosomes are computed for all the samples, the TSP instance is solved by using the
Concorde TSP Solver [Coo11]. As a validation criterion, we used the survival time of each patient,
after being diagnosed. We defined the ideal ordering as the one in which the first sample has the
maximum, while the last one has the minimum overall survival time. Using the squared deviation
distance (SDD) [SS05], the distance from each obtained solution to the ideal one was computed.
Therefore, the orderings having smaller SDDs (with regard to the ideal ordering) were considered to
be more accurate.

The best result was obtained for the test that takes into account the CRC driver genes and
recurrent CNAs, with the chromosome measure average of values of alterations and for the Euclidean
distance. Figure 4.2 [BCG+13] (bottom) illustrates this result and indicates the correlation between
the obtained ordering and the survival time. The samples in the left half of the graph belong to
patients whose survival times (relative to the moment of diagnosis) are higher, while the ones in
the right half have lower survival times. Although in our data set the CRC histological stages are
not always directly correlated to the survival time (the expectancy is that as the stage increases,
the survival time should decrease), in Figure 4.2 [BCG+13] (top) we may observe that for the best
ordering, there are considerably more samples in stages I and II in the left half (9 samples) than
in the right one (2 samples) and there are more samples in stages III and IV in the right half (20
samples) than in the left one (13 samples). We thus observe that the order is, to a certain degree,
also compatible with the histological stage. We may also remark that the sample having stage I is
positioned in the first place.
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4.2 Reinforcement Learning Based Model for the Biological
Temporal Ordering Problem

This subchapter presents how the RL based path finding model (Section 3.2.1) can be adapted
and modified to approach the biological temporal ordering problem. This problem was described
in Subchapter 1.6. It refers to constructing a sorted collection of multi-dimensional biological data,
collection that reflects an accurate temporal evolution of a certain biological process. Here, we restrict
to considering data sets consisting of samples derived from microarray gene expression experiments.

4.2.1 Methodology

Let us consider that DS is the input data set, consisting of n (n > 1) multi-dimensional samples:
DS = {S1, S2, . . . , Sn}, each sample being identified by a set of features. For the considered type
of data, each feature is represented by one gene and has as a value a real number, measuring the
expression level of the gene in question. A first step of our approach is data pre-processing. As the
dimensionality of the input data can be extremely high (thousands of gene expression levels for each
sample), the goal of this step is the elimination of the genes that offer no significant information in
the temporal ordering process. To this end, a statistical analysis is carried out on the data set and by
using the Pearson correlation coefficient [Tuf11], we select only those genes that are highly correlated
with the selected supplementary biological information (which is, in the case of cancer data sets, the
survival time).

From a computational point of view, the TO problem can be viewed as the problem of generating
a permutation σ of {1, 2, . . . , n} that maximizes the overall similarity Sim of the sequence of samples
considered in the order σ: Sσ = (Sσ1 , Sσ2 , . . . , Sσn) (n > 1). We mention that in the case of the
TO problem, the searched permutation is ordinary, meaning that all its composing elements must be
distinct, therefore the length of the permutation is equal to the cardinality of the set of samples. The
overall similarity Sim we consider in this paper sums the similarities over all adjacent samples and
it has to be maximized. The overall similarity for the sequence of samples Sσ = (Sσ1

, Sσ2
, . . . , Sσn)

is defined as Sim(Sσ) =

n−1∑
i=1

sim(Sσi , Sσi+1
), where sim(xi, xj) denotes the similarity between the

multidimensional vectors xi and xj and is defined as sim(xi, xj) = Max− dE(xi, xj). Here by dE we
denote the euclidian distance and Max is a large constant.

We aim to apply the path finding model introduced in Section 3.2.1 to obtain a path from the
initial to a final state, which will encode a permutation of the input samples that maximizes the
similarity measure. A path π = (π0 = s1, π1, π2, . . . , πn) is called valid if all the actions within its
action configuration are distinct and each sample from the sequence Seqπ is more similar to the sample
that immediately follows it in the ordered sequence than to any other sample. The state and action
spaces, as well as the transition function are similar to those defined in Section 3.2.1. To obtain the
optimum configuration, the reward function is defined as follows (Formula (4.1)):

r(πk) =


0 if k = 1
−∞ π is not valid
sim(Saπk−1

, Saπk−2
) otherwise

(4.1)

where by r(πk) we denote the reward received by the agent in state πk, after its history in the
environment is π = (π0 = s1, π1, π2, . . . , πk−1), k ∈ {1, 2, . . . , n} and aπ = (aπ0

aπ1
. . . aπn−1

) is a
possible action configuration.

The agent receives a negative reward on paths that are not valid, therefore it will learn to explore
only valid paths. Considering the reward defined in Formula (4.1), it can be shown that the agent is
trained to find a valid path that maximizes the overall similarity of the associated ordering.

4.2.2 Experimental Evaluation and Results

In this section we aim at experimentally evaluating our RL based approach for solving the TO
problem on several real data sets. Some of these are time series (the correct ordering is known),
thus allowing us to validate our method. Other two data sets contain samples extracted from cancer
patients.
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Yeast cells affected by environmental changes [GSK+00]

Data set
RL recovered SMD Comp. Ordering recovered SMD

Imprv.
ordering (S) (S) time (sec.) in literature (S’) (S’)

Heat shock 1, 2, 3, 4, 5, 6, 7, 8 0 < 2 1, 8, 7, 6, 5, 4, 3, 2 [GBJ08] 2 Yes

DTT exposure 1, 2, 3, 4, 5, 6, 7, 8 0 < 2 1, 2, 3, 4, 5, 6, 7, 8 [GBJ08] 0 Same

Amino acid
1, 2, 3, 4, 5 0 < 2 1, 2, 3, 4, 5 [GBJ08] 0 Same

starvation

Nitrogen 4, 3, 2, 1, 5
2 < 2

4, 3, 2, 1, 5,
2 Same

depletion 6, 7, 8, 9, 10 6, 7, 8, 9, 10 [GBJ08]

Diauxic shift 1, 2, 3, 4, 5, 6, 7 0 < 2 1, 2, 3, 4, 5, 6, 7 [GBJ08] 0 Same

α factor-based synchronization of the Saccharomyces cerevisiae yeast cells [SSZ+98]

1, 2, 3, 4, 5, 6, 7,
5 ∼ 5

1, 2, 3, 4, 5, 6, 7,
2 No8, 9, 17, 14, 15, 16, 8, 9, 10, 18, 17, 16, 15

18, 10, 11, 12, 13 14, 13, 12, 11 [SSZ+98]

Response of human cells to infection by Listeria monocytogenes [BVBT02]

Wild type 1 1, 2, 3, 4, 5, 6 0 < 2 1, 2, 3, 4, 5, 6 [GBJ08] 0 Same

Wild type 2 1, 2, 3, 4, 5, 6 0 < 2 3, 2, 1, 5, 4, 6[GBJ08] 4 Yes

Mutant 1 1, 4, 2, 3, 5, 6 2 < 2 1, 3, 2, 6, 5, 4 [GBJ08] 4 Yes

Mutant 2 1, 2, 3, 4, 5, 6 0 < 2 1, 2, 3, 4, 6, 5 [GBJ08] 2 Yes

Table 4.1: Presentation of the results obtained by our RL based temporal ordering algorithm for the
time series data sets. For each data set, we present the solution obtained by our RL based temporal
ordering algorithm, the evaluation measure SMD of the ordering, the computational time (in seconds),
as well as other orderings obtained in the literature for the same data sets and their corresponding
evaluation measures. The last column of the table (Improvement) specifies whether our method leads
to better solutions (in terms of correct known ordering, or of lower values of the evaluation measure),
compared to those that have already been reported in the literature.

4.2.2.1 Time Series Gene Expression Data

To test our method on data with known time orderings, we used several time series data sets. A
time series data set is a collection of data resulted from a specific type of biological experiment: samples
of tissues are extracted from the same individual at known points in time, during the progression of
the biological process. The data sets used in these experiments are yeast and human time series.

In order to be able to compare our results with other results presented in the literature for the same
data sets, as well as in order to quantify the performance of our RL based algorithm, we introduce an
evaluation measure which assesses the quality of a solution (ordering) obtained for a data set, with
regard to the correct, known ordering. We define a measure, SMD (Samples Misplacement Degree),
which, in our view, expresses the misplacement degree of samples in a given ordering (solution).
Through its definition, the SMD measure penalizes solutions in which samples are not in the correct
position in the ordering, with respect to neighboring samples.

The agent was trained using the path model Q-learning based approach, with the intelligent action
selection mechanism used with ε = 0.8 and the number of training episodes is 13000. The solutions
reported in each case, after the training of the TO agent was completed are the optimal valid temporal
orderings.

For each of the considered time series data sets, Table 4.1 [CBC13] presents the results. We
mention that for each of the ten data sets, the correct orderings are the ones starting with the first
sample (corresponding to the sample extracted at the first point in time) and increasing consecutively
up to the sample which was acquired last. It can be observed that our algorithm obtained the correct
orderings for seven out of the ten data sets. Regarding the computational time, for the smaller data
sets (those containing less than, or exactly 10 samples), our RL based algorithm obtained the solutions
within very short amounts of time, less than 2 seconds, on a PC at 3 GHz with 4 GB of RAM, in all
nine cases (Table 4.1 [CBC13]). The computational time of our algorithm for the data set composed
of 18 samples [SSZ+98] was low as well - approximately 5 seconds.

4.2.2.2 Cancer Expression Data

We also tested our RL based algorithm on a cancer gene expression data set [NMB+03], consisting
of high-grade glioma samples: 28 glioblastomas and 22 anaplastic oligodendrogliomas. For each sample
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Figure 4.3: Recovered temporal orderings and survival times for the high-grade glioma data set. The
figure on the left corresponds to the glioblastomas data set, while the one on the right illustrates the
results for the anaplastic oligodendroglioma data set.

of these two subsets, we are given the gene expression levels for 12625 genes and the survival time
following the initial diagnosis [NMB+03]. For each of the two subsets we applied the pre-processing
step. Following this step, the dimensionality of the input data was significantly reduced: the input
vectors for glioblastoma reached a dimensionality of 28 features (genes), while those corresponding to
anaplastic oligodendrogliomas were limited to 41 features.

The TO agent was trained using the intelligent look-ahead action selection mechanism with ε = 0.8,
along 3 · 105 training episodes. Figure 4.3 [CBC13] presents the obtained solutions and indicates the
correlation between the orderings and the survival time of the patients. The orderings are illustrated
so that the first sample is always on the left and the last one on the right. It can be observed that in
both cases the recovered orderings are, up to a certain extent, well correlated with the overall survival:
the samples in the right half of each graph belong to patients whose survival times are lower, while
the ones in the left half belong to patients having higher survival times.

4.2.3 Variations of the RL based approach

Using one of the yeast time series data sets presented in Subsection 4.2.2.1 we experimentally
evaluated two more Q-learning algorithms, which use eligibility traces (Section 3.1.3): Q(λ) [Wat89]
and naive Q(λ) [SB98] and two different action selection policies (one step look-ahead procedure -
Section 3.2.4 and softmax action selection policy - Section 3.1.2).

The algorithms are compared by examining the accuracy of the recovered orderings, by the number
of epochs they need to achieve convergence and by the computational time. The traditional Q-learning
algorithm, with no eligibility traces, proves a very good performance obtaining the optimal solution
within very short amounts of time (less than 2 seconds), when using the ε-Greedy based look-ahead
procedure. The softmax action selection policy also leads to the correct ordering, but in this case the
convergence is slower. As soon as eligibility traces are introduced, the behaviour of the Q-learning
algorithm changes radically: for certain values of the policy parameters it does not converge at all,
while for other values it retrieves the correct ordering, but within greater amounts of time. A possible
explanation for this behaviour would be the fact that in our representation of the environment the
full set of states is never completely known and therefore eligibility traces can only be updated for a
known subset of states. This leads us to the conclusion that, for the TO problem, Q-learning with no
eligibility traces is more appropriate.
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4.2.4 Discussion

In this subchapter we have tackled the biological TO problem by adapting the RL based path
finding model (see Section 3.2.1). To experimentally evaluate our approach, first we selected a series of
data sets that have already been used in the literature [GBJ08, MLK03]. The results that we obtained
are comparable and in some cases even better than the results that were reported, so far. Secondly,
we evaluated our RL based method on two cancer gene expression data sets: one composed of 28
glioblastomas and the second containing 22 anaplastic oligodendrogliomas [NMB+03]. Based on an
intuitive correlation between the advancement of the disease and overall survival time of the patients
we have chosen the survival time as a measure of validation for the obtained temporal orderings.
Although for the anaplastic oligodendrogliomas data set this correlation is stronger, we may state
that in both cases, the retrieved orderings are, up to a certain extent, well correlated with the survival
time.

The solution to the temporal ordering problem can be used for a dual purpose. On the one
hand a temporal ordering of data associated to a biological process could offer new insights into the
development of the this process. On the other hand, our approach could also be used to find the
correct time points of some given new samples in a pre-ordered data set. One application for this is
within the field of cancer research: assuming an ordered set of cancer patients, together with their
overall survival time predictions are given, when new patients, with yet unknown survival times are
added to the data set, a temporal ordering of the new set (including the new patients) could reveal
important information regarding their life expectancies.

As disadvantages of our approach, we mention that the only way to reduce the noise is the pre-
processing step, that uses a priori knowledge on the problem. Another drawback may be the fact that
a large number of training episodes is needed for large problems to obtain accurate results, but, as
the experimental results have shown, good local search mechanisms may be successfully used to speed
up the convergence process. We think that the direction of using RL techniques in solving the TO
problem is worth being studied and further improvements can lead to more valuable results.

4.3 A Reinforcement Learning based Software Framework

In this subchapter we present a programming interface for solving optimization problems using
RL techniques. The software framework was introduced in the original papers [CCB11a, CCB11b].
It was mainly developed to offer a simple and quick way to experimentally evaluate the RL based
models proposed in Subchapter 3.2. Nevertheless, this framework was designed to be generic enough
to be used for developing applications tackling general combinatorial optimization problems.

We propose an application programming interface (API) that allows to simply develop applica-
tions for solving combinatorial optimization problems using RL techniques. In the framework that
we propose we make an abstraction of the way the optimization problem to be solved is modeled as
a reinforcement learning task. This is the major advantage of our RL interface proposal: the RL
algorithm is defined independent of the way the environment, states and actions are defined. Con-
sequently, a user aiming to solve a specific optimization problem only has to define his specific state
and action spaces, transition and reward functions, which are all quite simple tasks, as the abstract
general versions of these RL components are already defined.

The interface is realized in JDK (Java Development Kit) 1.6 and has four basic modules: agent,
environment, RL, and simulation. As in a general agent based system [Wei99], the agent is the
entity that interacts with the environment, that receives perceptions and selects actions. The agent
learns using RL to achieve its goal, i.e. to find an optimal solution of the corresponding optimization
problem. Generally, the inputs of the agent are perceptions about the environment (in our case states
from the environment), the outputs are actions and the environment offers rewards after interacting
with it. The interaction between the agent and the environment is controlled by a simulation entity.

Figure 4.4 [CCB11a] shows a simplified UML diagram [(OM13] of the interface, illustrating the core
of the RL interface. It is important to mention that all the classes provided by the interface remain
unchanged in all applications for solving combinatorial optimization problems using reinforcement
learning.

We have experimentally evaluated our RL framework, by applying it in order to obtain solutions
to three optimization problems in bioinformatics, modeled as RL tasks: the biological TO problem
(Section 4.2.2), DNA fragment assembly (Section 3.3.2) and protein tertiary structure prediction
(Section 3.4.2). The RL framework can simply be used to develop applications for solving these
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Figure 4.4: The UML diagram of the reinforcement learning based programming interface.

problems. After selecting conceptual models for the states and actions spaces and after deciding
which RL algorithm and what action selection policy to use, all the user has to do is to implement
new classes, which inherit or extend the interfaces or abstract classes defined in the interface.

4.4 Conclusions and Further Work

We have introduced in this chapter two different approaches for the biological temporal ordering
problem: the first one proposes a methodology for obtaining temporal orderings from CNA data sets
and the second uses a RL model proposed in a previous chapter (Section 3.2.1). We have also proposed
a new programming interface for solving optimization problems using RL techniques, which is applied
to find solutions to optimization problems in bioinformatics. The methods presented in this chapter
are original works published in [CBC13, Boc12a, BCG+12, BCG+13, CCB11a, CCB11b].

The first approach proposes a new methodology which enables the application of a previously
proposed solution for gene expression data [GBJ08] to a colorectal cancer data set, containing CNA
data. Several chromosome-related measures and certain filters targeting significant portions of chro-
mosomes are defined. Experiments are made on a data set of patients affected by colorectal cancer,
at different progression stages. As for future development of this approach, we will address in deeper
detail the issue of noise, we will extend its evaluation on different real life CNA data sets and we will
investigate how new chromosome-related measures could influence the results.

The second method that we propose approaches the TO problem by applying a path finding RL
based technique. For the experimental evaluation we use several gene expression data sets (human and
yeast time series, as well as cancer expression data). Several Q-learning algorithms have been applied,
using different action selection mechanisms, types of eligibility traces and various parameter settings.
The good performance of the RL based model leads us to the conclusion that such machine learning
models are able detect certain patterns in the input data that vary over time. We will investigate
possible improvements of the RL based model for the TO problem by: using different reinforcement
functions; adding various local search mechanisms; using function approximation methods to approx-
imate the Q-values, for the cases when the state space becomes very large; considering a decreasing
ε-Greedy strategy for the action selection mechanism. An extension of the RL based model for the
TO to a distributed RL approach (Section 3.2.3) will be also considered.

Regarding the RL based software framework introduced in this chapter, we remark that it is
general and it was designed to facilitate research in the direction of solving combinatorial optimization
problems using RL techniques. Further work will be done in order to investigate other conceptual
models for the states and actions spaces within the RL scenario of solving the bioinformatics problems
that we have already approached. Also, we plan to extend the evaluation of the proposed framework
for other combinatorial optimization problems.



Conclusions

The primary objectives of all research in modern biosciences is to understand the functioning of
organisms, the cellular processes and metabolic pathways to the purpose of acknowledging why and
how malfunctions of such processes occur. A first step in achieving this is the analysis and mining
of the huge amount of collected biological and medical information. To this end, computer science
offers the necessary methods, tools and algorithms. Bioinformatics has thus proven its considerable
importance as a new discipline in the post-genomic era.

The research in this thesis was aimed to find solutions to several challenging problems in bioinfor-
matics by using machine learning based models. We have particularly focused on two primary research
directions. The first one is the application of relational association rules learning to solve classification
problems in bioinformatics, which was used to find solutions to the problem of predicting promoter
sequences in DNA molecules. The second direction refers to applying reinforcement learning based
techniques in order to solve NP-complete combinatorial optimization problems in bioinformatics. The
proposed reinforcement learning based models were applied to three important problems: DNA frag-
ment assembly, protein tertiary structure prediction and temporal ordering of biological samples. In
addition to these two primary research directions we also presented a novel methodology targeting a
specific problem in bioinformatics and a particular type of biological data, which was developed in
collaboration with the BIMIB research group from University Milano-Bicocca. Finally, we presented
our original contributions towards the development of software systems by introducing a programming
interface for solving optimization problems using reinforcement learning techniques.

The good performance of the classification model based on relational association rules discovery
for promoter sequences prediction that we introduced leads us to the conclusion that machine learning
models and data mining techniques are significant soft computing tools, able to detect and recognize
patterns in biological data which are hard to be identified using conventional computational techniques.

We proposed three general reinforcement learning based models for a specific type of combinato-
rial optimization problems which can be regarded as generalized permutation finding problems. These
models were properly modified, adapted and applied to three problems in bioinformatics. Experimen-
tal evaluations were conducted on real-life data sets from the domain of the considered problems and
the obtained results proved good performances, thus demonstrating the potential of our proposals.

Comparisons with similar approaches from the literature were provided for all the models that
we proposed. In many cases, our original approaches proved to outperform similar methods, thus
emphasizing the efficiency of our models. Furthermore, for all cases in which different models (that
are based on the same idea) are proposed, we offer comparisons and analyses of all these models.

The reinforcement learning based software framework introduced in this thesis was designed to
facilitate research in the direction of solving combinatorial optimization problems using reinforcement
learning techniques. Its generality allows simple development of applications for solving optimization
problems using reinforcement learning. We used this framework to develop applications for solving
all the three bioinformatics problems that we approached using reinforcement learning based models.

Concerning future research directions, we intend to investigate possible improvements to the pro-
posed approaches, to further extend their evaluation using different data sets from the domain of the
examined bioinformatics problems. We will also consider applying the fuzzy versions of the proposed
approaches (where possible) and focus on hybridizing our models by combining them with other ma-
chine learning based techniques. Moreover, we will tackle new significant problems in bioinformatics,
either by using the already proposed models, adapted and modified, or by introducing new ones.
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