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Introduction

This thesis contains some of the main results that I have obtained in the topic of the approximation
of fuzzy numbers. This topic has had an impressive development over the last decade (see Section
3.1 for details). We will discuss two types of approximations. Firstly, we will discuss about approxi-
mations of fuzzy number by fuzzy numbers with simpler form such as the trapezoidal fuzzy numbers
or parametric fuzzy numbers. This type of approximation should be regarded as an alternative to
represent fuzzy numbers in a more simple way especially in applications where not all the information
carried by a fuzzy number is necessary. For this reason, maybe the most important part of this topic
is the approximation of fuzzy numbers under some additional conditions such as the preserving of
the expected interval or the preserving of the ambiguity and value. These characteristics are very
important especially in statistical problems or in the ranking of fuzzy numbers. Therefore, we need to
�nd simpler representations for fuzzy numbers and such that one or more of these characteristics are
preserved. There are numerous metrical structures de�ned on the space of fuzzy numbers (see Section
1.9 for details). Some of them are important in solving fuzzy equations, others are important in sta-
tistical problems while some of them can be used to rank fuzzy numbers. The present work deals with
the problem of the approximation of fuzzy numbers. It seems that the suitable metric for this type
of problems is an extension of the Euclidean distance introduced in the paper [58]: Generalizations
of this L2-type metric can be found in the papers [85] and [88] as they are usually called weighted
L2�type metrics. For this reason our research is focusing around these kinds of metrics.
The second type of approximation is the approximation of fuzzy numbers by using approximation

operators on the space of fuzzy numbers. I think that this kind of approximation is important
since the space of fuzzy numbers can be perceived as a space of functions with certain properties.
Another interpretation is that this kind of topic is in the completeness of the previous one where the
motivation was that in some applications we need only a part of the information associated with a
fuzzy number. But sometimes we deal with situations when all the important informations regarding
fuzzy numbers has to be preserved. This is why approximation operators can be the solution. But
we need approximation operators which besides the convergence properties they also own important
shape preserving properties. As it will be seen in the last chapter of this thesis, we will refer to
the Bernstein operators of max-product kind (introduced in the book [55]) as operators with such
properties.
This thesis is structured as follows. The �rst chapter presents brie�y the theory of fuzzy sets and

in detail some basics about fuzzy numbers. In Chapter 2 we present many important results which
will be useful later in the proving of the main results from Chapters 3-4. Apart of that, the last 4
sections are dedicated to the important topic of the ranking of fuzzy numbers. In Chapter 3 we dis-
cuss the problem of the approximation of fuzzy numbers by fuzzy numbers with simpler form. Firstly,
existence results are provided under some general types of metrics. Then we discuss particular cases.
Firstly, we prove the existence and uniqueness of the parametric in particular trapezoidal approxima-
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tion with respect to weighted L2-type metrics. Then we prove the existence and the uniqueness of the
parametric approximation preserving the expected interval and of the parametric approximation pre-
serving the value and ambiguity. As applications we deduce the algorithms to determine (they always
exist and they are unique) trapezoidal approximations preserving the expected interval, trapezoidal
approximations preserving the value and the ambiguity and, trapezoidal approximations preserving
the ambiguity, all of them with respect to the Euclidean metric. Then we discuss about weighted
trapezoidal approximations preserving the weighted expected interval and weighted trapezoidal ap-
proximations preserving the core of a fuzzy number. Finally, the approximation operators are tested
on some numerical examples. Because the quality of an approximation operator is important nev-
ertheless, Chapter 4 of the thesis is dedicated to the investigation of some basic properties of fuzzy
approximation operators. At �rst, general results on the scale invariance and translation invariance of
fuzzy approximation operators are provided. Then considering the continuity property as one of the
most important criteria that an approximation operator should possess, we present a detailed study
on this mater. Firstly, we prove that fuzzy approximation operators without additional conditions
are nonexpansives with respect to L2-type metrics. Then in the case of the trapezoidal approxima-
tion operator preserving the expected interval as well as in the case of the trapezoidal approximation
operator preserving the value and ambiguity or preserving only the ambiguity respectively, we prove
that all these operators are Lipschitz continuous and in the case of the �rst two operators even the
best Lipschitz constants are obtained. As a negative result it is proved that any trapezoidal fuzzy
number valued operator preserving the core has discontinuity points. Another important issue is the
additivity. Since most of the approximation operators are non-additive, we will �nd estimations for
the defect of additivity of an approximation operator in the sense given by Ban and Gal in [29]. In
the case of the trapezoidal approximation operator preserving the expected interval the best possible
estimation is obtained. In the last section of the chapter we discuss trapezoidal approximation in
relation with aggregation, another important topic in present days with many applications in fuzzy
analysis. In the last chapter of this thesis we discuss the approximation of fuzzy numbers by using the
Bernstein operators of max-product kind. It seems that they are convenient when it comes to approx-
imate fuzzy numbers. Besides the convergence in the uniform norm in the case of continuous fuzzy
numbers, they also have important shape preserving properties, namely they preserve the support and
they are convergent with respect to the core. Finally, it is worth mentioning that in the case of the
important characteristics of fuzzy numbers such as the expected interval, ambiguity or value, again,
we have convergence properties in the approximation by Bernstein max-product operators. The thesis
ends with a conclusion, summarizing the results obtained and proposing further research.

Finally, I would like to mention that this thesis contains original contributions from the papers
or manuscripts [17]-[19], [21]-[28], [30], [40]-[41], [44], [46]-[48]. With the exception of Sections 1.1-1.9
(which are generalities), 3.3, 3.5 and 3.9 respectively, the remaining sections are based almost entirely
on original contributions. In addition, Section 3.3 is based actually on an original approach. The
original contributions are indicated at the beginning of each chapter and section respectively and then
adequate references are used inside each section. Also please note that paper [47] is an extended version
of paper [46] which will appear in a special issue of the journal Fuzzy Sets and Systems dedicated
to the theory of fuzzy numbers, where some papers (including our contribution) are selected from
the EUSFLAT-LFA Conference held in 2011 in Aix-Les-Bains. But actually all the main results in
[47] are better (or more complete) comparing to those from [46] and moreover many other theoretical
results are proposed such as approximations wit respect to L1-type metrics or convergence results with
respect to the important characteristics of a fuzzy number. In addition, the thesis contains original
unpublished results and also many results from the thesis improve the published versions.

Keywords: fuzzy number, trapezoidal fuzzy number, parametric fuzzy number, L2- type metrics,
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expected interval, ambiguity, value, reduction function, defuzi�er, extended fuzzy number, normed
spaces, Hilbert spaces, trapezoidal approximation, parametric approximation, extended trapezoidal
approximation, extended parametric approximation, Lipschitz-continuity, defect of additivity, aggre-
gation, Bernstein operator of max-product kind.



Chapter 1

Fuzzy sets and fuzzy numbers

The main concepts on fuzzy numbers discussed in this Chapter can be found in numerous recent
papers investigating on the approximations of fuzzy numbers or on the ranking of fuzzy numbers (see
e.g. [5], [13], [58], [85]). In addition, Sections 1.10-1.12 contain some of my original contributions
taken from papers or manuscripts [19], [21], [25], [28], [48].

1.1 The de�nition of a fuzzy set

In many practical situation we can precisely verify if a certain object belongs or not to a given set.
For example let us consider the set X of people with age less than or equal to 40. If �X : X ! f0; 1g
is the characteristic function of X;

�X(x) =

�
1 if x 2 X;
0 if x =2 X;

then we can say without any doubt that �X(x) = 1 if x is a person with age under 40 and �X(x) = 0
if x is a person with age over 40:
But there are situation when we cannot say for sure if an object belongs to a set, especially in the

case when we can describe rather ambiguously this object. The following two examples are relevant
for such situations.
1) The opposite of the word �young�is the word �old�. Therefore, the classical logic encourages

us to split people in two categories: old people and young people. However, it is di¢ cult to decide in
which category should be a person who�s age is 35 or say 52:
2) (Zadeh�s example) We consider the set of real numbers which are much greater then 1: Clearly,

we can say that the number 100 belongs to this set but again we are in doubt to decide whether the
number 10 belongs or not to the set of numbers much greater then 1:
Zadeh observed that there are situation when the classical logic cannot be applied in certain

practical situations and to overcome this shortcoming he introduced in the paper [87] the notion of a
fuzzy set.

De�nition 1.1.1 Let X be a universe of objects. A fuzzy set A in X is characterized by a membership
(characteristic) function �A : X ! [0; 1], which assigns to each object x 2 X a real number in the
interval [0; 1], with the value �A(x) representing the grade of membership of x in A:

1



2 CHAPTER 1. FUZZY SETS AND FUZZY NUMBERS

Keeping the notations as in the above de�nition, the fuzzy set A will be given under the explicit
form

A = f(x; �A(x)) : x 2 X;�A(x) 2 [0; 1]g:

The set of all fuzzy sets of a set X is denoted with eP(X): If for a fuzzy set A 2 eP(X) we have
�A = 0, then we say that A is an empty set and we write as usual A = ?: If the set fx 2 X : �A(x) > 0g
is �nite then the fuzzy set A is called a discrete fuzzy set. In this case the fuzzy set A is given by
neglecting the elements x 2 X such that �A(x) = 0: For example A 2 eP(Z), A = f(�3; 0:2); (0; 0:5);
(2; 1); (5; 0:7), (6; 0:3)g is an example of a discrete fuzzy set. The interpretation of the value �A(x) is
very natural. If �A(x) is very close to 1 then the grade of membership of x in A is very high, while
in the case when �A(x) is very close to 0 then the grade of membership of x in A is very low. In the
case when �A(x) = 1 then we have total membership property and we state that x 2 A and in the
case when �A(x) = 0 then we have nonmembership property and we can state that x =2 A:
In the case when �A(x) 2 f0; 1g for all x 2 X then the fuzzy set A is reduced to a set in the

classical meaning.

1.2 Operations on fuzzy sets

The basic operations on ordinary sets such as: equality, complementation, inclusion, union or inter-
section, can be extended in a natural way for the case when we are dealing with fuzzy sets. In what
follows we list the de�nitions of these basic operations as they were given by Zadeh in [87].

De�nition 1.2.1 Let A and B denote two fuzzy subsets of the same set X. If �A(x) = �B(x), for
all x 2 X then we say that A and B are equal and we write A = B:

De�nition 1.2.2 Let A and B denote two fuzzy subsets of the same set X. If �A(x) � �B(x); for
all x 2 X then we say that A is included in B and we write A � B:

De�nition 1.2.3 Let A be a fuzzy set on X: The complement of A denoted A is characterized by the
membership function �A : X ! [0; 1], �A(x) = 1� �A(x), for all x 2 X:

De�nition 1.2.4 If A and B are two fuzzy subsets of the same set X then the union of A and
B, denoted A [ B, is characterized by the membership function �A[B : X ! [0; 1], �A[B(x) =
maxf�A(x); �B(x)g, for all x 2 X:

De�nition 1.2.5 If A and B are two fuzzy subsets of the same set X then the intersection of A
and B, denoted A \ B, is characterized by the membership function �A\B : X ! [0; 1], �A\B(x) =
minf�A(x); �B(x)g, for all x 2 X:

1.3 The height, core, support and ��cut of a fuzzy set
The height of a fuzzy set A 2 eP(X), is the value hgt(A) = sup

x2X
�A(x): From the de�nition of a fuzzy

set it is immediate that hgt(A) � 1: If there exists x0 2 X such that hgt(A) = �A(x0) = 1, then the
fuzzy set A is called normal.
The core of a fuzzy set A 2 eP(X) is denoted with core(A) and it is given by core(A) = fx 2 X :

�A(x) = 1g: It is immediate that core(A) 6= ? if and only if A is normal.
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The support of a fuzzy set A 2 eP(X) is denoted with supp(A) and represents the set of all elements
of X with a nonzero degree of membership, that is supp(A) = fx 2 X : �A(x) > 0g: It is easy to
check that A 6= ? if and only if supp(A) 6= ?:
For � 2 [0; 1], the ��cut of a fuzzy set A 2 eP(X) will be denoted in this thesis with A� and it is

given by the equality A� = fx 2 X : �A(x) � �g: It is immediate that A0 = X and A1 = core(A):
We will see in Section 1.6 that in the case of a fuzzy number the 0�cut will be de�ned with a slight
modi�cation.

1.4 Convex fuzzy sets

In his celebrated paper, Zadeh introduced the notion of convexity for fuzzy sets in a way which allows
to preserve the properties of the ordinary convex sets.

De�nition 1.4.1 Let X be a convex subset of a real vector space. We say that the fuzzy set A 2 eP(X)
is convex if for any � 2 [0; 1] the set A� = fx 2 X : �A(x) � �g is a convex subset of X:

We present now a concept which generalizes the concept of monotonicity and convexity as well,
concept which will help us to give an equivalent de�nition of a convex fuzzy set.

De�nition 1.4.2 Let f : I ! R where I � R is an interval. One says that the function f is:

(i) quasi-convex on I if it satis�es the inequality

f(�x+ (1� �)y) � maxff(x); f(y)g; x; y 2 I; � 2 [0; 1];

(ii) quasi-concave on I if it satis�es the inequality

f(�x+ (1� �)y) � minff(x); f(y)g; x; y 2 I; � 2 [0; 1]:

It is known that quasi-convex and quasi-concave functions generalize the concept of monotonicity
because monotonous functions are particular cases of quasi-convex and quasi-concave functions. Then,
it is known that convex functions are also quasi-convex and that concave functions are also quasi-
concave functions.

Proposition 1.4.3 Let f : I ! R where I � R is an interval. Then f is quasi-convex (quasi-concave)
if and only if for any � 2 R the set fx 2 X : f(x) � �g (fx 2 X : f(x) � �g) is a convex subset of R.

We note that in a more general context a quasi-convex (quasi-concave) function is a function like
those from De�nition 1.4.2 but with the domain being an arbitrary convex subset of a vector space.
From the above de�nition it follows that the fuzzy set A is convex if and only if all possible ��cuts

of A are ordinary convex sets.
Noting the de�nition of the ��cut of a fuzzy set and taking into account Proposition 1.4.3 and

the comment afterwords, we have the following equivalent de�nition of the convexity of a fuzzy set.

De�nition 1.4.4 Let X be a convex subset of a real vector space. We say that the fuzzy set A 2 eP(X)
is convex if the membership function �A is a quasi-concave function.

From the above de�nition it follows that A 2 eP(X) is convex if and only if for any x1; x2 2 X and
� 2 [0; 1] we have �A(�x1 + (1� �)x2) � minff(x1); f(x2)g:
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Remark 1.4.5 In the particular case when X = R and the fuzzy set A 2 eP(R) has a continuous mem-
bership function and supp(A) is bounded, it follows (see the discussion which follows after De�nition
1.4.2 ) that A is convex if and only if there exist a; b; c 2 R, a � c � b such that:

1) �A = 0 outside the interval [a; b];
2) �A is nondecreasing on the interval [a; c];
3) �A is nonincreasing on the interval [c; b]:

In this way the interpretation of a convex fuzzy set is more clear and in addition we can easily �nd
examples of fuzzy sets that are non-convex.

1.5 The extension principle

The extension principle introduced by Zadeh in [87] allows us to extend the basic mathematical
concepts for fuzzy quantities. We have the following de�nition of the extension principle (see e. g.
[64] pp. 41).

De�nition 1.5.1 Let X1; X2; :::; Xn; Z, be non-empty sets and let us consider the function F :
X ! Z where X is the product space X = X1 � X2 � ::: � Xn: Furthermore, we consider the
fuzzy sets fAigi2f1;2;:::;ng such that Ai 2 eP(Xi) for every i 2 f1; 2; :::; ng: Taking use of the function
F we can de�ne the fuzzy set F (A1; A2; :::An) 2 eP(Z), characterized by the membership function
�F (A1;A2;:::An) ! [0; 1],

�F (A1;A2;:::An)(z) =

(
sup

(x1;x2;:::;xn)2F�1(z)

minf�A1
(x); ::; �An

(x)g, if z 2 F (X);

0, otherwise.
(1.1)

By particularizing the function F we can de�ne algebraic operations between fuzzy sets as the
following examples will prove it.

Example 1.5.2 We consider the function F : Z� Z! Z, F (x; y) = x + y and the fuzzy sets A;
B 2 eP(Z),

A = f(�1; 0:2); (0; 0:5); (2; 1); (3; 0:6); (6; 0:2)g;
B = f(�2; 0:3); (�1; 0:5); (0; 0:8); (1; 1); (3; 0:7); (5; 0:4)g:

Applying formula (1.1) we get F (A;B) = A+B where

A+B = f(�3; 0:2); (�2; 0:3); (�1; 0:5); (0; 0:5); (1; 0:5), (2; 0:8); (3; 1);
(4; 0:6); (5; 0:7); (6; 0:6); (7; 0:4); (8; 0:4); (9; 0:2); (11; 0:2)g:

The extension principle stays at the basis of operations between fuzzy numbers and this will be
seen in Section 1.7.

1.6 The de�nition of a fuzzy number. L-R representation and
L-U representation

When Dubois and Prade introduced the notion of a fuzzy number they were inspired by many practical
situations when uncertain parameters were involved. For this reason, in their opinion a fuzzy number
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u is a fuzzy subset of the real line characterized by a continuous membership function �u : R![0; 1],
satisfying the following properties:
i) there exist c; d 2 R, c � d such that �u(x) = 0 outside the interval [c; d]:
ii) there exist the reals a; b 2 R, c � a � b � d such that:

ii1) �u is strictly increasing on the interval [c; a];
ii2) �u(x) = 1 for all x 2 [a; b];
ii3) �u is strictly decreasing on the interval [b; d]:

This de�nition has su¤ered some small modi�cations dictated by practical reasons. In this thesis
we adopt the following de�nition of a fuzzy number, de�nition which is widely accepted between
researchers.

De�nition 1.6.1 A fuzzy number u is characterized by a membership function �u : R![0; 1] of the
form:

�u(x) =

8>>>><>>>>:
0; if x � a1;

lu(x); if a1 � x � a2;
1 if a2 � x � a3;

ru(x); if a3 � x � a4;
0; if a4 � x;

(1.2)

where a1; a2; a3; a4; 2 R; lu : [a1; a2] �! [0; 1] is a nondecreasing upper semicontinuous function,
lu(a1) = 0, lu(a2) = 1, called the left side of the fuzzy number and ru : [a3; a4] �! [0; 1] is a
nonincreasing upper semicontinuous function, ru(a3) = 1, ru(a4) = 0, called the right side of the fuzzy
number.

For simplicity, from now one we will use the same notation for a fuzzy number and for its mem-
bership function. A fuzzy number is said to be continuous if its membership function is a continuous
function. The following notions are de�ned in a similar manner as in the case of the general context
of fuzzy sets.
The ��cut, � 2 (0; 1], of a fuzzy number u is a crisp set de�ned as u� = fx 2 R : u(x) � �g: The

support or 0�cut u0 of the fuzzy number u is de�ned as u0 = cl (fx 2 R : u(x) > 0g) :We often use
the notation u0 = supp(u):
Comparing the support of a fuzzy number with the support of a fuzzy set we observe that in

the case of fuzzy sets, the support is not taken under the closure operator. Since a fuzzy number is
actually a fuzzy set it results that the support can be de�ned in 2 ways. However, in this thesis we
adopt the formula from this section, which in the present is extensively used by researchers.
The core or the 1�cut u1, of the fuzzy number u will be denoted from now one with core(u): If

core(u) is reduced to a single point then u is called a unimodal fuzzy number and in this case the
value core(u) is called modal value.
From De�nition 1.6.1, every ��cut � 2 [0; 1]; of a fuzzy number u is a closed interval u� =

[uL(�); uU (�)], where uL(�) = inffx 2 R : u(x) � �g and uU (�) = supfx 2 R : u(x) � �g, for any
� 2 (0; 1]: If the sides of the fuzzy number u are strictly monotone then one can see easily that uL
and uU are inverse functions of lu and ru respectively. Moreover, it can be proved that the functions
uL and uU are left continuous.
Using the facts from above it follows that we can de�ne a fuzzy number by using its �-cut repre-

sentation. Consequently, we obtain the following equivalent de�nition of a fuzzy number, introduced
by Goetschel and Voxman in the paper [56].

De�nition 1.6.2 A fuzzy number u is an ordered pair of left continuous functions [uL(�); uU (�)],
0 � � � 1, which satisfy the following requirements:
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i) uL is nondecreasing on [0; 1];
ii) uU is nonincreasing on [0; 1];
iii) uL(1) � uU (1):

We use the notation u = (uL; uU ):

If a fuzzy number u is de�ned using De�nition 1.6.1, we say that u is given in L � R form.
Otherwise, if u is de�ned using De�nition 1.6.2, we say that u is given in L� U form.
From now one, in this thesis we adopt the notation F (R) for the space of fuzzy numbers. We also

use the notation UF (R) for the space of unimodal fuzzy numbers.
An important class of fuzzy numbers is the class of symmetric fuzzy numbers. Symmetric fuzzy

numbers are often used in practice. They are de�ned as follows.

De�nition 1.6.3 A fuzzy number u is called a symmetric fuzzy number if uL(1)� uL(�) = uU (�)�
uU (1), for all � 2 [0; 1]:

We denote with FS(R) the set of all symmetric fuzzy numbers.
At the end of this section we will discuss about the equality of two fuzzy numbers. Due to the fact

that most of the main results of the thesis are in relation with Lp-type metrics we adopt the following
de�nition.

De�nition 1.6.4 We say that fuzzy numbers A and B are equal and we denote A = B, if AL = BL
and AU = BU almost everywhere � 2 [0; 1]:

The above de�nition should count only when we work with Lp-type metrics on the space of fuzzy
numbers.
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1.7 Basic operations between fuzzy numbers

Since fuzzy numbers extend real numbers, it is natural to introduce on the space of fuzzy numbers
the basic operations such as addition, subtraction, multiplication or division. These operations are
derived from the Zadeh�s extension principle presented brie�y in a previous section.
If u and v are two fuzzy numbers then u+ v denotes the addition of u and v; where

(u+ v)(x) = sup
y2R
fu(y) ^ v(x� y)g; x 2 R,

where ^ means minimum. It is immediate that if u� = [uL(�); uU (�)] and v� = [vL(�); vU (�)],
� 2 [0; 1], then

(u+ v)� = u� + v� = [uL(�) + vL(�); uU (�) + vU (�)],

for all � 2 [0; 1]:
If � = 0 then by de�nition we put � �u = 0, for every u 2 F (R): Here 0 denotes the neutral element

of F (R) with respect to the addition, that is 0(0) = 1 and 0(x) = 0 otherwise:
If � 2 R n f0g and u 2 F (R) then � � u denotes the scalar multiplication of � with u where

(� � u)(x) = u(x=�); x 2 R:

It is immediate that if u� = [uL(�); uU (�)], � 2 [0; 1], then

(� �A)� = �A� =
�
[�AL (�) ; �AU (�)] ; if � � 0;
[�AU (�) ; �AL (�)] ; if � < 0;

for all � 2 [0; 1]:
The most important properties of the addition of fuzzy numbers and of the scalar multiplication

are listed below.

Proposition 1.7.1 We have:
i) u+ v = v + u, (8) u; v 2 F (R);
ii) (u+ v) + w = u+ (v + w), (8) u; v; w 2 F (R);
iii) for any u; v; w 2 F (R) such that u+ w = v + w we have u = v;
iv) � � (u+ v) = � � u+ � � v, (8) u; v 2 F (R), (8) � 2 R+;
v) (�+ �) � u = � � u+ � � u, (8) u 2 F (R), (8) �; � 2 R+;
vi) � � (� � u) = � � (� � u) = (��) � u, (8) �; � 2 R+, (8) u 2 F (R);
vii) 1 � u = u, (8) u 2 F (R):

It is easy to check that the only fuzzy numbers having opposite elements with respect to the
addition are fuzzy numbers with equally constant side functions. We will see in the next section that
such fuzzy numbers are identi�ed with classical real (crisp) numbers. Actually, it is evident that in
general the property u+(�u) = 0 does not hold for fuzzy numbers. Therefore, the triplet (F (R);+; �)
is not a vector space and we will refer to it as a semilinear space since this syntax is often used in the
literature.

1.8 Remarkable classes of fuzzy numbers

We say that the fuzzy number u is a crisp fuzzy number if there exists c 2 [0; 1] such that u(c) = 1
and u(x) = 0 for all x 2 R n fcg: It is immediate that uL = uU = c: For simplicity, if u is a crisp fuzzy
number then the constant value of the membership function will be denoted with u:
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A fuzzy number u is called an interval if there exist the reals a; b 2 R, a � b, such that u(x) = 1
for all x 2 [a; b] and u(x) = 0 for all x 2 R n [a; b]: It is immediate that uL = a and uU = b:We denote
u = [a; b].
A fuzzy number A is called a triangular fuzzy number if there exist t1 � t2 � t3 such that

A� = [t1 + (t2 � t1)�; t3 � (t3 � t2)�]; � 2 [0; 1]:

We use the notation A = (t1; t2; t3): The family of all triangular fuzzy numbers will be denoted by
F�(R) and the family of symmetric triangular fuzzy number will be denoted with FS�(R):
A generalization of the triangular fuzzy number is the trapezoidal fuzzy number. A trapezoidal

fuzzy number T is completely determined by four real parameters t1 � t2 � t3 � t4 such that

T� = [t1 + (t2 � t1)�; t4 � (t4 � t3)�]; � 2 [0; 1]: (1.3)

We use the notation T = (t1; t2; t3; t4): When t2 = t3, T becomes a triangular fuzzy number. When
t2� t1 = t4� t3 we obtain a symmetric trapezoidal fuzzy number. The family of all trapezoidal fuzzy
numbers will be denoted with FT (R) and the family of all symmetric trapezoidal fuzzy numbers will
be denoted with FST (R): It is immediate that if T is a trapezoidal fuzzy number then the functions
lT and rT are linear functions.
Parametric fuzzy numbers were introduced in the paper [68] mainly to generalize the trapezoidal

approximation problem. A parametric fuzzy number of type (sL; sR) or simply an (sL; sR) fuzzy
number is a fuzzy number A with A� = [AL(�); AU (�)]; � 2 [0; 1], given by

AL(�) = a� �(1� �)1=sL and AU (�) = b+ �(1� �)1=sR ; � 2 [0; 1];

where a; b; �; �; sL; sR 2 R, a � b, � � 0, � � 0, sL > 0, sR > 0: Note that the condition a � b is
imposed in order to obtain a proper fuzzy number. We use the notation A = (a; b; �; �)sL;sR :
When sL = sR = 1 then A becomes a trapezoidal fuzzy number. The family of all (sL; sR) fuzzy

numbers will be denoted with F sL;sR(R): In Fig. 1.2 we consider di¤erent kinds of parametric fuzzy
numbers. We end the discussion about parametric fuzzy numbers by mentioning that recently (see
[84]) parametric fuzzy numbers have been also called semi-trapezoidal fuzzy numbers. However, in
this thesis we refer to them only as parametric fuzzy numbers.
Another important class of fuzzy numbers were introduced in [36] as follows. Let a1; a2; a3; a4 2 R

be such that a1 � a2 � a3 � a4: A fuzzy number A given by

A� = [AL(�); AU (�)] = [a1 + �
1=r(a2 � a1); a4 � �1=r(a4 � a3)]; � 2 [0; 1]; (1.4)

where r > 0, is denoted A = (a1; a2; a3; a4)r:
There are many other important types of fuzzy numbers. We mention the Gaussian fuzzy numbers

or the quadratic fuzzy numbers that are successfully used in engineering sciences. For more details
we refer again to the book of Hanss ([64]) where these kinds of problems are extensively studied.

1.9 Metrics on the space of fuzzy numbers

Since the space of fuzzy numbers can be regarded as a space of functions with bounded support, the
�rst type of distance that comes in our mind is the distance generated by the uniform norm which is
a Chebyshev type metric. Let us denote this metric with DC : Then we have

DC(A;B) = sup
x2R

jA(x)�B(x)j ; A;B 2 F (R): (1.5)
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Even if we cannot consider the pair (F (R),DC) a normed space, to simplify on the notations
sometimes we may denote kA�BkC = supx2R jA(x)�B(x)j : In particular we have

kAkC = sup
x2R

jA(x)j : (1.6)

Grzegorzewski ([58]) observed that for a fuzzy number A, the functions AL and AU are Lp-
integrable. He introduced the metric �p;q given by

�p;q(A;B) =

24(1� q) 1Z
0

jAL(�)�BL(�)jp d�+ q
1Z
0

jAU (�)�BU (�)jp d�

351=p ;
where 1 � p <1 and 0 < q < 1: When p = 2 and q = 1=2 then using the notation d = (1=2)�1=2�p;q
we obtain the so called Euclidean distance given by

d(A;B) =

24 1Z
0

(AL(�)�BL(�))2 d�+
1Z
0

(AU (�)�BU (�))2 d�

351=2 : (1.7)

As an application, it is immediate that if T = (t1; t2; t3; t4) and T 0 = (t01; t
0
2; t

0
3; t

0
4), then after elemen-

tary calculations we obtain

d2(T; T 0) =
1

3
(t1 � t01)2 +

1

3
(t2 � t02)2 +

1

3
(t1 � t01)(t2 � t02)

+
1

3
(t3 � t03)2 +

1

3
(t4 � t04)2 +

1

3
(t3 � t03)(t4 � t04): (1.8)
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More generally, Yeh ([85]) proposed the weighted L2-type distance d�,

d�(A;B) =

24 1Z
0

(AL(�)�BL(�))2 �L(�)d�+
1Z
0

(AU (�)�BU (�))2 �U (�)d�

351=2 ; (1.9)

where, in order to obtain indeed a metric, we suppose that �L; �U : [0; 1] ! R are strictly positive
almost everywhere on [0; 1] and integrable weight functions: We use the notation � = (�L; �U ).
More generally, considering p � 1 and a weight � = (�L; �U ), then the weighted Lp-type distance

�p;� is given by

�p;�(A;B) =

24 1Z
0

j(AL(�)�BL(�))jp �L(�)d�+
1Z
0

j(AU (�)�BU (�))jp �U (�)d�

351=p : (1.10)

When �L(�) = �U (�) = 1, � 2 [0; 1], we prefer the notation

dp(A;B) =

24 1Z
0

j(AL(�)�BL(�))jp d�+
1Z
0

j(AU (�)�BU (�))jp d�

351=p : (1.11)

There are many other types of metrics de�ned on the space of fuzzy numbers such as the Hausdor¤
type metrics for example but since we will not use them in this thesis, we do not go into details.

1.10 Extended fuzzy numbers

This section contains original contributions from the paper [21]. Also, De�nition 1.10.1 is new to my
knowledge.
Yeh introduced for the �rst time the concept of an extended fuzzy number. In the paper [82] he

introduced the so-called extended trapezoidal fuzzy numbers because he observed that with the use
of them simpler algorithms to determine trapezoidal approximations of fuzzy numbers with respect
to the Euclidean metric could be performed. Also, extended trapezoidal fuzzy numbers were used
by Yeh in the proving of the continuity of trapezoidal and triangular approximation operators. To
include all the types of extended fuzzy numbers that will be used in this thesis we give the following
de�nition.

De�nition 1.10.1 An ordered pair of left continuous functions A = (AL; AU ), is called an extended
fuzzy number if it satis�es the requirements:

i) AL is nondecreasing on [0; 1];
ii) AU is nonincreasing on [0; 1]:

We denote with Fe(R) the space of extended fuzzy numbers.
As in the case of ordinary fuzzy numbers we use the notation A� = [AL(�); AU (�)],� 2 [0; 1]: Note

that A� may fail to be an interval for some � 2 [0; 1]. Unless otherwise speci�ed, addition and scalar
multiplication on Fe(R) are similarly de�ned as on F (R).
Comparing the above de�nition with the parametric representation of a fuzzy number (see De�n-

ition 1.6.2) it is immediate that F (R) �Fe(R): Moreover, one can easily check that all the Lp�type
metrics from the previous section can be extended to the space Fe(R): For example, if we report to the
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Euclidean metric, the distance between two extended fuzzy numbers or between an extended fuzzy
number and a fuzzy number will be given by formula (1.7).
If

AL(�) = t1 + (t2 � t1)� and AU (�) = t4 � (t4 � t3)�; � 2 [0; 1];
with t1; t2; t3; t4 2 R, then A becomes an extended trapezoidal fuzzy number and it will be denoted
with A = (t1; t2; t3; t4) as in the case of classical trapezoidal fuzzy numbers. The set of all extended
trapezoidal fuzzy numbers is denoted with FTe (R): Of course we have FT (R) �FTe (R):
If

AL(�) = a� �(1� �)1=sL and AU (�) = b+ �(1� �)1=sR ; � 2 [0; 1];
where a; b; �; �; sL; sR 2 R, � � 0, � � 0, sL > 0, sR > 0, then A becomes an extended parametric
fuzzy number of type (sL; sR). Extended parametric fuzzy numbers were introduced for the �rst time
in the paper [21]. The set of all extended parametric fuzzy numbers will be denoted with F sL;sRe (R):

1.11 Other notations for extended fuzzy numbers

This section contains original contributions from the paper [21].
The notations for the trapezoidal fuzzy numbers are consecrated since they are used by numerous

researchers. Still, sometimes other notations are more suitable for example when we work with L2-
type metrics. In this section we use for trapezoidal fuzzy numbers new notations introduced by Yeh
in the papers [82] and [85]. Then for parametric fuzzy numbers of type (sL; sR) we use new notations
introduced by Ban and Coroianu in the paper [21]. We start with notations for trapezoidal fuzzy
numbers which are suitable with the Euclidean metric d as it will be seen later. One can easily verify
that an extended trapezoidal fuzzy number T = (t1; t2; t3; t4) can be written in the form

T� =

�
l + x

�
�� 1

2

�
; u� y

�
�� 1

2

��
; � 2 [0; 1]; (1.12)

where from relation (1.3) we easily get that

l =
t1 + t2
2

; u =
t3 + t4
2

; (1.13)

x = t2 � t1; y = t4 � t3; (1.14)

or, equivalently

t1 =
2l � x
2

; t2 =
2l + x

2
; (1.15)

t3 =
2u� y
2

; t4 =
2u+ y

2
: (1.16)

An extended trapezoidal fuzzy number T given by (1.12) will be denoted T = [l; u; x; y]: From the
above considerations it is immediate that T is a trapezoidal fuzzy number if and only if we have

x � 0; y � 0; 2u� 2l � x+ y:

Now, if T = [l; u; x; y] and T 0 = [l0; u0; x0; y0] then from (1.7) and from (1.12), after some simple
calculations we get

d2(T; T 0) = (l � l0)2 + (u� u0)2 + 1

12
(x� x0)2 + 1

12
(y � y0)2: (1.17)
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Clearly, the above expression of the Euclidean distance between two extended trapezoidal fuzzy num-
bers is more convenient than formula (1.8). Other bene�ts will be seen in Chapter 3 where we will
investigate on the approximation of fuzzy numbers by trapezoidal fuzzy numbers.
Now, let us consider the space of fuzzy numbers endowed with a weighted metric d� given by

formula (1.9). Let us introduce the following notations:

a =

1Z
0

�L(�)d�; b =

1Z
0

�U (�)d�; (1.18)

!L =
1

a

1Z
0

��L(�)d�; !U =
1

b

1Z
0

��U (�)d�; (1.19)

c =

1Z
0

(�� !L)2�L(�)d�; d =
1Z
0

(�� !U )2�U (�)d�: (1.20)

One can easily prove that all the integrals from above are strictly positive. Next, let T be an extended
trapezoidal fuzzy number given by

T� = [l + x(�� !L); u� y(�� !U )]; � 2 [0; 1]: (1.21)

Such an extended trapezoidal fuzzy number will be denoted for simplicity with T = [l; u; x; y]� (�
is a generic notation for the pair (�L; �U )). If T = [l; u; x; y]� and T 0 = [l0; u0; x0; y0]�, the weighted
distance between T and T 0 becomes (see Proposition 2.2 in [85])

d2�(T; T
0) = a(l � l0)2 + b(u� u0)2 + c(x� x0)2 + d(y � y0)2: (1.22)

In what follows we present new notations for extended parametric fuzzy numbers of type (sL; sR),
notations introduced in the paper [21]: For this purpose let A = (a; b; �; �)sL;sR denotes an extended
parametric fuzzy number of type (sL; sR): It follows that

AL(�) = a� �(1� �)1=sL and AU (�) = b+ �(1� �)1=sR ; � 2 [0; 1]:

Because the functions AL and AU can be written in the form

AL(�) = a� � sL
sL + 1

� �
�
(1� �)1=sL � sL

sL + 1

�
;

AU (�) = b+ �
sR

sR + 1
+ �

�
(1� �)1=sR � sR

sR + 1

�
;

we obtain

AL(�) = l � x
�
(1� �)1=sL � sL

sL + 1

�
; (1.23)

AU (�) = u+ y

�
(1� �)1=sR � sR

sR + 1

�
; (1.24)

another representation of the extended parametric fuzzy number A; where

l = a� � sL
sL + 1

; u = b+ �
sR

sR + 1
; x = �; y = �: (1.25)
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We denote by [l; u; x; y]sL;sR an extended parametric fuzzy number represented as in (1.23) and (1.24).
When sL = sR = 1 then we obtain the representation of an extended trapezoidal fuzzy number and
the indexes sL; sR will be omitted. If A = [l; u; x; y]sL;sR and B = [l0; u0; x0; y0]sL;sR , the Euclidean
distance between A and B becomes (see [21], Proposition 2)

d2(A;B)

= (l � l0)2 + (u� u0)2 + sL
(sL + 2)(sL + 1)2

(x� x0)2 + sR
(sR + 2)(sR + 1)2

(y � y0)2: (1.26)

Finally, let us note that A = [l; u; x; y]sL;sR is a proper parametric fuzzy number of type (sL; sR) if
and only if

x � 0; y � 0; x � sL
sL + 1

+ y � sR
sR + 1

� u� l: (1.27)

1.12 Important characteristics of a fuzzy number

This section contains original contributions from the paper [28]. In addition, starting with Theorem
1.12.2 until the end, the section contains original unpublished results and some of these results may
be included in some ongoing researches such as the approximation of fuzzy numbers by F-transform
(see [48]).
The expected interval of a fuzzy number A was introduced independently by Dubois and Prade

([53]) and Heilpern ([65]). It is the real interval

EI(A) =

24 1Z
0

AL(�)d�;

1Z
0

AU (�)d�

35 : (1.28)

The expected value of the fuzzy number A is computed with the formula

EV (A) =
1

2

0@ 1Z
0

AL(�)d�+

1Z
0

AU (�)d�

1A : (1.29)

A reducing function ([49]) is a nondecreasing function s : [0; 1] ! [0; 1] with the property that
s(0) = 0 and s(1) = 1: However, in this thesis we relax the requirements by considering positive
nondecreasing functions. Let A be a fuzzy number. The ambiguity of A with respect to s is

Ambs(A) =

1Z
0

s(�)(AU (�)�AL(�))d� (1.30)

and the value of A with respect to s is

V als(A) =

1Z
0

s(�)(AU (�) +AL(�))d�: (1.31)

When s = 1[0;1], for simplicity we denote Ambs(A) = Amb(A) and V als(A) = V al(A): Hence,

Amb(A) =

1Z
0

(AU (�)�AL(�))d� (1.32)
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and

V al(A) =

1Z
0

(AU (�) +AL(�))d�: (1.33)

The characteristics introduced in this section are identically de�ned when instead of fuzzy numbers
we consider extended fuzzy numbers with the exception of the expected interval where a slight modi�-

cation is needed in the sense that if A is an extended fuzzy number such that

1Z
0

AU (�)d� <

1Z
0

AL(�)d�,

then EI(A) =

24 1Z
0

AU (�)d�;

1Z
0

AL(�)d�

35 : Otherwise, if 1Z
0

AU (�)d� �
1Z
0

AL(�)d�, then EI(A) has

the classical de�nition, that is EI(A) =

24 1Z
0

AL(�)d�;

1Z
0

AU (�)d�

35 :
In what follows we will give an interpretation for the expected interval of a fuzzy number and also

we will generalize this concept. Grzegorzewski ([59]) proved that for any fuzzy number A, EI(A)
is the unique nearest (with respect to the Euclidean distance d) interval fuzzy number to A, that is
d(A;EI(A)) = minB2Int(R) d(A;B): In addition, it can be easily proved that the expected value of
A is the unique nearest (with respect to the Euclidean distance d) crisp fuzzy number to A; that is
d(A;EV (A)) = minc2Rc d(A; c): The above considerations suggests that in the case of a weighted L2-
type metric we should adjust the de�nition of the expected interval so that the interpretation would
be the same.

De�nition 1.12.1 ([28], De�nition 9) Let d�, � = (�L; �U ) be a weighted L2�type metric de�ned
on F (R) given by formula (1.9). For a fuzzy number A we call the weighted expected interval of A the
interval

EI�(A) =

241
a

1Z
0

AL(�)�L(�)d�;
1

b

1Z
0

AU (�)�U (�)d�

35 ;
where a and b are introduced in relation (1.18).

We have

1

a

1Z
0

AL(�)�L(�)d� �
1

a

1Z
0

AL(1)�L(�)d� = AL(1)

� AU (1) =
1

b

1Z
0

AU (1)�U (�)d� �
1

b

1Z
0

AU (�)�U (�)d�;

therefore EI�(A) is well-de�ned. The weighted expected value of A is given by

EV �(A) =
1

a+ b

0@a 1Z
0

AL(�)�L(�)d�+ b

1Z
0

AU (�)�U (�)d�

1A :
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It can be proved that in the case of the weighted expected interval and in the case of the weighted
expected value, we have the same interpretation with respect to the weighted metric d�, as in the
case of the usual expected interval and expected value respectively. The extension of the weighted
expected interval and of the weighted expected value for the case of extended fuzzy numbers is done
in the same way as in the case of the usual ones.
All that follows in this section are original unpublished results.
So far, in this section the formulas of the expected interval, ambiguity or value are depending

on the parametric representation of fuzzy numbers. If the fuzzy number is continuous then we can
express these characteristics in terms of membership function. More exactly we have the following.

Theorem 1.12.2 Let u denotes a continuous fuzzy number with supp(u) = [a; b] and core(u) = [c; d]
: Moreover, suppose that s : [0; 1]! [0; 1] is a continuous reduction function. Then we have

1Z
0

s(�)uL(�)d� =

cZ
a

xd(S(u(x)) and

1Z
0

s(�)uU (�)d� = �
bZ
d

xd(S(u(x)) (1.34)

In addition we obtain

Ambs(u) = �
cZ
a

xd(S(u(x))�
bZ
d

xd(S(u(x)) and V als(u) =

cZ
a

xd(S(u(x))�
bZ
d

xd(S(u(x)); (1.35)

where S(x) =

xZ
0

s(t)dt, x 2 [0; 1]:

It worth to be noticed that the above formulas are immediate when the sides of u are strictly
monotone. It su¢ ces to use the change of variable in the Riemann-Stieltjes integral. However, if the
sides are not strictly monotone than the proof seems to be much more technical and it also requires
some auxiliary results.
Suppose that fuzzy number v approximates fuzzy number u with respect to the Chebyshev metric

DC given in (1.5), with a certain precision. How does this in�uence the quality of the approximation of
the important characteristics of u using the characteristics of v? When we say important characteristics
we refer to the expected interval, ambiguity and value respectively. Using the conclusions of the
previous theorem we obtain.

Theorem 1.12.3 Let u and v denote two continuous fuzzy numbers such that supp(u) = [a; b],
core(u) = [c; d] and supp(v) = [a0; b0], core(v) = [c0; d0]. Assume that DC(u; v) � M . If s : [0; 1] !

[0; 1], is a continuous reducing function and S(x) =

xZ
0

s(t)dt, x 2 [0; 1] then

������
cZ
a

xd(S(u(x))�
c0Z
a0

xd(S(v(x))

������ �M1(u; v)M ;

������
bZ
d

xd(S(u(x))�
b0Z
d0

xd(S(v(x))

������ �M2(u; v)M; (1.36)

where M1(u; v) = c� a+ 3 jaj+ 3 jcj+ ja0j+ 2 jc0j and M2(u; v) = b� d+ 3 jbj+ 3 jdj+ jb0j+ 2 jd0j.
In addition we obtain

maxfjAmbs(u)�Ambs(v)j ; jV als(u)� V als(v)jg � (M1(u; v) +M2(u; v))M: (1.37)
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When v preserves better the shape of u then we obtain even better estimations.

Corollary 1.12.4 Consider that we are under the same hypothesis as in Theorem 1.12.3.
(i) If supp(u) = supp(v) then������
cZ
a

xd(S(u(x))�
c0Z
a0

xd(S(v(x))

������ �M3(u; v)M and

������
bZ
d

xd(S(u(x))�
b0Z
d0

xd(S(v(x))

������ �M4(u; v)M;

where
M3(u; v) = c� a+ jcj+min f2 jcj+ 2 jc0j ; 2 jc� c0j+ jcjg

and
M4(u; v) = b� d+ jdj+min f2 jdj+ 2 jd0j ; 2 jd� d0j+ jdjg :

In addition we have

maxfjAmbs(u)�Ambs(v)j ; jV als(u)� V als(v)jg � (M3(u; v) +M4(u; v))M:

(ii) If supp(u) = supp(v) and core(u) � core(v) then������
cZ
a

x (S(u(x))�
c0Z
a0

xd(S(v(x))

������ � (c� a+ jcj)M ;
������
bZ
d

xd(S(u(x))�
b0Z
d0

xd(S(v(x))

������ � (b� d+ jdj)M:
In addition we have

maxfjAmbs(u)�Ambs(v)j ; jV als(u)� V als(v)jg � (c� a+ jcj+ b� d+ jdj)M:

(iii) If supp(u) = supp(v) and core(v) � core(u) then������
cZ
a

x (S(u(x))�
c0Z
a0

xd(S(v(x))

������ � (c0 � a+ jc0j)M
and ������

bZ
d

xd(S(u(x))�
b0Z
d0

xd(S(v(x))

������ � (b� d0 + jd0j)M:
In addition we have

maxfjAmbs(u)�Ambs(v)j ; jV als(u)� V als(v)jg � (c0 � a+ jc0j+ b� d0 + jd0j)M: (1.38)

Analyzing the results obtained so far in this section we conclude that when we model a fuzzy
number u approximating it by a fuzzy number v then, the better the shape of the fuzzy number is
preserved the better estimation holds when we compare the ambiguity and the value, in particular
the expected interval.



Chapter 2

Extended approximations,
convergence, convexity and ranking
in space of fuzzy numbers

This chapter contains original contributions from the papers [19], [21], [25], [41].

2.1 Approximations of fuzzy numbers by extended fuzzy num-
bers with simpler form

This section contains original contributions from the paper [21].

In this section we will �nd the algorithms to compute the nearest extended parametric fuzzy number
to a given fuzzy number. Then, as a consequence we will obtain the algorithms to compute the nearest
extended trapezoidal fuzzy number to a given fuzzy number. In both cases the results will be obtained
with respect to the Euclidean distance. More generally, we will give the algorithms to compute the
weighted trapezoidal approximation of a fuzzy number. We call it weighted approximation because the
approximation is taken with respect to the weighted L2-type distances introduced by Yeh. Finally, we
will provide some important distance properties with respect to these approximations. The technique
used to prove of the results of this section is inspired from the paper [81]. We will often use here the
notations from Section 1.11 and therefore we suppose that the reader will easily recognize them.

So, let us choose arbitrary a fuzzy number A; A� = [AL(�); AU (�)]; � 2 [0; 1]: For �xed sL > 0

17
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and sR > 0 we introduce the extended parametric fuzzy number AesL;sR = [le; ue; xe; ye]sL;sR , where

le =

1Z
0

AL(�)d�; ue =

1Z
0

AU (�)d�; (2.1)

xe = � (sL + 2)(sL + 1)
2

sL

1Z
0

�
(1� �)1=sL � sL

sL + 1

�
AL(�)d�; (2.2)

ye =
(sR + 2)(sR + 1)

2

sR

1Z
0

�
(1� �)1=sR � sR

sR + 1

�
AU (�)d�: (2.3)

When sL = sR = 1 then we obtain an extended trapezoidal fuzzy number denoted with Te(A) =
[le; ue; xe; ye] given by the equations

le =

1Z
0

AL(�)d�; ue =

1Z
0

AU (�)d�; (2.4)

xe = 12

1Z
0

(�� 1=2)AL(�)d�; ye = �12
1Z
0

(�� 1=2)AU (�)d�: (2.5)

By Proposition 2.1 in [81] or by some simple veri�cations we have

Te(�A+ �B) = �Te(A) + �Te(B); (2.6)

for every A;B 2 F (R) and �; � 2 R which means that the operator Te : F (R)!FTe (R), A ! Te(A)
is linear in respect to addition and scalar multiplication of fuzzy numbers.
We propose now some auxiliary result.

Lemma 2.1.1 ([21], Proposition 3) For any sL > 0; sR > 0 and for any fuzzy number A, we have:
(i)

1Z
0

�
AL(�)�

�
AesL;sR

�
L
(�)
�
d� =

1Z
0

�
AU (�)�

�
AesL;sR

�
U
(�)
�
d� = 0;

(ii)

1Z
0

�
(1� �)1=sL � sL

sL + 1

��
AL(�)�

�
AesL;sR

�
L
(�)
�
d� = 0;

1Z
0

�
(1� �)1=sR � sR

sR + 1

��
AU (�)�

�
AesL;sR

�
U
(�)
�
d� = 0:

Proposition 2.1.2 ([21], Proposition 4) For any sL > 0; sR > 0, one has

d2(A;B) = d2(A;AesL;sR) + d
2(AesL;sR ; B); (8) A 2 F (R); (8) B 2 F

sL;sR
e (R): (2.7)
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Corollary 2.1.3 ([81], Proposition 4.2.) One has

d2(A;B) = d2(A; Te(A)) + d
2(Te(A); B); (8) A 2 F (R); (8) B 2 F sL;sRe (R): (2.8)

Now, we easily obtain the following.

Theorem 2.1.4 (see also Theorem 3 in [21]) If A 2 F (R) is arbitrarily chosen, then AesL;sR is the
nearest extended (sL; sR) parametric fuzzy number to A with respect to the Euclidean distance d and
it is unique with this property.

As a corollary we easily deduce the following result already known from other papers (see e.g.
[82]).

Corollary 2.1.5 If A 2 F (R) is arbitrarily chosen, then Te(A) is the nearest extended trapezoidal
fuzzy number to A with respect to the Euclidean distance d and it is unique with this property.

In the case of weighted L2-type distances, having in mind the notations presented in Section 1.11,
we present some similar results as follows.

Theorem 2.1.6 ([85], Proposition 3.2) Let d� be a weighted L2-type distance like in formula (1.9),
with � = (�L; �U ) and let A denotes a fuzzy number. Making use of relations (1.18)-(1.20) we
introduce the following numerical values:

le =
1

a

1Z
0

AL(�)�L(�)d�; ue =
1

b

1Z
0

AU (�)�U (�)d�; (2.9)

xe =
1

c

1Z
0

AL(�)(�� !L)�L(�)d�; ye =
1

d

1Z
0

AU (�)(�� !U )�U (�)d�: (2.10)

Then, taking Te;�(A) = [le; ue; xe; ye]� (see again representation (1.21)), one has

d2�(A;B) = d
2
�(A; Te;�(A)) + d

2
�(Te;�(A); B); (8) A 2 F (R); (8) B 2 FTe (R): (2.11)

By similar reasonings as in the case of the Euclidean metric we obtain the following corollary.

Corollary 2.1.7 ([85], Proposition 3.3) If A 2 F (R) is arbitrarily chosen, then Te;�(A) is the nearest
extended trapezoidal fuzzy number to A with respect to the weighted distance d� and it is unique with
this property.

Let A denotes an arbitrary fuzzy number. Then let sL, sR be arbitrary strictly positive reals and
d�, � = (�L; �R) be some weighted distance. From now one, AesL;sR is called the extended (sL; sR)
parametric approximation of A, Te(A) is called the extended trapezoidal approximation of A and
Te;�(A) is called the weighted extended trapezoidal approximation of A.
We present now some properties of Lipschitz continuity.

Lemma 2.1.8 (see also Theorem 8 in [21]) Let ' denotes the extended trapezoidal, extended weighted
trapezoidal or extended parametric approximation operator and let D denotes the corresponding Euclid-
ean or weighted L2-type distance. Then, one has D('(A); '(B)) � D(A;B), for every A;B 2 F (R):
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We notice here that the above lemma generalizes Proposition 4.4 in [81] and its proof is similar
with the proof of the before mentioned proposition.
Finally, we present an interesting property of the extended parametric approximation operator, in

particular extended trapezoidal approximation operator, to preserve some important characteristics
associated to fuzzy numbers.

Proposition 2.1.9 ([21], Proposition 7) The extended (sL; sR) parametric approximation of a fuzzy
number A and the fuzzy number A have the same expected interval, that is EI

�
AesL;sR

�
= EI (A). If

the reducing function S : [0; 1] ! [0; 1] is de�ned by S (�) = 1 � (1� �)1=s ; s > 0, then the extended
(s; s) parametric approximation of a fuzzy number A and the fuzzy number A have the same value and
ambiguity, that is V alS

�
Aes;s

�
= V alS (A) and AmbS

�
Aes;s

�
= AmbS (A) :

2.2 Some convergence properties in the space of extended
fuzzy numbers

All the results of this section can be found in the paper [19] for the particular case of a weighted
distance d�, � = (�L; �U ), �L = �U and for the more restrictive case of trapezoidal fuzzy numbers.
The main result of this section, Lemma 2.2.2, will be used later in the study of the continuity of the
weighted trapezoidal approximation operator preserving the core.

Lemma 2.2.1 ([19], Lemma 2) If (Tn)n2N , Tn = (t1(n); t2(n); t3(n); t4(n)), is a sequence of extended
trapezoidal fuzzy numbers such that lim

n!1
ti(n) = ti <1; i = 1; 4; then lim

n!1
Tn = T with respect to any

weighted metric d�; � = (�L; �U ), where T is the extended trapezoidal fuzzy number T = (t1; t2; t3; t4):

Lemma 2.2.2 ([19], Lemma 3) If (Tn)n2N , Tn = (t1(n); t2(n); t3(n); t4(n)), is a convergent sequence
of extended trapezoidal fuzzy numbers with respect to a weighted metric d�, then its limit is an extended
trapezoidal fuzzy number T = (t1; t2; t3; t4) and in addition we have lim

n!1
ti(n) = ti , i = 1; 4:

Using equations (1.13)-(1.14) and the previous two lemmas, we easily obtain the following.

Corollary 2.2.3 If (Tn)n2N , Tn = [l(n); u(n); x(n); y(n)], is a convergent sequence of extended trape-
zoidal fuzzy numbers with respect to a weighted metric d�, then its limit is an extended trapezoidal
fuzzy number T = [l; u; x; y] and in addition we have lim

n!1
l(n) = l, lim

n!1
u(n) = u, lim

n!1
x(n) = x

and lim
n!1

y(n) = y: Conversely, if Tn = [l(n); u(n); x(n); y(n)], is a sequence of extended trapezoidal

fuzzy numbers such that lim
n!1

l(n) = l, lim
n!1

u(n) = u, lim
n!1

x(n) = x and lim
n!1

y(n) = y, then

lim
n!1

Tn = [l; u; x; y], with respect to any weighted metric d�.

Remark 2.2.4 Similar results can be obtained for extended parametric fuzzy numbers.

2.3 Convexity in the space of fuzzy numbers

This section contains original contributions from the paper [41].
Usually, the concept of convex set is given in relation with a vector space structure. We already

know that the addition and scalar multiplication of fuzzy numbers do not form a vector space. How-
ever, since these operations are closed in F (R) and mostly because it will be of great help later in the
obtaining of some important results of this thesis, we need the notion of convex set in the space of
fuzzy numbers.
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De�nition 2.3.1 ([41], De�nition 1) A nonempty set 
 � F (R) is called a convex subset of F (R) if
for all A;B 2 
 and 
 2 [0; 1], we have ((1� 
)A+ 
B) 2 
:

In the paper [41] some useful results are proved for some convex sets. For example, if A;B 2 F (R),
0 � 
1 � 
2 � ::: � 
n � 1 and Ci = (1� 
n)A+ 
nB for any i 2 f1; 2; :::; ng, then [A;B] = [A;C1][
[C1; C2] [ ::: [ [Cn�1; Cn] [ [Cn; B]. Then for any C 2 [A;B] we have d(A;B) = d(A;C) + d(C;B).
Finally, if A;B 2 F (R), A 6= B then cl((A;B)) = cl((A;B]) = cl([A;B)) = [A;B]. It has to be
mentioned that since the space of fuzzy numbers is not a vector space the proofs are more technical
comparing with the approaches which could be used in normed spaces.

2.4 A characterization of Lipschitz fuzzy number-valued func-
tions

This section contains original contributions from the paper [41]. The following lemma can be proved
by using the properties from the previous section.

Lemma 2.4.1 ([41], Lemma 8) Let A;B 2 F (R), A 6= B: Furthermore, we consider the family of

closed convex subsets of F (R), F =f
i : i 2 f1; 2; :::; ngg, such that [A;B] �
n[
i=1


i: Then, there

exist k 2 f1; 2; :::; ng, fCj : j 2 f0; 1; :::; kgg � [A;B], with C0 = A and Ck = B respectively, and

f
lj : j 2 f1; 2; :::; kgg � F , such that: i) [A;B] =
k[
j=1

[Cj�1; Cj ]; ii) d(A;B) =
kX
j=1

d(Cj�1; Cj); iii)

[Cj�1; Cj ] � 
lj for all j 2 f1; 2; :::; kg:

From the previous result we obtain the following characterization of Lipschitz fuzzy number-valued
functions .

Theorem 2.4.2 ([41], Theorem 9) Let F =f
i : i 2 f1; 2; :::; ngg be a family of closed convex subsets
of F (R) such that that there exist the positive real constants, ci, i 2 f1; 2; :::; ng, such that for all
i 2 f1; 2; :::; ng and A;B 2 
i, we have d(f(A); f(B)) � cid(A;B). Then d(f(A); f(B)) � cd(A;B),
(8)A;B 2 F (R), where c = maxfci : i 2 f1; 2; :::; ngg:

2.5 Reasonable properties for ranking fuzzy numbers

This section contains original contributions from the paper [25].
In the last decades hundreds of papers were devoted to study the ranking of fuzzy numbers.

The ranking of fuzzy numbers is considered a very important necessity in fuzzy numbers theory but
unfortunately it seems that an e¢ cient method to rank fuzzy numbers is still an open question. The
longer version of the thesis presents a very detailed study on this mater and moreover is presents in
detail the state of the art in this topic as well as numerous approaches to rank fuzzy numbers. In this
summary we will insist only on the main results obtained in this topic.
Suppose that S is a subset of F (R). Then let us consider a defuzi�er P : S !R which induces on

S an order in the following way:
(i) P (A) > P (B) if and only if A � B;
(ii) P (A) < P (B) if and only if A � B;
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(iii) P (A) = P (B) if and only if A s B;
(iv) P (A) � P (B) if and only if A � B or A s B;
(v) P (A) � P (B) if and only if A � B or A s B:
When A � B or A s B we often denote A � B and, when A � B or A s B we may denote

A � B.
In order to �nd e¢ cient methods for ordering fuzzy numbers we consider the following basic

requirements for the order � on the set S.
A1) A � A for any A 2 S:
A2) For any (A;B) 2 S2, from A � B and B � A results A s B.
A3) For any (A;B;C) 2 S3, from A � B and B � C results A � C.
A4) For any (A;B) 2 S2, from inf supp(A) �sup supp(B) results A � B.
A04) For any (A;B) 2 S2, from inf supp(A) >sup supp(B) results A � B.
A5) Let A;B;A+ C and B + C be elements of S: If A � B, then A+ C � B + C:
A05) Let A;B;A+ C and B + C be elements of S: If A � B, then A+ C � B + C:
A6) For any (A;B) 2 S2 and � 2 R such that �A; �B 2 S, from A � B results �A � �B if � � 0

and �A � �B if � � 0:
Let us note that if A3) holds then from A s B and B s C we get A s C.
Requirements A1) � A05) can be found in a more general setting (i.e. the ordering approach is

not necessarily induced by a precise defuzi�er) in the paper of Wang and Kerre ([78]). For this
reason, in their paper the formulation of the basic properties is more abstract than above. Then it is
easily seen that if the order � is generated by a defuzi�er, properties A1) � A3) hold. Property A6)
replaces property A7) from the same paper of Wang and Kerre. They proposed somehow a stronger
requirement by replacing � in A6) with positive fuzzy numbers (i.e. fuzzy numbers with the support
included in [0;1)). However, since the multiplying of fuzzy numbers has not a commonly accepted
formula we prefer requirement A6) as it is considered in this thesis. Another reason why we consider
A6) in this form is that if S coincides with the set of trapezoidal fuzzy numbers then if A;B are
trapezoidal fuzzy numbers then A �B may fail to be a trapezoidal fuzzy number. In particular, if A6)
holds then from A � B it results that �A � �B, a property which is considered very important in
many papers (see e.g. [5], [11], [54]). We also have to notice that at �rst impression requirement A4)
in [78] seems a little di¤erent with A4) from this thesis. In [78] the requirement says that from inf
supp(A) >sup supp(B) should result that A � B. But it is very easy to prove that if R �S and � is
generated by a defuzi�er P such that the restriction of P on R, P jR: R! R is continuous, then A4)
in [78] and A4) from the present thesis are equivalent. A very simple prove of this fact can be found
in the paper [25]. In some recent papers (see e.g. [5], [12]) the following requirement is considered as
an important reasonable property for a defuzi�er P : S !R.
A"4) For any A 2 S, P (A) must belong to its support.
In some sense we can say that it su¢ ces to study only defuzi�ers for which A"4) holds. This is

certi�ed by the following theorem.

Theorem 2.5.1 ([25], Theorem 1) Suppose that P : S !R is a defuzi�er which induces on S an order
� which satis�es requirements A4)�A04) on S. If R � S and the restriction of P on R, P jR: R! R
is continuous then there exists a defuzi�er P1 : S !R which satis�es requirement A"4) and which
generates on S an order �1which is equivalent with �, that is, for any A;B 2 S; from A � B it
results A �1 B and from A � B it results A �1 B.

In the statement of the above theorem we have assumed that P jR: R! R is continuous but this
requirement is not at all restrictive since one can easily observe that most defuzi�ers that generate
orders between fuzzy numbers are continuous. Actually, we could not �nd an approach that uses a
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defuzi�er having discontinuities. This would also look quite unnatural. Therefore, we will consider
only defuzi�ers which satisfy the continuity assumption in Theorem 2.5.1.
In what follows, we will see that depending on the reasonable properties ful�lled by an order

obtained from a defuzi�er, we can provide some important properties of the defuzi�er.

Theorem 2.5.2 ([25], Theorem 2) Suppose that S is a subset of F (R) such that R �S and S+S � S.
Then suppose that R : S ! R is a defuzi�er which satis�es requirement A"4) and such that the order
� generated by R on S satis�es requirement A5) on S. Then R is additive on S and in addition �
satis�es requirement A05) on S.

From the above theorem we easily obtain the following corollaries.

Corollary 2.5.3 ([25], Corollary 3) Suppose that S is a subset of F (R) such that R �S and S+S � S.
Then suppose that R : S ! R is a defuzi�er which satis�es requirement A"4). Then the order �
generated by R on S satis�es requirement A5) on S if and only if it satis�es requirement A05) on S.

Corollary 2.5.4 ([25], Corollary 4) Suppose that S is a subset of F (R) such that R �S and S+S � S.
If R : S ! R is a defuzi�er which generates an order � so that requirements A4), A04) and A5)
respectively are satis�ed by � on S, then A05) is satis�ed too by � on S. In addition there exists an
additive defuzi�er R1 : S ! R which satis�es A"4) on S and which generates on S an equivalent order
with �.

Theorem 2.5.5 ([25], Theorem 5) Suppose that S is a subset of F (R) such that R �S and � �S � S,
for all � 2 R. Then suppose that R : S ! R is a defuzi�er which satis�es requirement A"4) and such
that the order � generated by R on S satis�es requirement A6) on S. Then R is scale invariant:

Corollary 2.5.6 ([25], Corollary 6) Suppose that S is a subset of F (R) such that R �S and ��S � S,
for all � 2 R. If R : S ! R is a defuzi�er which generates an order � so that requirements A4), A04)
and A6) respectively are satis�ed by � on S, then there exists a scale invariant defuzi�er R1 : S ! R
which satis�es A"4) on S and which generates on S an equivalent order with �.

Obviously, an e¢ cient ranking between fuzzy numbers from a set S should satisfy requirements
A1) � A6) from above. For this reason let us denote with M(S) the set of all continuous defuzi�ers
de�ned on S and generating on S an order such that A1) � A6) are satis�ed. Then, inspired by
Theorem 2.5.1, we consider the set M1(S) of all continuous defuzi�ers where P 2 M1(S) if and only
if A"4) holds for P and such that the order generated by P on S satis�es requirements A1)�A3) and
A5)�A6). From the above considerations it results that in generalM1(S) is strictly included inM(S).
But from Theorem 2.5.1 it also results that if some order � on S is generated by a defuzi�er from
M(S) then there exists a defuzi�er fromM1(S) which generates an order �1over S which is equivalent
with �. Therefore, in order to �nd e¢ cient orders over S it su¢ ces to study only defuzi�ers from
M1(S) and this might just simplify the procedure of �nding e¢ cient orders on S since requirement
A"4) should simplify on the calculations part. This clearly is the case when S = FT (R) as it will be
seen in the next section. But before that, we conclude this section with some useful results in which
we can characterize the elements from the classes M(S) and M1(S) respectively.

Theorem 2.5.7 ([25], Theorem 7) Suppose that S is a subset of F (R) such that R �S, S + S � S
and � � S � S for all � 2 R. Moreover, let us consider some defuzi�er R : S ! R. Then we have:
(i) R 2M1(S) if and only if R satis�es A"4) on S and R is linear on S;
(ii) R 2 M(S) if and only if there exists R1 2 M1(S) such that R and R1 generate equivalent

orders on S.



24 CHAPTER 2. APPROXIMATIONS, CONVERGENCE, CONVEXITY, RANKING

2.6 Finding the class M1(F
T (R))

This section contains original contributions from the paper [25].
As stated in the title, in this section we will determine (Theorem 2.6.2) all the continuous defuzi�ers

of the class M1(F
T (R)) and hence, making abstraction of equivalent orders over FT (R) we will

determine all of them which generate orders satisfying the reasonable properties A1)�A6):
In this section and in the following two sections, sometimes we will use a new notation for trape-

zoidal fuzzy numbers which seems to be more suitable in obtaining the main results on the ranking
of fuzzy numbers. The �-cut of a trapezoidal fuzzy number T can be written in the form (see [5])

T� = (x0 � � + ��; y0 + � � ��); (2.12)

where x0; y0; �; � 2 R, � � 0; � � 0 and x0 � y0: We denote T = (x0; y0; �; �):
For a trapezoidal fuzzy number T = (x0; y0; �; �), let us consider the quantity

R(T ) = ax0 + by0 + c� + d�; (2.13)

where a; b; c; d 2 R are �xed. It is immediate that the function R : FT (R)! R is additive and
positively homogenous. Let us introduce the set 
 = fR : R : FT (R)! R and R is of the form
(2.13)g. In the long version of the thesis it is proved proved that M1(F

T (R)) � 
. This is why in the
thesis at �rst defuzi�ers from the set 
 are investigated. The most important result is the following
corollary which unites some useful results which characterize di¤erent types of defuzi�ers from 
.

Corollary 2.6.1 ([25], Corollary 12) Let us consider a defuzi�er R 2 
; R(T ) = ax0+ by0+ c�+d�
for T = (x0; y0; �; �). Then R 2M1(F

T (R)) if and only if a = b = 1
2 , c 2 [�1; 0], c+ d = 0:

We have mentioned above that M1(F
T (R)) � 
. More exactly we have the following.

Theorem 2.6.2 ([25], Theorem 13) Let us consider a defuzi�er R : FT (R)! R. Then R 2M1(F
T (R))

if and only if there exist c 2 [�1; 0] such that for some T 2 FT (R), T = (x0; y0; �; �), we have

R(T ) =
1

2
x0 +

1

2
y0 + c� � c�: (2.14)

In addition it is easy to check (see also Theorem 2.5.7) that R is linear on FT (R).

In what follows, we will characterize classes of defuzi�ers over FT (R) which generate orders satis-
fying entirely or just a part of the basic requirements A1) � A6) on FT (R). Moreover, by Theorem
2.5.1 too, we can simplify the searching of such orders using equivalent orders that satisfy requirement
A"4) on F

T (R).

Corollary 2.6.3 ([25], Corollary 14) (i) If R 2 M(FT (R)) then there exists R1 2 M1(F
T (R)) such

that the orders � and �1 over FT (R) generated by R and R1 respectively are equivalent. In addition
(by Theorem 2.6.2) there exist c 2 [�1; 0] such that for some T 2 FT (R), T = (x0; y0; �; �), we have
R1(T ) =

1
2x0 +

1
2y0 + cx� cy:

(ii) If R : FT (R)! R is a defuzi�er such that the order � generated by R on FT (R) satis�es
basic requirements A4); A04) and A5), then � satis�es A05) too and moreover, there exists an additive
defuzi�er R1 : FT (R)! R, which satis�es A"4) on FT (R) and which generates on FT (R) an equivalent
order with �.
(iii) If R : FT (R)! R is a defuzi�er such that the order � generated by R on FT (R) satis�es

basic requirements A4); A04) and A6), then there exists a scalar invariant defuzi�er R2 : F
T (R)! R,

which satis�es A"4) on F
T (R) and which generates on FT (R) an equivalent order with �.



2.7. EXAMPLES OF RANKING APPROACHES 25

2.7 Examples of ranking approaches

This section contains original contributions from the paper [25].

Example 2.7.1 ([25], Example 16) Let us consider the function EV : FT (R)! R, which for any
trapezoidal fuzzy number T = (x0; y0; �; �), associates its expected value that is (with the present
notations) EV (T ) = 1

2x0 +
1
2y0 �

1
4� +

1
4�: It is immediate that EV 2 M1(F

T (R)): It seems that
Yagger ([79]) has been the �rst who proposed to rank fuzzy numbers through their expected values.
This procedure was considered also more recently in the paper [12].

Example 2.7.2 ([25], Example 17) In the paper [5], the authors considered the magnitude of a trape-
zoidal fuzzy number, namely the function Mag : FT (R)! R,

Mag(T ) =
1

2

0@ 1Z
0

(TL(�) + TU (�) + x0 + y0)f(�)d�

1A ;
where T = (x0; y0; �; �) is an arbitrary trapezoidal fuzzy number and f is a nonnegative and nonde-

creasing function on [0; 1] with f(0) = 0; f(1) = 1 and
1R
0

f(�)d� = 1=2: Since by simple calculations

we get Mag(T ) = 1
2x0 +

1
2y0 +

�
2

1R
0

f(�)(� � 1)d� + �
2

1R
0

f(�)(1 � �)d�; one can easily prove that

Mag 2 M1(F
T (R)). In the paper [5], the authors dealt with the particular case f(�) = �, when

Mag(T ) = 1
2x0 +

1
2y0 �

1
12� +

1
12�:

Example 2.7.3 ([25], Example 20) In the paper [3] the authors propose to rank fuzzy numbers
by using Lp-type distances. Then in the paper [7] the same approach is proposed with a small
modi�cation. In what follows we will describe this approach. Let us �x a real p � 1and con-

sider an arbitrary fuzzy number A. If

1Z
0

AL(�)d� +

1Z
0

AU (�)d� > 0, we consider the quantity

�p(A) =

0@ 1Z
0

jAL(�)jp d�+
1Z
0

jAU (�)jp d�

1A1=p

. If

1Z
0

AL(�)d� +

1Z
0

AU (�)d� < 0 then we take

�p(A) = �

0@ 1Z
0

jAL(�)jp d�+
1Z
0

jAU (�)jp d�

1A1=p

. Finally, if

1Z
0

AL(�)d� +

1Z
0

AU (�)d� = 0 then

we take �p(A) = 0. Note that in paper [3] this last case is included in the �rst one. Now, we can intro-
duce the defuzi�er �p : FT (R)! R and let � denotes the order induced by �p on FT (R). Let us check
now the reasonable properties satis�ed by � on FT (R). Obviously, requirements A1)�A3) hold. Unfor-
tunately, neither A4) nor A04) holds. Let us construct an counterexample. For some " > 0 we consider
the trapezoidal fuzzy number (we use standard notations) T" = (�11; 1; 5 + "; 5 + "). We observe that
1Z
0

(T")L (�)d�+

1Z
0

(T")U (�)d� > 0, therefore �p(T") =

0@ 1Z
0

j(T")L (�)j
p
d�+

1Z
0

j(T")U (�)j
p
d�

1A1=p

.

By Hölder�s inequality we obtain

1Z
0

j(T")L (�)j
p
d� �

0@ 1Z
0

j(T")L (�)j d�

1Ap

and since

1Z
0

j(T")L (�)j d� =
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5:083 and

1Z
0

j(T")U (�)j
p
d� = (5 + ")

p, we get �p(T") � ((5:083)p + (5 + ")p)
1=p
: On the other hand,

considering the crisp number 5+ " we easily observe that �p(5+ ") = 21=p(5+ "). Obviously, for su¢ -
ciently small " we have �p(T") > �p(5+"), which implies that T" � 5+". Since sup (supp(T")) = 5+",
it easily results now that A4) does not hold in general on FT (R). Now considering the crisp number
5+ 2", again it is very easy to prove that for su¢ ciently small " we have �p(T") > �p(5+ 2"). Clearly
this implies that neither A04) holds. At �rst, let us correct the above shortcoming so that both basic
requirements A4) and A04) would hold. Therefore, we will modify the defuzi�er �p to a defuzi�er �p as
follows. If T is either a positive trapezoidal fuzzy number (i.e. TL(0) � 0) or a negative trapezoidal
fuzzy number (i.e. TU (0) � 0) then we take �p(T ) = �p(T ). If T is neither positive nor negative (i.e.

TL(0) < 0 < TU (0)) then we distinguish three cases. If

1Z
0

TL(�)d� +

1Z
0

TU (�)d� = 0 then we take

�p(T ) = �p(T ) = 0. If

1Z
0

TL(�)d�+

1Z
0

TU (�)d� > 0 then we take �p(T ) = min(�p(T ); 21=pTU (0)): Fi-

nally, if

1Z
0

TL(�)d�+

1Z
0

TU (�)d� < 0 then we take �p(T ) = max(�p(T ); 21=pTL(0)). It is easy to prove

that the order �1 generated by �p on FT (R) satis�es both A4) and A04). It remains to study whether �1
satis�es basic requirements A5); A05) or A6) respectively. Let us de�ne the defuzi�er e�p : FT (R)! R,e�p = 2�1=p �p and let �2 denotes the order induced by e�p on FT (R). Evidently �2 and �1 are equiv-
alent. Then by simple calculations one can easily prove that e�p satis�es A"4) on FT (R). On the other
hand we notice that e�p is not additive nor scale invariant on FT (R) and hence by Theorems 2.5.2 and
2.5.5 respectively, it follows that neither A5) nor A6) is satis�ed in general by �2 on FT (R). Now,
by Corollary 2.5.3 it results that A05) does not hold in general for the order �2 on FT (R). By the
equivalence of the orders �1 and �2 respectively, it results �nally that non of properties A5); A05) and
A6) respectively, are satis�ed in general by �1 on FT (R).

2.8 Ranking fuzzy numbers through trapezoidal fuzzy num-
bers

This section contains original contributions from the paper [25].
So far, we found the class M1(F

T (R)) consisting of all defuzi�ers that generate orders over the
space of fuzzy numbers satisfying requirements A1) � A3), A"4) and A5) � A6): In what follows, we
will prove that for any R 2 M1(F

T (R)) there exists R 2 M1(F (R)) such that R(T ) = R(T ) for any
trapezoidal fuzzy number T . This means that R is an extension of R on F (R) so that all the desirable
properties hold.

Theorem 2.8.1 ([25], Theorem 21) Let us consider the trapezoidal valued operator T : F (R)!FT (R)
and let us consider the defuzzi�cation operators R : F (R)! R and R 2M1(F

T (R)): Suppose that the
following requirements hold:

(i) T is linear;
(ii) supp(T (A)) �supp(A), for all A 2 F (R);
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(iii) R(A) = R(T (A)), for all A 2 F (R):
Then R is linear on F (R) and in addition R 2M1(F (R)).

Now, we easily obtain the following corollary.

Corollary 2.8.2 ([25], Corollary 22) Let us consider the defuzzi�cation operator EV : F (R)! R
which associates to a fuzzy number its expected value. Then EV 2M1(F (R)).

The approach proposed in the above corollary has its shortcomings because sometimes we obtain
some integrals which are computed with di¢ culty. We present now a results which is more convenient
from computational point of view.

Corollary 2.8.3 ([25], Corollary 23) Let us consider the defuzi�er R : F (R)! R,

R(A) = (AL(0) +AL(1) +AU (0) +AU (1)) =4:

Then R 2M1(F (R)).

Using the same reasoning as we did to obtain the conclusion of the above corollary we can extend
each order given by an operator R 2M1(F

T (R)) to an order over F (R), which is very easy to handle
from computational point of view and in addition satis�es the basic requirements considered in this
thesis.

Theorem 2.8.4 ([25], Theorem 24) For R 2 M1(F
T (R)) there exists R : F (R)! R such that R 2

M1(F (R)) and in addition R(T ) = R(T ), for all T 2 FT (R):



Chapter 3

Approximations of fuzzy numbers
by fuzzy numbers with simpler form

In this chapter we propose the basic methods to �nd algorithms to determine di¤erent kinds of
parametric or trapezoidal approximations.
This chapter contains original contributions from the papers [17], [21]-[22], [27]-[28], [40]. In

addition, this chapter contains original unpublished results which will be mentioned at the right
moment.

3.1 Approximations of fuzzy numbers; a look back

This section presents the state of the art in the topic of the approximation of fuzzy number. We also
mention that the content of this section can be found in paper [40] too.
In the last few years many papers investigated on the approximations of fuzzy numbers with re-

spect to L2-type metrics. Mostly, two kinds of problems are considered: approximations without
any other restrictions and approximations with additional conditions. We recall here some important
contributions with respect to the problem of the approximation of fuzzy numbers. Firstly, we discuss
about approximations without additional conditions. Chanas ([38]) and Grzegorzewski ([59]) indepen-
dently proposed the interval approximation of a fuzzy number. Grzegorzewski proved that the nearest
interval approximation of a fuzzy number with respect to the Euclidean metric is actually its expected
interval. Abbasbandy and Asady ([4]) proposed the trapezoidal approximation of a fuzzy number with
respect to the same Euclidean distance. Yeh ([82]) proposed new algorithms for computing trapezoidal
and triangular approximations of fuzzy numbers with respect to the Euclidean distance. Zeng and Li
([88]) proposed the triangular approximation of a fuzzy number with respect to a weighted L2�type
metric. Unfortunately, the algorithm proposed by them does not always produce proper triangular
fuzzy numbers as it was pointed out in the papers [16] and [82]. The correct algorithm is given by
Ban in the paper [16]. The most general result concerning approximations with trapezoidal or tri-
angular fuzzy numbers is given by Yeh in the paper [85] where algorithms for computing trapezoidal
or triangular approximations of fuzzy numbers with respect to general weighted L2�type metrics are
given. A more general approach has been proposed by Nasibov and Peker in [68] where they intro-
duced the parametric approximation of a fuzzy number with respect to the Euclidean metric, result
improved by Ban in [14]. Then Yeh ([84]) generalized these results by considering general weighted

28
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L2�type metrics. In the very recent paper [43], the authors propose algorithms to compute so called
piecewise linear approximations of fuzzy numbers (with respect to the Euclidean metric) which are
fuzzy numbers depending on 6 parameters. This is a �rst step towards approximations by fuzzy num-
bers which depend on n parameters. More details about piecewise linear approximations are given
in the conclusions section. Now, we discuss about approximations of fuzzy numbers under additional
conditions. Grzegorzewski and Mrówka ([62], [63]) proposed the trapezoidal approximation of a fuzzy
number preserving the expected interval with respect to the Euclidean metric. Then Ban ([13]) and
Yeh ([83]) independently improved their result. Algorithms for computing the trapezoidal approxi-
mation of a fuzzy number preserving the expected interval can be found in the papers [60] and [61].
Then Abbasbandy and Hajjari ([6]) proposed approximations of fuzzy numbers preserving the core
with respect to weighted L2�type metrics. Recently, Ban et al. ([17]) proposed the trapezoidal ap-
proximation preserving the value and ambiguity with respect to the Euclidean metric. More recently,
Ban and Coroianu ([22]) proposed interval, triangular and trapezoidal approximations preserving the
ambiguity with respect to the Euclidean metric. More generally, Ban and Coroianu ([21]) proposed
simpler methods to compute the parametric approximation of a fuzzy number with respect to the
Euclidean metric preserving important characteristics such as the expected interval or the ambiguity
and value. Other types of non-linear approximations can be found in the paper of Grzegorzewski
and Stefanini ([77]) where they proposed classes of fuzzy numbers depending on 4 or 5 parameters
which allow approximations with conservation of multiple characteristics of a fuzzy number such as
the support and core or the ambiguity and value.

3.2 Existence results and applications for important classes of
fuzzy numbers

This section contains entirely original contributions. Some of the results can be found in the paper
[27] too but in most cases the proofs are omitted. We also mention that Theorems 3.2.5 and 3.2.7 are
completely new.
To obtain the main results of this section we need an old result of Rådström and also some well-

known results in the problem of best approximation which will not be mentioned in this summary.

Theorem 3.2.1 (see [72], Theorem 1) Let us consider a triplet (M;+; �) which forms a semilinear
structure. Then there exist a vector space (fM;�;�) and an injective application (inclusion) i :M !fM and, regarding M as a subset of fM (that is adopting the convention i(x) = x for all x 2 M), we
have a� b = a+ b, �� a = � � a, for all a; b 2M and � 2 [0;1). If, in addition there exits a metric
d de�ned on M satisfying:

(i) d(a+ c; b+ c) = d(a; b), for all a; b; c 2M ;
(ii) d(�a; �b) = �d(a; b), for all � 2 [0;1) and a; b 2M ;
(iii) + :M �M !M and � : [0;1)�M !M , are continuous on the topology generated by

d on M;
then there exists a norm k�k : fM ! [0;1) such that the metric ed on fM generated by k�k satis�es

d(a; b) = ed(a; b), for all a; b 2M:
Before we give existence results for parametric or trapezoidal approximations we will present some

theoretical results which will help us to obtain the before mentioned existence results.

Theorem 3.2.2 (see also [27], Theorem 9) Let d be a metric de�ned on the space of fuzzy numbers

F (R) which satis�es requirements (i)-(iii) of Theorem 3.2.1 and let
�
]F (R); ed;�;�� be the normed
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space which realizes the embedding of (F (R); d;+; �) according to Theorem 3.2.1 (recall that we already
know that the space of fuzzy numbers is a semilinear space, see the end of Section 1.7) . Then, let us
consider a subset A � F (R), for which there exist fv2; v3; :::; vmg � A, such that:

(i) the system f1; v2; :::; vmg is linearly independent in the vector space
�
]F (R);�;�

�
;

(ii) A =
(
�1 � 1 +

mX
k=2

�ivi : �1 2 R and �i 2 [0;1); i 2 f2; :::;mg
)
:

Then, A is a closed subset of F (R) in the topology generated by the metric d:

Another very useful result is the following.

Theorem 3.2.3 (see also [27], Theorem 12) Let 
 be one of the following subsets of F (R): F sL;sR(R)
(for some �xed sL and sR), FT (R), F�(R), Int(R), Rc. If d is a metric on F (R) which satis�es
requirements (i)-(iii) of Theorem 3.2.1 then 
 is a closed subset of F (R) in the topology generated by d
and, if

�
]F (R); ed;�;�� is a normed space such that (F (R); d;+; �) can be embedded in �]F (R); ed;�;��,

then 
 is a closed convex subset of ]F (R) in the topology generated by ed.
From the above two theorems and together with several auxiliary results we obtain the following

main result of this section.

Theorem 3.2.4 (see also [27], Theorem 13) Let 
 be one of the following subsets of F (R): F sL;sR(R)
(for some �xed sL and sR), FT (R), F�(R), Int(R), Rc. If d is a metric on F (R) satisfying
requirements (i)-(iii) of Theorem 3.2.1, then for any A 2 F (R) there exits A� 2 
 such that
d(A;A�) = inf

B2

d(A;B):

The above existence result is quite general since almost all the metrics de�ned on the space of
fuzzy numbers satisfy the hypothesis in the above theorem. Under some stronger requirements we can
prove uniqueness results as follows.

Theorem 3.2.5 Let 
 be one of the following subsets of F (R): F sL;sR(R) (for some �xed sL and sR),
FT (R), F�(R), Int(R), Rc. If d is a metric on F (R) and if there exists a Hilbert space

�
]F (R); ed;�;��

(ed is the metric generated by the inner product which endows ]F (R) with a Hilbert space structure) such
that (F (R); d;+; �) can be embedded in

�
]F (R); ed;�;��, then for any A 2 F (R) there exits A� 2 


such that d(A;A�) = inf
B2


d(A;B); and in addition A� is unique with this property.

The next corollary is very important since in this thesis we will study approximation operators
with respect to L2-type metrics.

Corollary 3.2.6 (see also [84] Proposition 4.1. for the case when 
 = F sL;sR(R)) Let 
 be one of
the following subsets of F (R): F sL;sR(R) (for some �xed sL and sR), FT (R), F�(R), Int(R), Rc.
If d� is any weighted L2 metric on F (R) (see (1.9)), then for any A 2 F (R) there exists a unique
element A� 2 
 such that d�(A;A�) = infB2
 d�(A;B):
Finally, we present an existence and uniqueness result in the approximation by the metrics �p;�

given in (1.10). The proof uses the remarkable inequalities of Clarkson ([39]).

Theorem 3.2.7 Let 
 be one of the following subsets of F (R): F sL;sR(R) (for some �xed sL and
sR), FT (R), F�(R), Int(R), Rc. If �p;�, � = (�L; �U ), is any weighted Lp-type metric on F (R) (see
(1.10)) such that p > 1, then for any A 2 F (R) there exists a unique element A� 2 
 such that
�p;�(A;A

�) = infB2
 �p;�(A;B):
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3.3 Parametric and trapezoidal approximations without other
restrictions

In this section we will prove (using an original approach) the existence and uniqueness of parametric
or trapezoidal approximations without other restrictions. The key element in the obtaining of these
results is Corollary 3.2.6 from the previous section.
Let us consider on the space of fuzzy numbers an arbitrary weighted metric d�, given by

d�(A;B)

=

24 1Z
0

(AL(�)�BL(�))2 �L(�)d�+
1Z
0

(AU (�)�BU (�))2 �U (�)d�

351=2 ; A;B 2 F (R);
where � = (�L; �U ); �L; �U : [0; 1]! R, are strictly positive almost everywhere on [0; 1] and integrable
weight functions: Then, let us �x sL > 0 and sR > 0:
Now, let us choose arbitrarily a fuzzy number A. By Corollary 3.2.6 we already know that there

exits a unique parametric fuzzy number of type (sL; sR) denoted from now one with A�sL;sR such
that d�(A;A�sL;sR) = infB2F sL;sR (R) d�(A;B): This means that we can de�ne an operator 	d�;sL;sR :
F (R)!F sL;sR(R), 	d�;sL;sR(A) = A�sL;sR :
The operator 	d�;sL;sR will be called weighted parametric approximation operator of type (sL; sR)

or simply weighted parametric approximation operator when there is no risk of confusion. In the
particular case when �L = �U = 1, that is when d� equals the Euclidean distance d, we will denote
	d�;sL;sR = 	sL;sR : Then, in the particular case when sL = sR = 1, we use the notation 	d�;1;1 = Td�
and the operator Td� will be called from now one the weighted trapezoidal approximation operator.
The most particular case of trapezoidal approximations is when �L = �U = 1 and sL = sR = 1 and
we obtain the so called trapezoidal approximation operator denoted from now one with Td:
Now naturally the following question arises. Can we �nd algorithms to determine 	d�;sL;sR for

any A 2 F (R)? A very technical solution of this problem is given by Yeh in the paper [84] where
he obtains the algorithm to compute the weighted parametric approximations by using linear algebra
and many characterizations of the best approximation in Hilbert spaces.

3.4 Parametric approximations under additional conditions

The content of this section is based on the original contributions from paper [21]. However, Theorems
3.4.1-3.4.2 and the reasonings used to obtain these theorems are original unpublished results.
Through out this section and all that follows in this chapter, we will compute the ambiguity,

the value and the expected interval of a fuzzy number by using formulas (1.28), (1.30)-(1.33). In
particular, if B = [l; u; x; y]s;s is an extended (s; s) (for some s > 0) parametric fuzzy number with
l � u, and if we consider the reduction function S is given by S (�) = 1� (1� �)1=s ; � 2 [0; 1], then
by simple calculations (see also the proofs of Lemma 2.1.1 (i), (iii) and Proposition 2.1.9) we obtain

EI(B) = [l; u];

V alS(B) =
1

1 + s
(u+ l) +

s

(1 + s)
2
(2 + s)

(x� y) ;

AmbS(B) =
1

1 + s
(u� l)� s

(1 + s)
2
(2 + s)

(x+ y) :



32 CHAPTER 3. APPROXIMATIONS WITH SIMPLER FORM

Therefore, if A denotes a fuzzy number and Aes;s = [le; ue; xe; ye]s;s denotes the extended (s; s) para-
metric approximation of A then

EI(Aes;s) = [le; ue];

V alS(A
e
s;s) =

1

1 + s
(ue + le) +

s

(1 + s)
2
(2 + s)

(xe � ye) ;

AmbS(A
e
s;s) =

1

1 + s
(ue � le)�

s

(1 + s)
2
(2 + s)

(xe + ye) :

As we know from the previous section, when s = 1 then Aes;s coincides with the extended trapezoidal
approximation of A denoted with Te(A) and hence we obtain

EI(Te(A)) = [le; ue];

V alS(Te(A)) =
1

2
(ue + le) +

1

12
(xe � ye) ;

AmbS(A
e
s;s) =

1

2
(ue � le)�

1

12
(xe + ye) :

In many papers the �nding of the nearest parametric or trapezoidal fuzzy number to a fuzzy
number such that some parameters are preserved is based on the Karush-Kuhn-Tucker theorem (see
[13], [14], [62]), proposed to be used in this topic by Grzegorzewski and Mrówka ([62]). The method
is sophisticated, with complicated calculus, because a system with a great number of equations and
inequalities must be solved. The properties in Propositions 2.1.2 and 2.1.9 suggest us a possibility to
simplify the calculus as follows.
Let us consider the problem to �nd the nearest parametric fuzzy number (with respect to the

Euclidean metric d) to a given fuzzy number A such that the parameters Pk; k 2 f1; :::; ng are pre-
served, that is

min
B2F sL;sR (R)

d (A;B) ; (3.1)

Pk (A) = Pk (B) ; (8) k 2 f1; :::; ng :

Here any parameter PK is described as a function (defuzzi�cation operator) PK : Fe(R)! R: If the
extended (sL; sR) parametric approximation AesL;sR (see Section 2.1) of A preserves the parameters
Pk; k 2 f1; :::; ng, that is

Pk
�
AesL;sR

�
= Pk (A) ; (8) k 2 f1; :::; ng ;

then, because of (2.7), the problem (3.1) is equivalent to

min
B2F sL;sR (R)

d
�
AesL;sR ; B

�
; (3.2)

Pk
�
AesL;sR

�
= Pk (B) ; (8) k 2 f1; :::; ng :

A) Nearest parametric fuzzy number preserving the expected interval
For �xed sL > 0, sR > 0 we consider the problem

min
B2F sL;sR (R)

d (A;B) ; (3.3)

EI (A) = EI (B) ;
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where A 2 F (R) is �xed, A� = [AL (�) ; AU (�)] ; � 2 [0; 1]. We could try to solve this problem
by using the Karush-Kuhn-Tucker theorem but this method seems to be very complicated for this
particular problem. Therefore, we propose a di¤erent approach which will imply the existence and
uniqueness of the solution. Taking into account the previous discussion and Proposition 2.1.9, (3.3)
is equivalent to

min
B2F sL;sR (R)

d
�
AesL;sR ; B

�
; (3.4)

EI
�
AesL;sR

�
= EI (B) ;

where AesL;sR = [le; ue; xe; ye]sL;sR is the extended (sL; sR) parametric approximation of A. After
simple calculations (see again relations (1.27) which characterize the set of parametric fuzzy numbers
of type (sL; sR)) (3.4) becomes equivalent with (we used (1.26) to express d

�
AesL;sR ; B

�
)

min
l;u;x;y2R

�
(le � l)2 + (ue � u)2 + sL

(sL+2)(sL+1)
2 (xe � x)2 + sR

(sR+2)(sR+1)
2 (ye � y)2

�
; (3.5)

l = le; u = ue; x � 0; y � 0; l + sL
sL+1

x � u� sR
sR+1

y: (3.6)

Therefore, if (l0; u0; x0; y0) is a solution of the above problem then necessarily l0 = le, u0 = ue and
(x0; y0) is a solution of the problem

min
x;y2R

�
sL

(sL+2)(sL+1)
2 (xe � x)2 + sR

(sR+2)(sR+1)
2 (ye � y)2

�
x � 0; y � 0; sL

sL+1
x+ sR

sR+1
y � ue � le;

which is a minimization problem in R2. In what follows we prove that this later problem has (always)
a unique solution. Indeed, the problem can be written in the equivalent form

min
(x;y)2MA

�
sL

(sL+2)(sL+1)
2 (xe � x)2 + sR

(sR+2)(sR+1)
2 (ye � y)2

�
where MA = f(x; y) 2 R2 : x � 0; y � 0; sL

sL+1
x+ sR

sR+1
y � ue � leg: But since ue � le � 0 it is easily

seen that MA is non-empty. Moreover, it is easy to check that MA is a closed convex subset of R2:
Then, let us de�ne on R2 an inner product h�; �i : R2 � R2 ! R,

h(x1; y1); (x2; y2)i = sL
(sL+2)(sL+1)

2x1x2 +
sR

(sR+2)(sR+1)
2 y1y2:

This inner product generates a metric D : R2 � R2 ! R given by

D2((x1; y1); (x2; y2)) =
sL

(sL+2)(sL+1)
2 (x1 � x2)2 + sR

(sR+2)(sR+1)
2 (y1 � y2)2 :

Since the metric is of Euclidean type (is very easy to prove that D is equivalent with the Euclidean
metric on R2); we conclude that

�
R2; D

�
is a Hilbert space. Summarizing, the minimization problem

is equivalent now with
min

(x;y)2MA

D((x; y); (xe; ye));

and noting again that MA is a non-empty closed convex subset of R2; it follows by elementary convex
analysis that the problem has a unique solution (x0; y0) which is the orthogonal projection of (xe; ye)
with respect to the metric D onto the setMA: In conclusion we have the following theorem of existence
and uniqueness of the parametric approximation operator preserving the expected interval.
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Theorem 3.4.1 Let us consider arbitrarily sL > 0 and sR > 0: Then for any fuzzy number A there
exists a unique parametric (sL; sR) fuzzy number 	

sL;sR
EI (A), so that EI(A) = EI(	sL;sREI (A)) and

which satis�es the property that for any parametric (sL; sR) fuzzy number B satisfying EI(A) =
EI(B), we have d(A;	sL;sREI (A)) � d(A;B): That is, 	sL;sREI (A) is the nearest parametric (sL; sR)
fuzzy number to A with respect to the metric d which preserves the expected interval of A:

The operator 	sL;sREI : F (R)!F sL;sR(R) will be called parametric (of type (sL; sR)) approximation
operator preserving the expected interval.
B) Nearest parametric fuzzy number preserving the value and the ambiguity
We consider the problem

min
B2F s;s(R)

d (A;B) ;

V alS (A) = V alS (B) ; AmbS (A) = AmbS (B) ; (3.7)

where A 2 F (R) is �xed, A� = [AL (�) ; AU (�)] ; � 2 [0; 1] and the reducing function S is given by
S (�) = 1 � (1� �)1=s ; s > 0. Taking into account the discussion from the beginning of this section
and Proposition 2.1.9, the minimization problem is equivalent to

min
B2F s;s(R)

d
�
Aes;s; B

�
;

V alS
�
Aes;s

�
= V alS (B) ; AmbS

�
Aes;s

�
= AmbS (B) ; (3.8)

where Aes;s = [le; ue; xe; ye]s;s is the extended (s; s) parametric approximation of A. After simple
calculations, (3.8) becomes a minimization problem in R4,

min
l;u;x;y2R

�
(le � l)2 + (ue � u)2 + s

(s+2)(s+1)2

�
(xe � x)2 + (ye � y)2

��
; (3.9)

u+ l +
s

(1 + s) (2 + s)
(x� y) = ue + le +

s

(1 + s) (2 + s)
(xe � ye) ; (3.10)

u� l � s

(1 + s) (2 + s)
(x+ y) = ue � le �

s

(1 + s) (2 + s)
(xe + ye) ; (3.11)

x � 0; y � 0; l + s

s+ 1
x � u� s

s+ 1
y: (3.12)

Conditions (3.10) and (3.11) imply u � ue = s
(1+s)(2+s) (y � ye) and l � le =

s
(1+s)(2+s) (xe � x) ;

therefore if (l0; u0; x0; y0) is a solution of (3.9)-(3.12) then necessarily (x0; y0) is a solution of

min
x;y2R

�
(xe � x)2 + (ye � y)2

�
;

x � 0; y � 0; x+ y � 2 + s

s
(ue � le)�

1

1 + s
(xe + ye) ;

which is a minimization problem in R2 with respect to the Euclidean distance from R2. It is easy to
prove that the problem has a unique solution. Firstly, by some elementary calculus (see also equations
(2.1)-(2.3)) we get that

2 + s

s
(ue � le)�

1

1 + s
(xe + ye)

=
(2 + s)(1 + s)

s

1Z
0

(AU (�)�AL(�)) (1� (1� �)1=s)d� � 0 (3.13)
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and from here it easily follows that we actually have a Euclidean distance minimization problem with
respect to a non-empty closed convex set which means that the solution is the orthogonal projection of
(xe; ye) onto the non-empty closed convex set given by the inequalities from the minimization problem.
In the case s = 1 the solution of the above minimization problem supplies the nearest trapezoidal

approximation of the initial fuzzy number, which preserves its value and ambiguity. Summarizing, we
obtain the following existence and uniqueness result.

Theorem 3.4.2 Let us consider the reduction function S, S (�) = 1 � (1� �)1=s ; s > 0: Then for
any A 2 F (R) there exists a unique (s; s) parametric fuzzy number denoted with 	sAV (A), such that
AmbS(A) = AmbS(	

s
AV (A)); V alS(A) = V alS(	

s
AV (A)) and for any (s; s) parametric fuzzy number

B satisfying AmbS(A) = AmbS(B); V alS(A) = V alS(B); we have d(A;	sAV (A)) � d(A;B): That is,
	sAV (A) is the nearest parametric (s; s) fuzzy number to A with respect to the metric d which preserves
the ambiguity and the value of A with respect to the reducing function S:

The operator 	sAV : F (R)!F sL;sR(R) will be called parametric (of type (s; s)) approximation
operator preserving the value and ambiguity with respect to the reducing function S.

3.5 Trapezoidal approximations preserving the expected in-
terval

From the more general case of the parametric approximations we will deduce the minimization problem
which gives the trapezoidal approximation preserving the expected interval (see also the paper [83]).
In this section, for a fuzzy numberA we are interested in �nding a trapezoidal fuzzy number denoted

with TEI(A), with the property that if T is a trapezoidal fuzzy number satisfying EI(A) = EI(T ),
then d(A; TEI(A) � d(A; T ) where as usual, d denotes the Euclidean metric between fuzzy numbers.
By Theorem 3.4.1 taking there sL = sR = 1, we already know that the trapezoidal approximation
preserving the expected interval always exists and in addition it is unique. Hence we can de�ne the
operator TEI : F (R)!FT (R), which will be called the trapezoidal approximation operator preserving
the expected interval. Firstly, let us notice that [l; u; x; y]1;1 = [l; u; x; y] whenever the quadruple
(l; u; x; y) represents a trapezoidal fuzzy number since it is easy to check that formulas (1.23)-(1.24)
give the representation (1.12) in the particular case when sL = sR = 1: Similarly, we observe that
in this particular case the coordinates of Ae1;1 coincide with the coordinates of Te(A) for any fuzzy
number A. Recall, Te(A) is the extended trapezoidal approximation of A which can be computed
by using equations (2.4)-(2.5): Therefore, from the minimization problem which gives the parametric
approximation preserving the expected interval we easily obtain the minimization problem which gives
the trapezoidal approximation preserving the expected interval. This implies that following the steps of
the minimization problem which gives the parametric approximation preserving the expected interval,
we will obtain the minimization problem which gives the trapezoidal approximation preserving the
expected interval. Therefore, let us choose arbitrarily a fuzzy number A and let us denote with
TEI(A) = [l0; u0; x0; y0] its trapezoidal approximation preserving the expected interval. By relations
(3.5)-(3.6) (remember sL = sR = 1) it results that (l0; u0; x0; y0) solves the minimization problem

min
l;u;x;y2R

�
(le � l)2 + (ue � u)2 + 1

12 (xe � x)
2
+ 1

12 (ye � y)
2
�
;

l = le; u = ue; x � 0; y � 0; l + 1
2x � u�

1
2y:
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It is immediate that we have two out of the four components of TEI(A), l0 = le and u0 = ue: The
remaining two components are obtained as solutions of the minimization problem

min
l;u;x;y2R

(xe � x)2 + (ye � y)2 ;

x � 0; y � 0; x+ y � 2ue � 2le:

It easily results that the pair (x0; y0) is the orthogonal projection (xe; ye) onto the non-empty set MA

with respect to the Euclidean metric on R2 denoted with dE (see Fig. 3.1), where

MA = f(x; y) 2 R2 : x � 0; y � 0; x+ y � 2ue � 2leg: (3.14)

Therefore, we can write
(x0; y0) = PMA

(xe; ye): (3.15)

Fig. 3.1

We obtain an algorithm (corresponding to (i) ; (ii) ; (iii) and (iv) in Fig. 3.1) in four steps as
follows.

Theorem 3.5.1 ([83], Theorem 4.2.) Let A; A� = [AL (�) ; AU (�)]; � 2 [0; 1], be a fuzzy number, Te(A) =
[le; ue; xe; ye], be the extended trapezoidal approximation of A and TEI(A) = [l0;u0; x0; y0], be the near-
est (with respect to the metric d) trapezoidal fuzzy number to fuzzy number A preserving the expected
interval of A:
(i) If xe + ye � 2ue + 2le � 0; then

l0 = le; u0 = ue; x0 = xe; y0 = ye:

(ii) If xe � ye � 2ue + 2le � 0; then

l0 = le; u0 = ue; x0 = 2ue � 2le; y0 = 0:

(iii) If xe � ye + 2ue � 2le � 0; then

l0 = le; u0 = ue; x0 = 0; y0 = 2ue � 2le:
(iv) If

xe + ye � 2ue + 2le � 0; (3.16)

xe � ye � 2ue + 2le � 0; (3.17)

xe � ye + 2ue � 2le � 0; (3.18)
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then

l0 = le; u0 = ue; (3.19)

x0 = �le + ue +
1

2
xe �

1

2
ye; (3.20)

y0 = �le + ue �
1

2
xe +

1

2
ye: (3.21)

In the above theorem the cases are not disjoint as in the paper of Yeh because this small modi�ca-
tion by taking everywhere non-strict inequalities will help us later when we will �nd the best Lipschitz
constant of the operator TEI .
Now, using equations (1.15)-(1.16) and (2.4)-(2.5), we can obtain an equivalent theorem using the

classical representation of trapezoidal fuzzy numbers which can be found in Theorem 7 the paper [13].

3.6 Trapezoidal approximations preserving the ambiguity and
value

This section contains original contributions from the paper [17].
In this section, for a fuzzy number A we are interested in �nding a trapezoidal fuzzy number

denoted with TAV (A) with the property that if T is a trapezoidal fuzzy number satisfying V al(A) =
V al(T ) and Amb(A) = Amb(T ), then d(A; TAV (A) � d(A; T ): By Theorem 3.4.2 taking there s =
1, we already know that the trapezoidal approximation preserving the ambiguity and value always
exists and in addition it is unique. Hence we can de�ne the operator TAV : F (R)!FT (R) which
will be called the trapezoidal approximation operator preserving the ambiguity and value. Let us
choose arbitrarily a fuzzy number A and let us denote with TAV (A) = [l0; u0; x0; y0] its trapezoidal
approximation preserving the ambiguity and value. By relations (3.9)-(3.12) (remember s = 1) it
results that (l0; u0; x0; y0) solves the minimization problem

min
l;u;x;y2R

�
(le � l)2 + (ue � u)2 + 1

12

�
(xe � x)2 + (ye � y)2

��
;

u+ l +
1

6
(x� y) = ue + le +

1

6
(xe � ye) ;

u� l � 1
6
(x+ y) = ue � le �

1

6
(xe + ye) ;

x � 0; y � 0; l + 1
2
x � u� 1

2
y:

As in the case of the approximations preserving the expected interval, we easily substitute two
components of the trapezoid,

l0 = �
1

6
(x0 � xe) + le (3.22)

and
u0 =

1

6
(y0 � ye) + ue: (3.23)

Therefore, it su¢ ces to provide a minimization problem which gives (x0; y0): Substituting l and u in
the previous minimization problem, after some simple calculations we obtain that (x0; y0) solves the
minimization problem

min
�
(x� xe)2 + (y � ye)2

�
; (3.24)



38 CHAPTER 3. APPROXIMATIONS WITH SIMPLER FORM

under the conditions

x > 0; y > 0; x+ y 6 3ue � 3le �
1

2
xe �

1

2
ye:

We already know from (3.13) by taking s = 1 there, that the set MA = f(x; y) 2 R2 : x � 0; y �
0; x+ y 6 3ue� 3le� 1

2xe�
1
2yeg, is a non-empty closed convex subset of R

2 and hence (x0; y0) is the
orthogonal projection of (xe; ye) onto the set MA:

Because xe � 0 and ye � 0, the following cases (corresponding to (i) ; (ii) ; (iii) and (iv) in Fig.
3.1, where the only modi�cation is that the base of the triangle intersects the coordinates axes in
(3ue � 3le � 1

2xe �
1
2ye; 0) and (0; 3ue � 3le �

1
2xe �

1
2ye) respectively ) are possible to �nd (x0; y0),

the orthogonal projection of (xe; ye) on MA.
(i) (xe; ye) 2MA, that is xe + ye 6 3ue � 3le � 1

2xe �
1
2ye.

The inequality is equivalent with xe + ye 6 2 (ue � le) and we get PMA
(xe; ye) = (xe; ye), that is

x0 = xe; y0 = ye:

(ii) 32xe �
1
2ye � 3ue + 3le > 0.

Then PMA
(xe; ye) =

�
3ue � 3le � 1

2xe �
1
2ye; 0

�
, that is

x0 = 3ue � 3le �
1

2
xe �

1

2
ye; y0 = 0:

(iii) 12xe �
3
2ye + 3ue � 3le < 0.

Then PMA
(xe; ye) =

�
0; 3ue � 3le � 1

2xe �
1
2ye
�
, that is

x0 = 0; y0 = 3ue � 3le �
1

2
xe �

1

2
ye:

(iv) (xe; ye) is not in the cases (i)� (iii), that is

xe + ye > 2 (ue � le) ;
3

2
xe �

1

2
ye � 3ue + 3le � 0;

1

2
xe �

3

2
ye + 3ue � 3le � 0:

Then (x0; y0) is the orthogonal projection of (xe; ye) on the line x + y = 3ue � 3le � 1
2xe �

1
2ye,

that is

x0 =
3

2
ue �

3

2
le +

1

4
xe �

3

4
ye;

y0 =
3

2
ue �

3

2
le �

3

4
xe +

1

4
ye:

It is easy to verify that in the above cases we can use non-strict inequalities (it is immediate by the
geometrical interpretation in Fig. 3.1). Now, by relations (3.22)-(3.23) and by equations (1.15)-(1.16)
and (2.4)-(2.5), we easily get (see [17], Corollary 8) the algorithms by using classical representations
for trapezoidal fuzzy numbers.
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3.7 Trapezoidal approximations preserving the ambiguity

This section contains original contributions from the paper [22].
In this section we prove that for any fuzzy number A there exists a unique trapezoidal fuzzy

number TAmb(A) such that Amb(A) = Amb(TAmb(A)) and which is the nearest to A with respect
to the metric d from all the trapezoidal fuzzy numbers with the same ambiguity as A. This means
that it make sense to introduce the operator TAmb : F (R)!FT (R) which will be called from now one
trapezoidal approximation operator preserving the ambiguity. By Corollary 2.1.3 and Proposition 2.1.9
(for the particular case when s = 1) it follows that the problem to �nd the trapezoidal approximation
preserving the ambiguity of a fuzzy number A is equivalent with the problem to �nd a trapezoidal fuzzy
number TAmb(A) such that Amb(TAmb(A)) = Amb(Te(A)) and d(TAmb(A); Te(A)) � d(T; Te(A)) for
all T 2 FT (R) satisfying Amb(T ) = Amb(Te(A)): Therefore, TAmb(A) = [l0; u0; x0; y0]; is a solution of
the discussed problem if and only if the quadruple (l0; u0; x0; y0) 2 R4 is a solution of the minimization
problem

min

�
(l � le)2 + (u� ue)2 +

1

12
(x� xe)2 +

1

12
(y � ye)2

�
; (3.25)

under the conditions

x � 0; y � 0; x+ y � 2(u� l); (3.26)

6u� 6l � x� y = 6ue � 6le � xe � ye: (3.27)

Condition (3.27) implies

u� l = ue � le +
1

6
(x+ y)� 1

6
(xe + ye)

and
l � le = u� ue �

1

6
(x� xe)�

1

6
(y � ye) ; (3.28)

therefore problem (3.25)-(3.27) becomes

minF (l; u; x; y) ;

where

F (l; u; x; y) = 2(u� ue)2 +
1

9
(x� xe)2 +

1

9
(y � ye)2 �

1

3
(u� ue) (x� xe)

�1
3
(u� ue) (y � ye) +

1

18
(x� xe) (y � ye)

under the conditions
x � 0; y � 0; 2x+ 2y � 6ue � 6le � xe � ye: (3.29)

After elementary calculus we get

F (l; u; x; y) = 2

�
u� ue �

1

12
(x� xe + y � ye)

�2
+
7

72

�
(x� xe)2 + (y � ye)2

�
+
1

36
(x� xe) (y � ye) :

Because conditions (3.29) are independent of u and taking into account (3.28), TAmb(A) = [l0; u0; x0; y0]
is the trapezoidal approximation of A preserving the ambiguity if and only if

u0 = ue +
1

12
(x0 � xe + y0 � ye) ; (3.30)

l0 = le �
1

12
(x0 � xe + y0 � ye) (3.31)
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and (x0; y0) is the solution of the minimization problem

min
�
(7(x� xe)2 + 7(y � ye)2 + 2(x� xe)(y � ye)

�
; (3.32)

x � 0; y � 0; 2x+ 2y � 6ue � 6le � xe � ye: (3.33)

Let us denote

MA = f(x; y) 2 R2 : x � 0; y � 0; 2x+ 2y � 6ue � 6le � xe � yeg (3.34)

and dE the Euclidean metric on R2.
The key element in the proof of the next coming theorem which solves the problem from above is

the setMA which is the surface of the triangle given by the points (0; 0), (3ue�3le�1=2xe�1=2ye; 0)
and (0; 3ue � 3le � 1=2xe � 1=2ye) (see again Fig. 3.1 where the only modi�cation is that the base
of the triangle intersects the coordinates axes in (3ue � 3le � 1

2xe �
1
2ye; 0) and (0; 3ue � 3le �

1
2xe �

1
2ye) respectively ). The key result in the obtaining of the algorithms to compute the trapezoidal
approximation preserving the ambiguity is the following.

Theorem 3.7.1 ([22], Theorem 9) The problem (3.32)-(3.33) has a unique solution (x0; y0), where
(x0; y0) = PMA

(xe; ye) and PM (a; b) denotes the orthogonal projection of (a; b) 2 R2 onto the non-
empty set M � R2, with respect to the Euclidean metric dE on R2.

Theorem 3.7.1, together (3.30) and (3.31), suggest us the following method to compute TAmb(A) =
[l0; u0; x0; y0], the nearest trapezoidal fuzzy number of a fuzzy number A preserving the ambiguity
(see Fig. 3.1 taking into account the previously mentioned modi�cation).
(i) (xe; ye) 2MA, that is �2le + 2ue � xe � ye � 0: Then

x0 = xe; y0 = ye; l0 = le; u0 = ue:

If (xe; ye) =2MA then the following cases are possible.
(ii) If 6le � 6ue + 3xe � ye � 0; then

x0 = �3le + 3ue �
1

2
xe �

1

2
ye; y0 = 0; (3.35)

u0 = �1
4
le +

5

4
ue �

1

8
xe �

1

8
ye; (3.36)

l0 =
5

4
le �

1

4
ue +

1

8
xe +

1

8
ye: (3.37)

(iii) If �6le + 6ue + xe � 3ye � 0; then

x0 = 0; y0 = �3le + 3ue �
1

2
xe �

1

2
ye;

u0 = �1
4
le +

5

4
ue �

1

8
xe �

1

8
ye;

l0 =
5

4
le �

1

4
ue +

1

8
xe +

1

8
ye:

(iv) If

�2le + 2ue � xe � ye � 0;

6le � 6ue + 3xe � ye � 0;

�6le + 6ue + xe � 3ye � 0;
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then

x0 = �3
2
le +

3

2
ue +

1

4
xe �

3

4
ye;

y0 = �3
2
le +

3

2
ue �

3

4
xe +

1

4
ye;

u0 = �1
4
le +

5

4
ue �

1

8
xe �

1

8
ye;

l0 =
5

4
le �

1

4
ue +

1

8
xe +

1

8
ye:

Taking into account (1.15)-(1.16) and (2.4)-(2.5), as in the case of the previous approximation
operators, we can easily compute TAmb(A) = (t1; t2; t3; t4) using standard notations.

3.8 Trapezoidal approximations preserving the weighted ex-
pected interval

This section contains original contributions from the paper [28].
In the last sections we discussed di¤erent kinds of trapezoidal approximations with respect to the

Euclidean metric d. In this section we will prove that for a given fuzzy number A there exists a unique
trapezoidal fuzzy number which is the nearest to A with respect to a weighted metric d�; � = (�L; �U ),
from those that preserve the weighted expected interval of A, denoted with TEI;�(A). Recall, the
weighted expected interval of a fuzzy number A is given by (see De�nition 1.12.1)

EI�(A) =

241
a

1Z
0

AL(�)�L(�)d�;
1

b

1Z
0

AU (�)�U (�)d�

35 ;
where a =

1Z
0

�L(�)d�; b =

1Z
0

�U (�)d�:

If Te;�(A) = [le; ue; xe; ye]� (we use the representation given in (1.21)) is the weighted extended
trapezoidal approximation of A where le; ue; xe; ye are given by (2.9)-(2.10) (see also formulas (1.18)-
(1.20) ) then after some simple calculations we get EIw(A) = EIw(Te;�(A)) = [le; ue]:
Now taking into account Theorem 2.1.6 and the above equality, the problem of �nding the nearest

(with respect to metric d�) trapezoidal fuzzy number TEI;�(A) = [l0; u0; x0; y0] to a given fuzzy number
A such that EIw (A) = EIw (TEI;�(A)) is equivalent to the minimization problem

min d� (Te;� (A) ; [l; u; x; y]) ;

under conditions

EIw(Te(A)) = EI
w ([l; u; x; y]) ;

x � 0; y � 0; x+ y � 2 (u� l) :

After some simple calculations the above problem becomes

a

�
le � l � x

�
!L �

1

2

��2
+ b

�
ue � u+ y

�
!U �

1

2

��2
+ c (xe � x)2 + d(ye � y)2 ! min;
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under conditions

le = l + x

�
!L �

1

2

�
; ue = u� y

�
!U �

1

2

�
;

x � 0; y � 0; x+ y � 2 (u� l) :

This problem is equivalent to

c (xe � x)2 + d (ye � y)2 ! min;

x � 0; y � 0; x (1� !L) + y (1� !U ) � ue � le (3.38)

and

l = le � x
�
!L �

1

2

�
; u = ue + y

�
!U �

1

2

�
: (3.39)

Problem (3.38) has a unique solution. Indeed, let us de�ne an inner product (it is important here
that c > 0 and d > 0 ) h�; �i in R2, by h(x1; y1) ; (x2; y2)i = cx1x2 + dy1y2: If (x1; y1) ; (x2; y2) 2 R2
then

D2 ((x1; y1) ; (x2; y2)) = h(x1 � x2; y1 � y2) ; (x1 � x2; y1 � y2)i = c (x1 � x2)2 + d (y1 � y2)2 ;

introduces a distance in R2, therefore
�
R2; h�; �i

�
is a Hilbert space. Let us consider now the set


 =
�
(x; y) 2 R2 : x � 0; y � 0; x (1� !L) + y (1� !U ) � ue � le

	
:

Since 
 is a non-empty closed convex subset of R2, it follows that (3.38) has a unique solution, which
is the projection of (xe; ye) 2 R2 onto 
 under D. We immediately obtain the following main result
of this section which can also be found in paper [28], although not as a theorem.

Theorem 3.8.1 For any fuzzy number A there exists a unique trapezoidal fuzzy number TEI;�(A),
which is the nearest to A with respect to metric d�, from those that preserve the weighted expected
interval of A.

3.9 Weighted trapezoidal approximations preserving-cores of
fuzzy numbers

The core of a fuzzy number is perhaps the most important characteristic of a fuzzy number. All
the basic algebraic operations between fuzzy numbers are usual arithmetic operations when they are
performed on the core. Therefore, it is a good idea to �nd simpler representations for fuzzy numbers
with the additional condition of the core preservation. The following algorithm to �nd the weighted
trapezoidal approximation of a fuzzy number with the additional requirement of core preservation was
proposed in the paper [6]. In that paper the authors considered weight functions like f : [0; 1] ! R

where f is positive, nondecreasing and in addition

1Z
0

f(�)d� = 1=2. However, the proofs of the main

results in [6] do not use these supplementary assumptions and therefore, in this section we consider
arbitrary weight functions that need only to be strictly positive on (0; 1) and integrable on [0; 1].
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Theorem 3.9.1 ([6], formulas (3.15)) Let A;A� = [AL (�) ; AU (�)] ; � 2 [0; 1] ; be a fuzzy number
and

Tc;df;f (A) = (t1 (A) ; t2 (A) ; t3 (A) ; t4 (A)) = (t1; t2; t3; t4) ;

be the nearest (with respect to metric df;f where df;f means the weighted L2-metric d�, with � = (f; f))
trapezoidal fuzzy number to fuzzy number A which preserves the core. Then

t1 =

�
1Z
0

(�� 1)AL(�)f(�)d�+AL(1)
1Z
0

�(�� 1)f(�)d�

1Z
0

(�� 1)2f(�)d�

;

t2 = AL(1); t3 = AU (1); (3.40)

t4 =

�
1Z
0

(�� 1)AU (�)f(�)d�+AU (1)
1Z
0

�(�� 1)f(�)d�

1Z
0

(�� 1)2f(�)d�

:

When f(�) = 1 for all � 2 [0; 1], then we get the algorithm to compute the trapezoidal approxi-
mation operator (with respect to the Euclidean metric d) preserving the core.

Corollary 3.9.2 ([6], formulas (3.17)) Let A;A� = [AL (�) ; AU (�)] ; � 2 [0; 1] ; be a fuzzy number
and

Tc;d (A) = (t1 (A) ; t2 (A) ; t3 (A) ; t4 (A)) = (t1; t2; t3; t4) ;

be the nearest (with respect to the Euclidean metric d) trapezoidal fuzzy number to fuzzy number A
which preserves the core. Then

t1 = �3
Z 1

0

(�� 1)AL(�)d��
1

2
AL(1);

t2 = AL(1); t3 = AU (1); (3.41)

t4 = �3
Z 1

0

(�� 1)AU (�)d��
1

2
AU (1):

We observe that comparing with the operators from the previous sections, the algorithm consists
in a precise formula. In addition, by simple calculations one can prove that Tc;df;f is linear with
respect to the addition and scalar multiplication of fuzzy numbers. That is, for any weight function f
we have Tc;df;f (�1A+ �2B) = �1Tc;df;f (A) + �2Tc;df;f (B), for all �1; �2 2 R and A;B 2 F (R). On
the other hand (see Section 4.7 in the next chapter), these operators are discontinuous in any fuzzy
number which is not unimodal. Clearly, this is an unnatural behavior since one would expect that an
approximation operator is continuous. If fuzzy numbers A and B are close one to another then their
approximations should be also close one to another.
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3.10 Calculus of trapezoidal approximations

Having in mind the algorithms from the previous sections we can easily compute di¤erent kinds of
trapezoidal approximations. In what follows we present some simple examples. We start with the
operator TEI mentioning that all the examples are taken from [13].

Example 3.10.1 Let us consider fuzzy number A given by AL(�) = 2��2; AU (�) = 1�
p
�; � 2 [0; 1]:

We observe that case (iv) in Theorem 3.5.1 is suitable to be applied to A: Applying the algorithm
and then passing to standard notations we get TEI(A) =

�
� 59
30 ;�

1
30 ;�

1
30 ;

7
10

�
: Now let us consider

the Bodjanova type fuzzy numbers B = (1; 2; 3; 30)2 and C = (1; 28; 29; 30)2 (see (1.4) to recall the
representation of Bodjanova type fuzzy numbers). By simple veri�cations we observe that case (iii)
in Theorem 3.5.1 is suitable to be applied to B and case (ii) in Theorem 3.5.1 is suitable to be applied
to C. Therefore, applying the algorithm we get TEI(B) =

�
5
3 ;

5
3 ;

5
3 ;

67
3

�
and TEI(C) =

�
26
3 ;

88
3 ;

88
3 ;

88
3

�
.

We continue with the operator TAV with some examples taken from [17].

Example 3.10.2 Let us consider fuzzy numbers A and B given by AL(�) = 2� � 2; AU (�) = 1 �p
�; � 2 [0; 1]; and BL(�) = 2��20; BU (�) = 1�

p
�; � 2 [0; 1]: Case (iv) of the algorithm to compute

TAV (A) is applicable for A and case (i) of the algorithm to compute TAV (B) is applicable for B. Thus,
applying the algorithm we get TAV (A) =

�
� 29
30 ;�

1
30 ;�

1
30 ;

2
3

�
and TAV (B) =

�
�20;�18;� 1

15 ;
11
15

�
:

Next, we propose some examples for the operator TAmb which are taken from [22].

Example 3.10.3 We consider fuzzy numbers A and B, A = (1; 2; 3; 4)2, B = (1; 2; 4; 35)2: Case (i)
of the algorithm to compute TAmb(A) is applicable for A and we obtain TAmb(A) =

�
19
15 ;

31
15 ;

44
15 ;

56
15

�
:

Then, case (iv) of the algorithm to compute TAmb(B) is applicable for B and we obtain TAmb(B) =�
7
5 ; 2; 2;

133
5

�
:



Chapter 4

Properties of fuzzy approximation
operators

The quality of a trapezoidal, triangular or parametric approximation operator is important neverthe-
less. For this reason, Grzegorzewski and Mrówka ([62]) proposed a list of criteria that a trapezoidal
approximation operator should posses. Most of these approximation operators own important proper-
ties such as: translation invariance, scale invariance, or identity criterion. Another important property
that an approximation operator should posses is the continuity. One would expect that if fuzzy num-
ber A is close to fuzzy number B then theirs approximations are also close one to another. Yeh ([82],
[84], [85]) proved that the approximation operators without additional conditions are nonexpansives.
Ban and Coroianu ([18]) proved that the trapezoidal approximation operator preserving the expected
interval satis�es the Lipschitz condition. Then, Coroianu ([40]) found the best Lipschitz constant of
the discussed operator. Recently, in the paper ([17]) it was proved that the trapezoidal approximation
operator preserving the value and ambiguity satis�es the Lipschitz condition but the best Lipschitz
constant was not provided because the method presented in paper [40] was not feasible for the case of
the trapezoidal approximation operator preserving the value and ambiguity. For this reason, Coroianu
proposed in the paper [41] a characterization of fuzzy number-valued functions which can be used to
prove that such functions satisfy the Lipschitz condition and as an application the best Lipschitz
constant of the trapezoidal approximation operator preserving the value and ambiguity was �nally
determined.
In the �rst sections of this chapter we will provide some quantitative results on the translation and

scale invariance of fuzzy approximation operators. As a consequence, we will obtain that most of the
operators from the previous chapter are both scale and translation invariant. Then we will discuss
about the continuity of these operators. As we have already said, we will determine the best Lipschitz
constant in the case of the trapezoidal approximation operator preserving the expected interval and
in the case of the trapezoidal approximation preserving the value and ambiguity. As a negative result,
we will prove that any trapezoidal fuzzy number-valued operator preserving the core is discontinuous
at any fuzzy number which is not unimodal with respect to any weighted L2- type distance. As
a direct consequence, we obtain that the trapezoidal approximation operator preserving the core is
discontinuous at any fuzzy number which is not unimodal. Interestingly, when we restrict ourselves
to the set of unimodal fuzzy numbers then the trapezoidal approximation operator preserving the
core is continuous on this subset. Thus, we get a complete characterization of the continuity of the
trapezoidal approximation operator preserving the core. In the last but one section, since most of the

45
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approximation operators (with the exception of the trapezoidal approximation operator preserving
the core) are not additive (we will also provide a general results implying the non-additivity), we will
�nd estimations for the defect of additivity (according to the de�nition in [29]) of the trapezoidal ap-
proximation operator preserving the expected interval and for the trapezoidal approximation operator
preserving the value and ambiguity. In the case of the �rst operator, we even �nd the best possible
estimation. In the last section of this chapter we discuss about trapezoidal approximation in relation
with aggregation another important topic in the present days.
This chapter contains original contributions from the papers [17]-[19], [21]-[24], [26], [28], [40]-[41].

4.1 General results on scale and translation invariance

This section contains original contributions from the paper [26]. However, Theorem 4.1.1 is more
general comparing to the result from [26].
An operator P : F (R)!F (R) is called:

(i) invariant to translations if P (A+ z) = P (A) + z for any A 2 F (R) and z 2 R;
(ii) scale invariant if P (�A) = �P (A) for any A 2 F (R) and � 2 R.

A distance D on F (R) is translation invariant if D (A+ z;B + z) = D (A;B) ; for every A;B 2
F (R) ; z 2 R and scale invariant if D (� �A; � �B) = j�jD (A;B) ; for every A;B 2 F (R) ; � 2 Rrf0g :
One can easily check that any weighted L2-type metric d� = (�L; �U ), de�ned on F (R) is trans-

lation invariant and in the case when �L = �U , we get that d� is also scale invariant.
The following two theorems will permit us to �nd large classes of translation or scale invariant

operators. The �rst one is a generalization of Theorem 1 in [26].

Theorem 4.1.1 (see also Theorem1 in [26]) Let D be a translation invariant distance on F (R) and
Pk; k = 1; n, be parameters associated with fuzzy numbers such that Pk (A+ z) = Pk (A) + fk(z); for
every A 2 F (R), k = 1; n and z 2 R, where, fk, k = 1; n, are real functions of real variable. If

 � F (R) satis�es z+
 = 
;8z 2 R and ! (A) 2 
 is the nearest fuzzy number to a given A 2 F (R)
(with respect to D) which preserves Pk; k 2 f1; :::; ng, that is Pk (! (A)) = Pk (A) ;8k 2 f1; :::; ng ; then
! (A) + z 2 
 is the nearest fuzzy number to A+ z (with respect to D) which preserves Pk; k = 1; n,
that is Pk (!(A) + z) = Pk (A+ z) ;8k 2 f1; :::; ng :

Note that in Theorem 1 in [26] only the particular case when each fk is either the null function or
the identity function respectively was considered.

Theorem 4.1.2 ([26], Theorem 4 ) Let D be a scale invariant distance on F (R) and Pk; k = 1; n
real parameters or intervals associated to fuzzy numbers such that Pk (� �A) = �Pk (A) ; for every
A 2 F (R) and � 2 R or Pk (� �A) = j�jPk (A), for every A 2 F (R) and � 2 R. If 
 � F (R) ; � �
 �

;8� 2 R and ! (A) 2 
 is the nearest fuzzy number to a given A 2 F (R) (with respect to D)
which preserves Pk; k = 1; n, that is Pk (! (A)) = Pk (A) ;8k 2 f1; :::; ng ; then � � ! (A) 2 
 is
the nearest fuzzy number to � � A (with respect to D) which preserves Pk; k 2 f1; :::; ng, that is
Pk (! (� �A)) = Pk (� �A) ;8k 2 f1; :::; ng :

Remark 4.1.3 Note that the assumption ��
 � 
;8� 2 R in Theorem 4.1.2 as well as the assumption
z+
 = 
;8z 2 R in Theorem 4.1.1 are important. Indeed, if sL; sR > 0; sL 6= sR and 
 = F sL;sR(R),
then � �
  
 for � < 0. The operator ! : F (R)! 
, where ! (A) is the best approximation of fuzzy
number A relatively to the set 
 with respect to the Euclidean distance d, is not scale invariant (see
[14], Theorem 12, (iii)) even if all the other hypotheses in Theorem 4.1.2 are satis�ed.
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4.2 Classes of scale/translation invariant operators

This section contains original contributions from the paper [26].
The two theorems from the previous section are quite general since they allow us to �nd many

examples of scale or translation invariant operators. These examples include almost all the operators
from Chapter 3 and in addition we can �nd examples of other operators too, which were not highlighted
in this thesis.
The following corollaries are immediate consequences of Theorems 4.1.1-4.1.2.

Corollary 4.2.1 ([26], Corollary 8) (i) The operator ORc : F (R)! Rc, where ORc (A) is the nearest
crisp value to A with respect to Euclidean distance d, is scale and translation invariant.
(ii) The operator OI : F (R) ! Int(R), where OI (A) is the nearest interval to A with respect to

distance d, is scale and translation invariant.
(iii) The operator O4 : F (R) ! F�(R), where O4 (A) is the nearest triangular fuzzy number to

A with respect to distance d, is scale and translation invariant.
(iv) The operator Td : F (R)! FT (R), where Td (A) is the nearest trapezoidal fuzzy number to A

with respect to distance d, is scale and translation invariant.
(v) The operator 	s;s : F (R) ! F s;s(R), where 	s;s (A) is the nearest parametric (s; s)-fuzzy

number to A (for some s > 0) with respect to distance d, is scale and translation invariant.
(vi) The operator O4s : F (R) ! F�s(R), where O4s (A) is the nearest symmetric triangular

fuzzy number to A with respect to distance d, is scale and translation invariant.

Similarly we can �nd many example of fuzzy approximation operators which are translation and
scale invariant (see also Corollary 9 in [26]). In addition it is easy to prove that the operators TEI ,
TAV and TAmb from Chapter 3, they all satisfy the hypothesis of Theorems 4.1.1-4.1.2 and therefore
they are translation and scale invariant.

4.3 Lipschitz continuity of parametric approximation opera-
tors without additional conditions

This section contains an original approach which leads in a more simple way to some conclusions
regarding the continuity of parametric or trapezoidal approximation operators which can be found in
the papers [21], [82], [84]. Before we start our reasoning we need the following auxiliary result which
is known from Hilbert space theory. Recall, if A is a closed convex subset of a Hilbert space (X; h�; �i)
then for some x 2 X we denote with PA(x) the unique element in A which satis�es D(x; PA(x)) =
inf
y2A

D(x; y) and D is the metric generated by h�; �i on X.

Theorem 4.3.1 ( see e. g. [82] Fact 6.4) If (X; h�; �i) is a Hilbert space and A is a non-empty closed
convex subset of X, then d(PA(x); PA(y)) � d(x; y); (8) x; y 2 X: Here d denotes the metric generated
by the inner product h�; �i :

Let us consider the weighted metric d�, � = (�L; �U ) and for �xed sL > 0 and sR > 0 let us consider
the weighted parametric approximation operator (see Section 3.3) 	d�;sL;sR : F (R)!F sL;sR(R),
where 	d�;sL;sR(A) = A

�
sL;sR is the nearest parametric fuzzy number of type (sL; sR) to A with respect

to the metric d�: By the proof of Corollary 3.2.6, we know that (F (R); d�;+; �) can be embedded in
a Hilbert space

�
]F (R);fd�;�;��, where ]F (R) = L�L2 [0; 1] � L

�U
2 [0; 1]. Then, by Theorem 3.2.3 it
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results that F sL;sR(R) is a closed convex subset of ]F (R) in the topology generated by fd�: Now, if
A and B denote two fuzzy numbers, as they can be viewed as elements of ]F (R), then by Theorem
4.3.1 we get that fd� �PF sL;sR (R)(A); PF sL;sR (R)(B)

�
� fd�(A;B): Since the restriction of fd� to the

space F (R) coincides with d� and since by the de�nition of the operator 	d�;sL;sR , we actually have
	d�;sL;sR(A) = PF sL;sR (R)(A) and 	d�;sL;sR(B) = PF sL;sR (R)(B), it easily follows from the above
relation that d�(	d�;sL;sR(A);	d�;sL;sR(B)) � d�(A;B): Consequently, we obtain the following result
which can be also found in the paper [84].

Theorem 4.3.2 The parametric approximation operator 	d�;sL;sR : F (R)!F sL;sR(R) is nonexpan-
sive, that is d�(	d�;sL;sR(A);	d�;sL;sR(B)) � d�(A;B); for all A;B 2 F (R).

The above theorem says that the operator 	d�;sL;sR is Lipschitz continuous with Lipschitz constant
1. It is immediate that this is the best possible Lipschitz constant since for any A 2 F sL;sR(R) we
have 	d�;sL;sR(A) = A.
From Theorem 4.3.2 we can easily obtain similar results for all the other approximation operators

without additional conditions. By similar reasonings we obtain the following even stronger results.

Theorem 4.3.3 For the parametric approximation operator 	sL;sR : F (R)!F sL;sR(R), it holds that
d(	sL;sR(A);	sL;sR(B)) � d(AesL;sR ; B

e
sL;sR) � d(A;B), for all fuzzy numbers A;B. Here AesL;sR

denotes the extended (sL; sR) parametric approximation of A (see Section 2.1).

In the particular case when sL = sR = 1, we obtain the following corollary which can also be
collected from the paper [82].

Corollary 4.3.4 Let us consider the trapezoidal approximation operator Td : F (R)!FT (R), where
recall, Td(A) denotes the nearest trapezoidal fuzzy number to A with respect to the Euclidean metric
d: Then for any arbitrary fuzzy numbers A and B it holds that d(Td(A); Td(B)) � d(Te(A); Te(B)) �
d(A;B): Here (see again Section 2.1) Te(A) denotes the extended trapezoidal approximations of A.

It is easy to prove that in Theorem 4.3.3 and in particular in Corollary 4.3.4, we have the best
possible Lipschitz constants, since for any sL > 0 and sR > 0 and for any A 2 F sL;sR(R) we have
	sL;sR(A) = A.

4.4 Best Lipschitz constant of the trapezoidal approximation
operator preserving the expected interval

This section contains original contributions from the paper [40].
In the case of the trapezoidal approximation operator (with respect to the Euclidean metric d )

preserving the expected interval, TEI : F (R)!FT (R), we will prove in this section that this operator
is Lipschitz continuous too, but comparing with the approximation operators without additional
conditions from the previous section, we will see that TEI is not nonexpansive and this also holds
for most of the approximation operators with additional requirements as for example the operator
TAV from the next coming section. However, we will �nd the best possible Lipschitz constant of
the operator TEI (and of the operator TAV in the next coming section). The fact that the operator
TEI is not nonexpansive has a quite simple explanation. Let us take in discussion the parametric
approximation operator (in the most general case) 	d�;sL;sR : In the previous section we proved that

actually this operator is a projector onto a closed convex subset of the Hilbert space
�
]F (R);fd�;�;��



4.4. BEST LIPSCHITZ CONSTANT OF THE OPERATOR TEI 49

and it is well known that such projectors are actually nonexpansive functions. But in the case of the
operator TEI , it is immediate by its de�nition that TEI(A) is the projection of A onto a "moving"
closed convex subset 
(A) � FT (R), where 
(A) = fT 2 FT (R) : EI(A) = EI(T )g: It is very easy
to check that we can always �nd two fuzzy numbers A and B so that 
(A) 6= 
(B): This is the main
reason why the operator TEI is not nonexpansive. The Lipschitz continuity of the operator TEI was
proved for the �rst time in the paper [18]. The best Lipschitz constant of the operator TEI is given
in the following main result of this section.

Theorem 4.4.1 ([40], Theorem 7) The nearest trapezoidal approximation operator preserving the

expected interval TEI : F (R)!FT (R), satis�es the inequality d(TEI(A); TEI(B)) �
q

5
3d(A;B); for

all A;B 2 F ( R):

To prove that the result from Theorem 4.4.1 cannot be improved, we need to �nd A;B 2 F (R)
such that d(A;B) > 0 and d(TEI(A); TEI(B)) =

q
5
3d(A;B): In the following example we prove that

there are fuzzy numbers such that this equality holds.

Example 4.4.2 ([40], Example 1) Let us consider the fuzzy numbers A and B given by AL(�) =
90
p
� + 1; AU (�) = 93 and BL(�) = 90

p
�; BU (�) = 94; � 2 [0; 1]: Since the case (ii) in Theorem

3.5.1 is suitable to be applied to fuzzy numbers A and B, we obtain (with standard notations accord-
ing to the algorithm in Theorem 3.5.1 ) TEI(A) = (29; 93; 93; 93); TEI(B) = (26; 94; 94; 94): Then,

d2(TEI(A); TEI(B)) =
10
3 : Because d

2(A;B) = 2, it follows that d(TEI(A); TEI(B)) =
q

5
3d(A;B).

Example 4.4.3 ([40], Example 3) Let us consider fuzzy number A; AL(�) = e�
2

; AU (�) = 4 � �;
� 2 [0; 1]:We will determine TEI(A) with an error less than 10�2 with respect to the Euclidean distance
d: For this purpose, let us consider the sequence of fuzzy numbers (An)n�1; AnL(�) = 1+�

2+ �4

2! +
�6

3! +

:::+�2n

n! ; AnU (�) = 4��: From the Taylor formula we have e
� = 1+�+�2

2! +
�3

3! +:::+
�n

n! +

�Z
0

(��t)n
n! etdt,

for any � 2 [0; 1]: Then

d2(An; A) =

1Z
0

�
e�

2

�
�
1 + �2 +

�4

2!
+
�6

3!
+ :::+

�2n

n!

��2
d� =

1Z
0

0B@ �2Z
0

(�2 � t)n
n!

etdt

1CA
2

d�:

By the mean value theorem there exists cn 2 (0; 1) such that

d2(An; A) = e2cn
1Z
0

0B@ �2Z
0

(�2 � t)n
n!

dt

1CA
2

d� =
e2cn

((n+ 1)!)2

1Z
0

�4n+4d�

=
e2cn

((n+ 1)!)2(4n+ 5)
� e2

((n+ 1)!)2(4n+ 5)
:

By Theorem 4.4.1 it follows that d2(TEI(An); TEI(A)) � 5e2

3((n+1)!)2(4n+5) : It is obvious that for n � 4
we have d(TEI(An); TEI(A)) � 10�2: For n = 4, the case (i) in Theorem 3.5.1 is applicable to
compute the nearest trapezoidal fuzzy number to fuzzy number A4 preserving the expected interval,
therefore TEI(A4) =

�
527
756 ;

2104
945 ; 3; 4

�
: Hence we obtained an approximation of TEI(A) with an error

less then 10�2:
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4.5 Best Lipschitz constant of the trapezoidal approximation
operator preserving the value and ambiguity

This section contains original contributions from the paper [41].
In this section we will determine the best Lipschitz constant of the operator TAV introduced in

Section 3.6.

Theorem 4.5.1 ([41], Theorem 11) If TAV : F (R)!FT (R) is the trapezoidal approximation operator
which preserves the value and the ambiguity then d(TAV (A); TAV (B)) �

q
10+2

p
10

3 d(A;B); for all

A;B 2 F (R) and the value
q

10+2
p
10

3 is the best possible Lipschitz constant of the operator TAV :

The proof of the above theorem is based on the fact that the space of fuzzy numbers is covered by
a �nite family of closed convex sets (we mean convexity as according to De�nition 2.3.1) Then it is
proved that TAV is Lipschitz continuous on each set of the covering, which by Theorem 2.4.2 implies
that TAV is Lipschitz continuous on the whole domain. Finally, by using a concrete example it is
proved that the Lipschitz constant obtained in the proof is actually the best possible one.
In the �nal part of this section we will apply the estimation obtained in Theorem 4.5.1 to calcu-

late the trapezoidal approximation of a fuzzy number preserving the value and ambiguity within a
reasonable error in the case when the direct algorithm is not applicable. We will consider the same
example as in the case of the trapezoidal approximation operator preserving the expected interval (see
Example 4.4.3 ).

Example 4.5.2 ([41], Example 14) Let us consider the fuzzy number A; AL(�) = e�
2

; AU (�) = 4��,
� 2 [0; 1]: We will determine TAV (A) with an error less than 10�2 with respect to the Euclidean
metric d: For this purpose let us consider the same sequence of fuzzy numbers as in Example 4.4.3,
(An)n�1, (An)L(�) = 1 + �2 + �4=2! + �6=3! + ::: + �2n=n!, AU (�) = 4 � �, � 2 [0; 1]: Following
the same root as in the case of the trapezoidal approximation operator preserving the expected interval
(see Example 4.4.3) we get that d2(An; A) � e2

((n+1)!)2(4n+5)
; n � 1: Applying Theorem 4.5.1 we obtain

d2(TAV (An); TAV (A)) � 10+2
p
10

3 � e2

((n+1)!)2(4n+5)
: Obviously, for n � 5 we have d(TAV (An); TAV (A)) �

10�2: For n = 5, case (i) of the algorithm to compute TAV (A5) is applicable, therefore TAV (A5) =
(0:69595; 2:2291; 3; 4) and we thus obtained an approximation of TAV (A) with an error less than 10�2:

4.6 Lipschitz continuity of the trapezoidal approximation op-
erator preserving the ambiguity

This section contains original contributions from the paper [22]. We mention that in Theorem 4.6.1
we obtain a better constant comparing with that from paper [22]. The approach is the same as in
the case of the operator TAV . However, the �nding of the best possible Lipschitz constant remains an
open question.

Theorem 4.6.1 The nearest trapezoidal approximation operator preserving the ambiguity TAmb :
F (R)!FT (R) satis�es the inequality d(TAmb(A); TAmb(B)) �

p
6d(A;B); for all A;B 2 F ( R):
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4.7 On the continuity of trapezoidal fuzzy number-valued op-
erators preserving the core

This section contains original contributions from the papers [19] and [24].
Perhaps one of the most important characteristics of a fuzzy number is the 1-cut level set (the core).

Therefore, when it comes to simplify on the representation of a fuzzy number by using for example
trapezoidal fuzzy numbers, the trapezoidal approximation preserving the core would count as an
important one. However, we will see in this section that this approximation process has important
points of discontinuity and hence, it is questionable if such operators are e¤ective in any practical
application. For the main results of this section we will use Lemmas 2.2.1-2.2.2. The following
results are taken from the paper [19] with the only di¤erence that here the weights �L and �U of the
weighted metric d� = (�L; �U ) are considered bounded and not necessarily nondecreasing as in the
before mentioned paper.

Theorem 4.7.1 ([19], Theorem 4) Let T : F (R)!FT (R) be a trapezoidal fuzzy number-valued op-
erator preserving core, that is core (A) = core (T (A)), for every A 2 F (R). If A 2 F (R); A� =
[AL(�); AU (�)]; � 2 [0; 1]; satis�es AL(1) < AU (1) (that is A is not unimodal); then T is discontinu-
ous in A with respect to any weighted metric d�, � = (�L; �U ):

Since the weighted trapezoidal approximation operator preserving the core Tc;df;f (for some bounded
weight function f) given in Theorem 3.9.1 is included in the class of operators considered in the pre-
vious theorem, we easily get the following corollary.

Theorem 4.7.2 ([19], Theorem 6) Tc;df;f : F (R)!FT (R) is discontinuous in any fuzzy number A
satisfying AL(1) < AU (1), with respect to any weighted metric d�.

Interestingly, for a sequence of fuzzy numbers with uniformly convergent sides, we get the following
convergence result.

Theorem 4.7.3 ([19], Theorem 8) If A;A� = [AL (�) ; AU (�)] ; � 2 [0; 1], is a fuzzy number and
(An)n2N is a sequence of fuzzy numbers such that ((An)L)n2N and ((An)U )n2N are uniformly conver-
gent sequences to AL and AU , respectively, then lim

n!1
Tc;df;f (An) = Tc;df;f (A); with respect to any

weighted metric d�, � = (�L; �U ):

Using the above theorem we can compute trapezoidal approximations preserving the core in the
case when the direct algorithm is not applicable (see Example 9 in [19]).
All that follows in this section is taken from paper [24] where a more general problem is discussed,

more exactly the authors study the properties of trapezoidal fuzzy number-valued operators preserving
a given ��cut, � 2 [0; 1]. However, in this section we discuss only the case when � = 1 because this
case corresponds to our interest on investigating trapezoidal fuzzy number-valued operators preserving
the core.
So far, for a weighted trapezoidal approximation operator preserving the core Tc;df;f , we know that

the set of discontinuities contains the set of all fuzzy numbers which are not unimodal (also known as
fuzzy intervals). Interestingly, in the case when the weight function f is nondecreasing, we will prove
that the remaining points that is unimodal fuzzy numbers (see Section 1.6), all of them are continuity
points for the operator Tc;df;f . In this way, the continuity points of the operator Tc;df;f are completely
determined. To prove the continuity of Tc;df;f on the set of unimodal fuzzy numbers the following
lemma is essential.
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Lemma 4.7.4 ([24]) Let (gn)n�0, gn : [0; 1]! R, be a sequence of functions and consider the function
g : [0; 1] ! R: Also, let us consider a weight function f : [0; 1] ! R: Suppose that the following
requirements hold:

(i) gn; n 2 N and g, are all nondecreasing and left continuous functions;
(ii) gn(1) � g(1), for all n 2 N;

(iii) lim
n!1

1Z
0

f(�) (gn(�)� g(�))2 d� = 0.

Then lim
n!1

gn(1) = g(1):

By performing similar reasonings we get a similar result as above for the case when gn; n 2 N and
g are all nonincreasing and left continuous functions.
By using Lemma 4.7.4 and its corresponding result for the case of noincreasing and left continu-

ous functions, we can prove the following important result concerning the continuity of trapezoidal
approximation operators preserving the core.

Theorem 4.7.5 ([24]) Let Tc;df;f : F (R)!FT (R) denotes the weighted trapezoidal approximation
operator preserving core with respect to a weighted metric df;f , given by equations (3.40): Then Tc;df;f
is continuous on the space of unimodal fuzzy numbers UF (R).

From Theorems 4.7.2 and 4.7.5, it is immediate that we can determine exactly the points of
continuity and discontinuity respectively for the operator Tc;df;f .

4.8 On the defect of additivity of fuzzy approximation oper-
ators

This section contains original contributions from the papers [17]-[18], [23] and [41] .
With the exception of the weighted trapezoidal approximation operator preserving the core, the

operators proposed in this thesis are given on cases. Let us take the trapezoidal approximation operator
preserving the expected interval TEI for example. Denote with 
i, i 2 f1; 2; 3; 4g, the subfamilies of
fuzzy numbers corresponding to the cases (i), (ii), (iii) and (iv) in Theorem 3.5.1. It is very easy to
check that for any i 2 f1; 2; 3; 4g and for any A;B 2 
i, it holds that TEI(A+B) = TEI(A)+TEI(B).
But in general it does not hold that TEI(A+B) = TEI(A) + TEI(B) (see Example 2 in [18]) .
Actually, we can prove a strong result on the non-additivity which will imply the non-additivity

of the most of the approximation operators proposed in this thesis. We have the following.

Lemma 4.8.1 ([23], Lemma 8) Let us consider the trapezoidal valued operator T : F (R)!FT (R)
which satis�es the condition that if A 2 F (R) satis�es Te(A) 2 FT (R), then T (A) = Te(A): Then T
is non-additive.

It is immediate that the approximation operators Td, TEI , TAV and TAmb, they all satisfy the
hypothesis of the above lemma and therefore it follows that they are non-additive. In addition, as in
the case of the operator TEI , it can be proved that the operators Td, TAV and TAmb are only piecewise
additive.
Similarly, it can be proved that for some �xed sL > 0 and sR > 0 and for a weighted metric d�;

the operator 	d�;sl;sR is only piecewise additive but it is not additive on the whole domain.
Following the ideas in [29], the notion of defect of additivity of a trapezoidal approximation operator

was introduced in the paper [17].
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De�nition 4.8.2 ([17], De�nition 25) Let A 2 F (R) and t : F (R) ! FT (R) be a trapezoidal
approximation operator with respect to a distance denoted with D. The defect of additivity of the
operator t with respect to fuzzy number A and distance D is given by �t;D (A) = sup

B2F (R)
D(t(A) +

t(B); t(A+B)):

The following result will help us to �nd an estimation of the defect of additivity for the fuzzy
approximation operators.

Lemma 4.8.3 ([41], Lemma 16) Let t : F (R) ! FT (R) be a trapezoidal approximation operator
with respect to a distance denoted with D. Suppose that the following requirements hold:

(i) t(O) = O where O is the trapezoidal fuzzy number (0; 0; 0; 0);
(ii) there exists a positive real constant c such that D(t(A); t(B)) � cD(A;B), A;B 2 F (R) ;
(iii) we have D(A+ C;B + C) = D(A;B); for all A;B;C 2 F (R) :

Then �t;D (A) � 2cD(O;A); for all A 2 F (R) :

The following corollary is immediate.

Corollary 4.8.4 ([17], Corollary 17) Let A be a fuzzy number and let TAV denotes the trapezoidal
approximation operator preserving the value and the ambiguity. Then

�TAV ;d (A) � 2

s
10 + 2

p
10

3

0@ 1Z
0

�
A2L(�) +A

2
U (�)

�
d�

1A1=2

:

By similar reasonings, having in mind the Lipschitz constants of the operators TAmb and 	d�;sL;sR ,
we may obtain estimations for the defect of additivity of these operators.
In the case of the operator TEI , by using some geometrical reasonings we can obtain the best

possible estimation for the defect of additivity.

Theorem 4.8.5 ( [23], Theorem 16) We have

d(TEI(A+B); TEI(A) + TEI(B)) �
2
p
3

3
minflength(EI(A)); length(EI(B))g; (4.1)

for all A;B 2 F (R):

In what follows, by some reasonings which can be found also in [23], we will prove that the value
2
p
3

3 from the conclusion of Theorem 4.8.5 is the �lowest�possible applied for the entire set of fuzzy
numbers. For any " 2 (0; 1) we consider the fuzzy number A" = (A")� = [(A")L (�) ; (A")U (�)];
� 2 [0; 1], where

(A")L (�) =

(
"�
6 �

�2

2 ; � 2
�
0; "6
�
;

"2

72 ; � 2
�
"
6 ; 1
�

and (A")U (�) = (A")L (1) =
"2

72 , for all � 2 [0; 1]: Let Te(A") = [le(A"); ue(A"); xe(A"); ye(A")]
denotes the extended trapezoidal approximation of A": Noting that (A")L is di¤erentiable and using
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integration by parts, we obtain (see formulas (2.4)-(2.5))

xe(A") + (6� ")le(A")

=

1Z
0

(A")L (�) (12�� ")d� = (6� ")(A")L (1)�
1Z
0

(A")
0
L (�) (6�

2 � "�)d�

= (6� ")ue(A")�
1Z
0

(A")
0
L (�) (6�

2 � "�)d�:

Since

(A")
0
L (�) =

�
"
6 � �; � 2

�
0; "6
�
;

0; � 2
�
"
6 ; 1
�
;

it is immediate that
1R
0

(A")
0
L (�) (6�

2 � "�)d� < 0: This implies

xe(A") > (6� ")ue(A")� (6� ")le(A"): (4.2)

In addition, since by formula (2.5) it results ye(A") = 0; we obtain

xe(A")� ye(A") > 2ue(A")� 2le(A"):

From the above inequality it results that for any " 2 (0; 1) the case (ii) in Theorem 3.5.1 is suitable
to be applied to compute TEI(A") and consequently we obtain

TEI(A") = [le(A"); ue(A"); 2ue(A")� 2le(A"); 0]; (4.3)

for all " 2 (0; 1):
Now, let us consider the trapezoidal fuzzy number B = [0; 1; 0; 0]: Since B is a trapezoidal fuzzy

number and since TEI satis�es the identity criterion we get TEI(B) = B which together with relation
(4.3) gives

TEI(A") + TEI(B) = [le(A"); ue(A") + 1; 2ue(A")� 2le(A"); 0]: (4.4)

On the other hand, after some simple calculations (or using the linearity of the extended trapezoidal
approximation Te) we obtain Te(A" + B) = [le(A"); ue(A") + 1; xe(A"); ye(A")]. Noting that 0 �
le(A") � ue(A"), and that by very simple calculations we have xe(A") � 6ue(A")�6le(A") � 6ue(A")
(recall that ye(A") = 0), it follows that

2(ue(A") + 1� le(A"))� xe(A")� ye(A") � 2� xe(A") � 2� 6ue(A") = 2�
"2

12
> 0;

for all " 2 (0; 1): This implies that Te(A" + B) is a trapezoidal fuzzy number and thus since case (i)
is applicable in Theorem 3.5.1 we obtain that TEI(A" +B) = Te(A" +B); that is

TEI(A" +B) = [le(A"); ue(A") + 1; xe(A"); 0]: (4.5)

Relations (1.17), (4.4) and (4.5) imply

d(TEI(A") + TEI(B); TEI(A" +B)) =
1p
12
(xe(A")� 2ue(A") + 2le(A"))
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and from relation (4.2) we obtain

d(TEI(A") + TEI(B); TEI(A" +B))

>
1p
12
(4� ")(ue(A")� le(A")) =

 
2
p
3

3
� "p

12

!
length(EI(A")):

The above inequality combined with the fact that length(EI(B)) > length(EI(A")) > 0, for all
" 2 (0; 1), proves that in general the value 2

p
3

3 from the conclusion of Theorem 4.8.5 is the smallest
possible.
Even if 2

p
3

3 is the best possible constant in the conclusion of Theorem 4.8.5, it can be proved that
we cannot �nd two fuzzy numbers A and B such that length(EI(A)) > 0; length(EI(B)) > 0 and
such that relation (4.1) would become equality.

4.9 Trapezoidal approximation and aggregation

This section contains original contributions from paper [28].
The theory of aggregation operators has had an impressive development in the last years. In

the present it is one of the most popular topics. This is so because aggregation operators have so
many applications. Almost every �eld of research interacts with the necessity of aggregating data. A
comprehensive study on aggregation operator is the work of Grabisch et al. ([57]) where the reader
can �nd the most important results of this topic.
Suppose that I is a real bounded or unbounded interval. The most general de�nition of an

aggregation operator is given in the following.

De�nition 4.9.1 (see e.g. [57], De�nition 1.1 pp. 3) An aggregation function in In is a function
A : In ! I, that satis�es the following requirements:
(i) A is nondecreasing in each variable;
(ii) it holds that inf

x2In
A(x) = inf I and sup

x2In
A(x) = sup I:

Between the most popular aggregation operator are the arithmetic mean function AM : In ! I,
as well as the geometric mean function GM : In ! I (here we necessarily have inf I � 0), where

AM(x1; :::; xn) =
1
n

nP
i=1

xi and GM(x1; :::; xn) =
�

nQ
i=1

xi

�1=n
:

Other important aggregation functions are the minimum, maximum or projection function respec-
tively. One can easily guess their de�nition. Other interesting examples can be found in [57], pp.
6-9.
It seems that De�nition 4.9.1 cannot easily be extended when we work with fuzzy numbers instead

of real (crisp) values. Both requirements of De�nition 4.9.1 can hardly be adapted to the fuzzy case
since the ranking of fuzzy numbers is an issue which so far, has not a satisfactory method.
But there are some aggregation functions that can naturally be extended to the fuzzy case. For

example the arithmetic mean function or the projection function. In what follows we deal with the
arithmetic mean function. Therefore, if A1; A2; :::; An, represents a sample of fuzzy numbers then the

arithmetic mean of the sample is given by AM(A1; :::; An) = 1
n

nP
i=1

Ai: When there is no danger of

confusion we denote A = AM(A1; :::; An).



56 CHAPTER 4. PROPERTIES OF FUZZY APPROXIMATION OPERATORS

Suppose now that we have a sample A1; A2; :::; An, of fuzzy numbers that should be aggregated
e¢ ciently in the sense of the arithmetic mean. Having in mind all the discussions related to trapezoidal
approximation and its bene�ts, let us �rstly try to �nd such trapezoidal fuzzy number TA1;A2;:::;An

,
which is the nearest one to all members of the initial data set A1; A2; :::; An, with respect to the
weighted distance d�, � = (�L; �U ). In other words, we are looking for such trapezoidal fuzzy number
TA1;A2;:::;An , which minimizes the distance D� ((A1; :::; An) ; TA1;A2;:::;An), where

D2
� ((A1; :::; An) ; TA1;A2;:::;An

) =
nP
i=1

d2� (Ai; TA1;A2;:::;An
) : (4.6)

We say that TA1;A2;:::;An
is the nearest trapezoidal fuzzy number to fuzzy numbers A1; A2; :::; An.

Obviously, the metric D� is considered on the power space (F (R))n and T = TA1;A2;:::;An
is uniquely

identi�ed with the n-tuple (T; :::; T ).
Using the theory of Hilbert spaces we obtain the following main result.

Theorem 4.9.2 ([28], Theorem 6) The trapezoidal fuzzy number nearest to fuzzy numbers A1; :::; An

(with respect to metric D�), is the trapezoidal fuzzy number nearest to fuzzy number A = 1
n

nP
i=1

Ai (with

respect to metric d�), which means that we have TA1;A2;:::;An
= Td�(A); where Td� is the weighted

trapezoidal approximation operator with respect to the metric d�.

Theorem 4.9.2 shows that the trapezoidal fuzzy number nearest to a given family of fuzzy numbers
equals the trapezoidal fuzzy number nearest to their average (provided any solution exists). In other
words, there is no di¤erence whether the approximation is performed before or after aggregation when
the average is chosen as aggregation operator.
We have a similar result if in addition we impose the preservation of the weighted expected interval.

We denote with EI�(A) (see De�nition 1.12.1) the weighted expected interval of the fuzzy number
A where � = (�L; �U ) and �L,�U are weights. Then we de�ne the weighted expected interval of the
sample of fuzzy numbers A1; :::; An, as

EI� (A1; A2; :::; An) =
1

n

�
EI� (A1) + :::+ EI

� (An)
�
:

Theorem 4.9.3 ([28], Theorem 10) The trapezoidal fuzzy number nearest to fuzzy numbers A1; :::; An
(with respect to metric D�), which preserves the weighted expected interval of A1; :::; An, is the trape-

zoidal fuzzy number nearest to fuzzy number A = 1
n

nP
i=1

Ai (with respect to metric d�), which preserves

the weighted expected interval of A; that is TA1;A2;:::;An = TEI;�(A):

The conclusion is the same as in the case of approximation without conditions.

Example 4.9.4 ([28], Example 11) Let us consider the weighted functions �L (�) = �L (�) = 1; for
every � 2 [0; 1] and fuzzy numbers A;B;C; with A� =

�
�1 + �2; 4� 2�2

�
, B� =

�
1 + �2; 3� �2

�
; � 2

[0; 1] ; and C� = [45
p
�; 46�

p
�] ; � 2 [0; 1]. According with Theorem 3.5.1, (i) we get the trapezoidal

fuzzy number nearest to 1
2 �(A+B) preserving the expected interval of

1
2 �(A+B), as TEI

�
1
2 � (A+B)

�
=�

� 1
6 ;

5
6 ;

9
4 ;

15
4

�
: Theorem 4.9.3 implies that

�
� 1
6 ;

5
6 ;

9
4 ;

15
4

�
is the trapezoidal fuzzy number nearest to A

and B which preserves the expected interval of the set of fuzzy numbers A;B: We obtain (Theorem
3.5.1, (iv) ) the trapezoidal fuzzy number nearest to 1

3 � (A+B + C) preserving the expected interval
of 13 � (A+B + C), as TEI

�
1
3 � (A+B + C)

�
=
�
707
180 ;

991
60 ;

991
60 ;

3187
180

�
. According with Theorem 4.9.3

we get that
�
707
180 ;

991
60 ;

991
60 ;

3187
180

�
is the trapezoidal fuzzy number nearest to A;B and C, which preserves

the expected interval of the set of fuzzy numbers A;B;C:



Chapter 5

Approximations of fuzzy numbers
by Bernstein operators of
max-product kind

There exists an extensive literature about linear approximation operators. However, there are cer-
tain situations when linear operators are not e¢ cient. For example when we approximate a fuzzy
number u which has its core as a proper interval by using the linear Bernstein operator Bn (actually
we approximate the restriction of the membership function to its support), then the quality of the
approximation is questionable. First of all, it is easy to check that in general Bn(u) is not a fuzzy
number. Of course, if we normalize Bn(u), noting that the Bernstein linear operators preserve the
quasi-concavity, then we obtain a fuzzy number but the normalization process is not always an easy
task since there are many examples when the maximum value of a function cannot be computed ex-
actly. Then, since the core of Bn(u) is reduced to a single element, it follows that the segment cores of
the sequence (Bn(u))n�1 do not converge towards core(u): Therefore, we propose a di¤erent approach
to the problem of the approximation of the membership function of a fuzzy number by sequences
of approximation operators. We will use the so called max-product operators introduced recently.
We will see that besides the convergence in the uniform norm or L2-type metrics, they also preserve
the support and they converge with respect to the core. In addition, it holds the convergence of the
important characteristics such as the expected interval, ambiguity or value.
We need to discuss the notations used through out this chapter. If I � R is an interval and

(Tn)n�1, Tn : C(I)! X, is a sequence of operators then the image of f 2 C(I) will be denoted with
Tn(f) for some n � 1. If J � R is an interval such that I � J and f : J ! R is a continuous function,
then we can apply Tn to the restriction of f on I and in this case we will use the notation Tn(f ; I)
for some n � 1: Sometimes, to avoid confusions we may use this notation even if J = I.
Then, if I � R is an interval and f 2 C(I) (here C(I) denotes the space of all continuous real

functions de�ned on I), we denote by kfk the Chebyshev norm of f in C(I), that is kfk = sup
x2I

jf(x)j :

However, if u denotes a fuzzy number then we prefer the notation kukC for its Chebyshev norm, that
is (see formula (1.6)) kukC = sup

x2R
ju(x)j :We denote by Dc(u; v) the Chebyshev distance between fuzzy

numbers u and v according to formula (1.5).
Mostly, in this chapter we are interested in approximating fuzzy numbers by sequences of fuzzy

57
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numbers generated by approximation operators. The estimates will be measured by using the uniform
modulus of continuity. For a real interval I and a continuous function f : I ! R, the function
!1(f; �) : [0;1)! [0;1),

!1(f; �) = supfjf(x)� f(y)j : x; y 2 I; jx� yj � �g
= supfjf(x+ h)� f(x)j : x; x+ h 2 I; 0 � h � �g;

is called the modulus of continuity of the function f . If J is an interval included in I then we often
denote

!1(f; �)J = supfjf(x)� f(y)j : x; y 2 J; jx� yj � �g
= supfjf(x+ h)� f(x)j : x; x+ h 2 J; 0 � h � �g:

If I is a compact interval then !1(f; �) is uniformly continuous and from �n & 0, it easily results that
!1(f; �n)& 0. For more details about the modulus of continuity we refer to [8] and [10].
This chapter contains original contributions from the papers [30], [44], [46] and [47]. In addition

the chapter contains original unpublished results and also some results are improved comparing to
their published versions.

5.1 A discussion on sequences of fuzzy numbers

All of this section contains original unpublished results. They are well connected to the unpublished
results from Section 1.12. All these results are likely to be incorporated in one or more papers dealing
with the approximation of important characteristics of fuzzy numbers. This problem has been already
discussed in the paper [47] and actually Example 5.1.1 is taken from this paper. As we have already
mentioned in Section 1.12, there is an ongoing research on this topic too (see [48]), therefore, some
results from this section as well as some results from Section 1.12 are subject to be included in this
work.
We mention that through out this chapter, for a fuzzy number u we will use the parametric

representation (u�; u+) instead of (uL; uU ), because we �nd it more appropriate as we will use many
notations from approximation theory.
For a �xed fuzzy number u, we are interested in �nding a sequence of fuzzy numbers (un)n�1 such

that the following requirements would hold:
(i) (�) lim

n!1
un = u;

(ii) core(un)! core(u);
(iii) supp(un)! supp(u);
(iv) EI(un)! EI(u);
(v) Ambs(un)! Ambs(u) and V als(un)! V als(u), for some reducing function s.

Sometimes we do not need all the requirements since some of them could be consequences of others.
This will be the case of the Chebyshev type distance between fuzzy numbers DC presented in Section
1.9. We will see later that in the case of this metric we need only requirement (i) together with a
much weaker condition than (ii)� (iii) from above, to get (iv)� (v). Therefore, this will easily imply
that if (i)� (iii) hold then (iv)� (v) hold too.
It is easy to prove that depending on the metric, there exist convergent sequences of fuzzy numbers

for which some of the above requirements do not hold. Here is one example which involves the metric
DC but also please note that in the longer version of the thesis there exists an example in the support
of the same idea, which involves the metric dp (see formula (1.11)):
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Example 5.1.1 (this example is discussed in [47] too) Perhaps one of the most popular approximation
operators that come in our mind are the linear Bernstein operators. For a continuous function f :
[a; b]! R, we denote with Bn(f) the Bernstein operator of order n attached to the function f: Let u
denotes a continuous fuzzy number with supp(u) = [a; b], a < b and core(u) = [c; d], c < d. We de�ne
the Bernstein operator of order n attached to u denoted with eBn(u), given by

eBn(u)(x) = 0, for x outside [a; b]
and eBn(u)(x) = Bn(u; [a; b]) = nX

k=0

pn;k(x) � u (a+ (b� a)k=n) ; x 2 [a; b];

where pn;k(x) =
�
n
k

� �
x�a
b�a

�k
�
�
b�x
b�a

�n�k
; k 2 f0; 1; :::; ng, are the fundamental Bernstein polynomials.

It is well known that the Bernstein operators have interpolative properties at the endpoints and that
they preserve the quasi-concavity (see [69]) . However, it is easily seen that since u is continuous and
since kukC = 1 it results that kBn(u; [a; b])k < 1, for su¢ ciently large n 2 N. For this reason, in order
to produce proper fuzzy numbers we need to normalize eBn(u): In this way we obtain the sequence of
fuzzy numbers

�
1

kBn(u;[a;b])k � eBn(u)�n�1 : Now, it is well known that eBn(u) converges uniformly to u
since there exists an absolute constant C such that

jBn(u; [a; b])� u(x)j � C!1(u; 1=
p
n)[a;b]; (8)x 2 [a; b];

which easily implies that 1
kBn(u;[a;b])k � eBn(u) converges to u with respect to the metric DC . On the

other hand, it is very easy to prove that the core of 1
kBn(u;[a;b])k � eBn(u) is reduced to a single element

(this is immediate since the restriction of 1
kBn(u;[a;b])k � eBn(u) to the interval [a; b] is a polynomial

function of degree at least 1 and hence it cannot be constant on an interval as it is actually the core).
This means that it does not hold the convergence of the core since we have assumed that the core
of u is a nondegenerated interval. This is not surprising since the Bernstein operators as they are
polynomials cannot approximate with accuracy the shape of a function which has points where it is
not di¤erentiable and clearly this is the case of the endpoints of the core of u. This lack of property
will be discussed again later in Subsection 5.5.1 of this chapter where a comparison with the Bernstein
max-product operators will be done. The same phenomena of divergence on the core appears when we
consider other types of linear Bernstein operators since most of them are polynomials.

In what follows we propose some minimal requirements in order to get properties (iv)�(v) described
at the beginning of this section.

Lemma 5.1.2 Suppose that s : [0; 1] ! [0; 1], is a continuous reducing function and consider its

antiderivative S : [0; 1] ! R, S(x) =
xZ
0

s(x)dx. Let u denotes a continuous fuzzy number and let us

consider the sequence of continuous fuzzy numbers (un)n�1 satisfying the following requirements:
(i) (DC) lim

n!1
un = u;

(ii) There exists a constant �0 > 0 which may depend only on u such that supp(un) �
[��0; �0], for all n � 1.
Then it holds that EI(un)! EI(u), Ambs(un)! Ambs(u), and V als(un)! V als(u):
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Remark 5.1.3 If in the previous lemma sup fmaxfjanj ; jdnjg : n 2 Ng =1, then even if (DC) lim
n!1

un =

u, we can have

max

8<:lim supn!1

������
cZ
a

xd(S(u(x))�
cnZ
an

xd(S(un(x))

������ ; lim supn!1

������
bZ
d

xd(S(u(x))�
bnZ
dn

xd(S(un(x))

������
9=; =1.

From Theorem 5.1.2 we easily obtain the following corollary.

Corollary 5.1.4 Let u denotes a continuous fuzzy number and let us consider the sequence of con-
tinuous fuzzy numbers (un)n�1, such that:
(i) (Dc) lim

n!1
un = u ;

(ii) core(un)! core(u);
(iii) supp(un)! supp(u);
Then we have EI(un) ! EI(u), Ambs(un) ! Ambs(u), and V als(un) ! V als(u), for any

reduction function s : [0; 1]! [0; 1]:

In the case of the metric dp we have the following.

Lemma 5.1.5 Let u be a fuzzy number and let us consider the sequence of fuzzy numbers (un)n�1,
such that (dp) lim

n!1
un = u, for some p > 1: If s : [0; 1] ! [0; 1], is a reducing function then it holds

that EI(un)! EI(u), Ambs(un)! Ambs(u), and V als(un)! V als(u):

In view of the previous two lemmas, we are interested in �nding sequences of fuzzy numbers such
that the requirements in the above lemmas would hold since this would imply the convergence of the
important characteristics too. We will see later that the Bernstein operators of max-product kind
ful�l these requirements.

5.2 Examples of max-product operators

In this section we discuss about the so called max-product type operators introduced for the �rst time
in the paper [34]. For some interval I � R, we denote with CB+(I) the space of all positive, bounded
and continuous real functions de�ned on I. The general form of Ln : CB+(I)! CB+(I); (called here
a discrete max-product type approximation operator) will be

Ln(f)(x) =
n_
i=0

Kn(x; xi) � f(xi); x 2 I; (5.1)

or

Ln(f)(x) =
1_
i=0

Kn(x; xi) � f(xi); x 2 I; (5.2)

where n 2 N, f 2 CB+(I), Kn(�; xi) 2 CB+(I) and xi 2 I, for all i. These operators are nonlinear,
positive and moreover they satisfy a pseudo-linearity condition of the form

Ln(� � f _ � � g) = � � Ln(f) _ � � Ln(g);8�; � 2 R+; f; g 2 CB+(I):
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Let us consider the interval I = [0; 1] and a function f 2 C+(I) (here C+(I) is the space of all
positive and continuous real functions de�ned on I and, obviously in our case C+(I) coincides with
CB+(I)): If in relation (5.1) we take I = [0; 1] and

Kn(x; xi) =
pn;i(x)
n_
k=0

pn;k(x)

; x 2 [0; 1]; i 2 f0; 1; :::; ng;

then we obtain the so called Bernstein operator of max-product kind (introduced for the �rst time by
Gal in the book [55]) attached to the function f , given by

B(M)
n (f)(x) =

n_
k=0

pn;k(x)f
�
k
n

�
n_
k=0

pn;k(x)

; x 2 [0; 1];

where pn;k(x) =
�
n
k

�
xk(1� x)n�k, k 2 f0; 1; :::; ng, x 2 [0; 1]: Another method to obtain the Bernstein

max-product operator is to write the linear Bernstein operator attached to f in the form

Bn(f)(x) =

nX
k=0

pn;k(x)f
�
k
n

�
nX
k=0

pn;k(x)

; x 2 [0; 1]

and then replacing in the numerator and in the denominator the "sum" operator with the "max"
operator we obtain again the max-product Bernstein operator.
The approximation and shape preserving properties of the Bernstein operators of max-product

kind have been studied (in this order) in the papers [33], [30], [44]. Some of these properties will be
mentioned in the next sections.
Reasoning as in the case of the Bernstein operator of max-product kind, for I = [0;1) and

f 2 CB+(I), the Favard-Szász-Mirakjan operator of max-product kind ([33]) attached to f is given
by

F (M)
n (f)(x) =

1_
k=0

sn;k(x)f
�
k
n

�
1_
k=0

sn;k(x)

; x 2 [0; 1];

where sn;k(x) =
(nx)k

k! , k 2 N, x 2 [0;1): The approximation and shape preserving properties of the
Favard-Szász-Mirakjan operator of max-product kind have been studied �rstly in [33] and then in [31].
There are also other types of max-product operators which are recalled in the longer version of

the thesis.
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5.3 Approximation and shape preserving properties of the
Bernstein operator of max-product kind

This section contains original contributions from the papers [30] and [44]. The theoretical results
of this section will be used to study the approximation and shape preserving properties when we
approximate fuzzy numbers by the Bernstein max-product operators.
In the paper [33] an upper estimate of the approximation error by the Bernstein operator of max-

product kind of the form C!1(f; 1=
p
n) (with C > 0 unexplicit absolute constant) was obtained for

functions from the space C+([0; 1]). Then in the paper [30] this result was improved by �nding an
explicit constant in front of !1(f; 1=

p
n), as follows.

Theorem 5.3.1 ([30], Theorem 4.1) If f : [0; 1]! R+ is continuous then we have the estimate

jB(M)
n (f)(x)� f(x)j � 12!1

�
f;

1p
n+ 1

�
; n 2 N; x 2 [0; 1]:

In the paper [44] it was proved that the above estimation is the best possible with respect to
!1(f; �)[0;1], by proving that for the function f : [0; 1] ! [0;1), f(x) = 0 if x 2 [0; 1=2] and f(x) =
x� 1=2 if x 2 [1=2; 1], we have ([44], Example 3.1)




B(M)
n (f)� f




 � e�5

6 !1(f; 1=
p
n):

For concave functions we have a Jackson type estimation.

Theorem 5.3.2 ([30], Corollary 4.6) If f : [0; 1]! R+ is concave on [0; 1], then we have the estimate
jB(M)
n (f)(x)� f(x)j � 2!1

�
f ; 1n

�
; for all n 2 N; x 2 [0; 1]:

Another kind of estimation is the following.

Theorem 5.3.3 ([44], Theorem 4.6) Let f : [0; 1] ! [0;1) be a continuous and strictly positive
function. Then ���B(M)

n (f)(x)� f(x)
��� � �n!1(f; 1n )

mf
+ 4

�
!1(f; 1=n); x 2 [0; 1]; n 2 N;

where mf = minff(x);x 2 [0; 1]g.

From the above theorem we obtain the following estimation for Lipschitz functions.

Corollary 5.3.4 ([44], Corollary 4.7) If f : [0; 1] ! [0;1) is a strictly positive function satisfying
the Lipschitz condition, then there exists a constant C independent of n and x, but depending on f ,

such that
���B(M)

n (f)(x)� f(x)
��� � C

n ; x 2 [0; 1]; for all n 2 N:

It is known that there exist Lipschitz functions on [0; 1] (for example concave polygonal lines) for
which worst estimations are obtained than the Jackson type estimate from above when we approximate
them by using the linear Bernstein operator. It means that the Bernstein operator of max-product
kind has better approximation properties than its linear counterpart relatively to the class of strictly
positive Lipschitz functions de�ned on the interval [0; 1]:
We discuss now the shape preserving properties of the Bernstein operators of max-product kind.
In the paper [30] it was proved that relatively to the space C+([0; 1]), the Bernstein operator of

max-product kind has interpolative properties at the endpoints, preserves the monotonicity and more
generally the quasi-convexity. Then, in the paper [44] the following result was proposed.
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Theorem 5.3.5 ([44], Theorem 5.1) Let us consider the function f : [0; 1] ! R+ and let us �x
n 2 N, n � 1. Suppose in addition that there exists c 2 [0; 1] such that f is nondecreasing on [0; c] and
nonincreasing on [c; 1]: Then, there exists c0 2 [0; 1] such that B(M)

n (f) is nondecreasing on [0; c0] and

nonincreasing on [c0; 1]: In addition we have jc� c0j � 1
n+1 and

���B(M)
n (f)(c)� f(c)

��� � !1 �f; 1
n+1

�
:

From the above theorem it follows that B(M)
n preserves the quasi-concavity relatively to the space

C+([0; 1]): Moreover, any global maximum point of the function f can be approximated with a global
maximum point of the function B(M)

n (f) with an error of order O(1=n) and any global maximum value
of f can be approximated with a global maximum value of B(M)

n (f) with an error of order O(!1(f; 1n )):

5.4 Max-product Bernstein operators de�ned on compact in-
tervals

This section contains original contributions from the papers [46] and [47].
For a function f 2 C+([a; b]), we de�ne the corresponding max-product Bernstein operator on

[a; b], by ([46])

B(M)
n (f)(x) =

Wn
k=0 pn;k(x)f(a+ k � b�an )Wn

k=0 pn;k(x)
; x 2 [a; b]; (5.3)

where pn;k(x) =
�
n
k

� �
x�a
b�a

�k
�
�
b�x
b�a

�n�k
: Since

Pn
k=0 pn;k(x) = 1 for all x 2 [a; b], it is immediate

that
Wn
k=0 pn;k(x) > 0 for all x 2 [a; b], which means that B(M)

n (f) is well de�ned. Also, we easily

get B(M)
n (f)(a) = f(a) and B(M)

n (f)(b) = f(b): Then, since the maximum of a �nite number of
continuous functions is a continuous function, we get that for any f 2 C+([a; b]); B(M)

n (f) 2 C+([a; b])
too. Actually, if f : [a; b]! R+ is only bounded, then one can easily prove that B

(M)
n (f) 2 C+([a; b]):

It can be proved that B(M)
n : C+([a; b])! C+([a; b]) has the same order of uniform approximation

as the linear Bernstein operator and that it preserves the quasi-concavity too.

Theorem 5.4.1 (i) ([46], Theorem 5) If a; b 2 R, a < b and f : [a; b] ! R+ is continuous, then we
have the estimate jB(M)

n (f)(x)� f(x)j � 12([b� a] + 1)!1
�
f; 1p

n+1

�
; for all n 2 N; x 2 [a; b]:

(ii) ([47], Theorem 6 (ii)) If f : [a; b] ! R+ is concave on [a; b], then we have the estimate
jB(M)
n (f)(x)� f(x)j � 2([b� a] + 1)!1

�
f; 1n

�
; for all n 2 N; x 2 [a; b]:

Theorem 5.4.2 ( [46], Theorem 6) Let us consider the function f : [a; b]! R+ and let us �x n 2 N,
n � 1. Suppose in addition that there exists c 2 [a; b] such that f is nondecreasing on [a; c] and
nonincreasing on [c; b] respectively: Then, there exists c0 2 [a; b] such that B(M)

n (f) is nondecreasing

on [a; c0] and nonincreasing on [c0; b]: In addition we have jc� c0j � b�a
n+1 and

���B(M)
n (f)(c)� f(c)

��� �
([b� a] + 1)!1

�
f; 1

n+1

�
:

Remark 5.4.3 From the above theorem and by the comment just below Theorem 5.3.5, it results that
if f : [a; b]! R+ is continuous and quasi-concave then B

(M)
n (f) is quasi-concave too.

Remark 5.4.4 As we have mentioned in the Section 5.3, for functions in the space C+([0; 1]), B
(M)
n

preserves the monotonicity and the quasi-convexity. Reasoning similarly as in the proof of Theorem
5.4.2, it can be proved that these preservation properties hold in the general case of the space C+([a; b]):
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5.5 Applications to the approximation of fuzzy numbers

This section contains original contributions from the papers [46] and [47].

5.5.1 Approximations with respect to the metric DC

Suppose that u is a fuzzy number such that supp(u) = [a; b] and core(u) = [c; d]: For n 2 N we
introduce the function eB(M)

n (u) : R! [0; 1], eB(M)
n (u)(x) = 0, for all x outside [a; b] and we haveeB(M)

n (u)(x) = B
(M)
n (u; [a; b])(x), for all x 2 [a; b]: From Theorem 5.4.1, it results that the order of

uniform approximation of the fuzzy number u by eB(M)
n (u) is O

�
!1(u; 1=

p
n)[a;b]

�
in the case when u

is continuous. Then, since the restriction of u to the interval [a; b] is a function like those considered
in Theorem 5.4.2, it results that eB(M)

n (u) is a quasi-concave function on [a; b]: Moreover, we have the
following result which improves the main result of paper [46].

Theorem 5.5.1 ([47], Theorem 14) Let u denotes a fuzzy number with supp(u) = [a; b] and core(u) =
[c; d] such that a � c < d � b: Then for su¢ ciently large n, it results that eB(M)

n (u) is a fuzzy number
such that :
(i) supp(u) = supp

� eB(M)
n (u)

�
;

(ii) If core( eB(M)
n (u)) = [cn; dn], then jc� cnj � b�a

n and jd� dnj � b�a
n : Moreover, we can

determine exactly core( eB(M)
n (u));

(iii) If, in addition, u is continuous on [a; b], then��� eB(M)
n (u)(x)� u(x)

��� � 12([b� a] + 1)!1�u; 1p
n+ 1

�
[a;b]

;

for all x 2 R:

The proof of the following corollary which improves Corollary 15 from [47], is immediate from the
previous theorem and Corollary 1.12.4, (i).

Corollary 5.5.2 (see also [47], Corollary 15) Let u denotes a fuzzy number with supp(u) = [a; b]
and core(u) = [c; d], such that a � c < d � b: In addition, let us consider the continuous reduction

function s : [0; 1! [0; 1] and its antiderivative S(x) =

1Z
0

s(x)dx, x 2 [0; 1]: Then we have:

(i) core( eB(M)
n (u))! core(u);

(ii) If u is continuous then lim
n!1

DC( eB(M)
n (u); u) = 0 and denoting �n = 12([b � a] +

1)!1

�
u; 1p

n+1

�
[a;b]

; for su¢ ciently large n we obtain
���Ambs( eB(M)

n (u))�Ambs(u)
��� � kn(u)�n and���V als( eB(M)

n (u))� V als(u)
��� � kn(u)�n; where kn(u) ! c � a + 2 jcj + b � d + 2 jdj. In particular we

obtain EI( eB(M)
n (u))! EI(u).

From Theorem 5.5.1 and Corollary 5.5.2 it follows that the sequence of Bernstein max-product
operators attached to a continuous fuzzy number ful�l the approximation and shape preserving prop-
erties mentioned in Section 5.1 and hence they are a good example of an e¢ cient convergent sequence
of fuzzy numbers.
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Remarks (these remarks can be found in [47] too) (i) If the fuzzy number u is unimodal, that is c =
d, then eB(M)

n (u) is not necessarily a fuzzy number. But normalizing B(M)
n (u; [a; b]), we obtain the fuzzy

number 1


B(M)
n (u;[a;b])




 eB(M)
n (u) (recall that k � k denotes the uniform norm). Since B(M)

n (u; [a; b])! u

uniformly on [a; b], we easily get that 1


B(M)
n (u;[a;b])




 eB(M)
n (u) ! u; uniformly on R and thus we get

that lim
n!1

DC

�
1


B(M)

n (u;[a;b])



 eB(M)

n (u); u

�
= 0. As in the case of Theorem 5.5.1 (ii), we can determine

precisely the core of 1


B(M)
n (u;[a;b])




 eB(M)
n (u).

(ii) Comparing the conclusions of Theorem 5.5.1 with the comments from the end of Example 5.1.1,
it follows that the max-product Bernstein operator B(M)

n , is more convenient for approximating fuzzy
numbers than the classical linear Bernstein operator, Bn. While the order of uniform approximation
is the same, the max-product Bernstein operator preserves better the shape of the approximated fuzzy
number.
(iii) It can be easily proved that if u is a unimodal continuous fuzzy number then the sequences

considered in the present Remark (i) satisfy all the conclusions of Corollary 5.5.2.

Example 5.5.3 ([47], Example 16) We approximate the fuzzy number

u(x) =

8>><>>:
4x2 if 0 � x < 1=2;
1 1=2 � x � 3=4;

4� 4x 3=4 < x � 1;
0 otherwise,

:

using both the classical and the nonlinear max-product Bernstein operators. In Fig. 5.1.a and Fig.
5.1.b ( �rstly for n = 30 and then for n = 80 ) we can compare the classical and nonlinear max-
product operators in approximating the above fuzzy number. We can easily see that the classical linear
operator marked with dotted line is outperformed by the max-product operator marked with dashed line,
this being almost coincident with the target fuzzy number at its core. The theoretical conclusions of
this section are well illustrated by this particular example.
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5.5.2 Approximations with respect to the metrics dp
Recall that the parametric form of an arbitrary fuzzy number u is u = (u�; u+), where u� is
left-continuous and nondecreasing, u+ is left-continuous and nonincreasing and in addition we have
u�(1) � u+(1): All these properties are essential in the obtaining of the main results of this subsection.
Firstly, we deal with the case when the fuzzy number u is positive, i.e. u�(0) � 0. This means

that both functions u� and u+ are positive and hence we can apply all the approximation results from
Section 5.3. We can attach the Bernstein max-product operators B(M)

n (u�) and B(M)
n (u+) and then

it is immediate that the ordered pair B
(M)

n (u) =
�
B
(M)
n (u�); B

(M)
n (u+)

�
is a proper fuzzy number.

Now we are in position to present the main result of this subsection.

Theorem 5.5.4 (see also [47], Theorem 19) If u = (u�; u+) is a positive fuzzy number such that u�

and u+ are continuous, then we have
(i)

dp(u;B
(M)

n (u)) � 12
p
2max

�
!1

�
u�;

1p
n+ 1

�
; !1

�
u+;

1p
n+ 1

��
, for all n 2 N;

(ii) (in [47] a more particular case is discussed) EI(un) ! EI(u), Ambs(un) ! Ambs(u) and
V als(un)! V als(u) for any reduction function s : [0; 1]! [0; 1]:

Remark (this remark can be found in [47] too) Suppose now that the fuzzy number u is not
positive, i.e. u�(0) < 0. Let us introduce the functions u�1 ; u

+
1 : [0; 1] ! R, u�1 (�) = u�(�) � u�(0)

and u+1 (�) = u
+(�) � u�(0). From the properties of u� and u+, it results that u�1 is nondecreasing

and positive and u+1 is nonincreasing and positive respectively. For some n � 1, we attache the
Bernstein max-product operators B(M)

n (u�1 ) and B
(M)
n (u+1 ): Since B

(M)
n preserves the monotonicity,

it is immediate that B(M)
n (u�1 ) is nondecreasing and B

(M)
n (u+1 ) is nonincreasing. In addition we have

B
(M)
n (u�1 )(0) = u�1 (0); B

(M)
n (u�1 )(1) = u�1 (1); B

(M)
n (u+1 )(0) = u+1 (0) and B

(M)
n (u+1 )(1) = u+1 (1):

In conclusion we obtain that P
(M)

n (u) =
�
B
(M)
n (u�1 ) + u

�(0); B
(M)
n (u+1 ) + u

�(0)
�
, is a proper fuzzy

number which in addition preserves the core and the support of u. Moreover, it can be proved that

we obtain the same kind of estimates by replacing in Theorem 5.5.4 B
(M)

n (u) with P
(M)

n (u).



Conclusions

This thesis contains my contributions in the topic of the approximation of fuzzy numbers. At �rst,
considering L2- type metrics in the space of fuzzy numbers, numerous kinds of parametric or trape-
zoidal approximations are investigated. Since in the cases under study, the parametric or trapezoidal
approximation exists and it is unique, we can de�ne so called parametric or trapezoidal approximation
operators. In the thesis we presented algorithms to compute the proper approximations and apart of
that, important properties such as scale invariance, translations invariance, additivity, continuity or
the relation with the aggregation of the data are investigated. For some operators the best possible
Lipschitz constant is obtained. These results are important when we want to simplify the representa-
tion of fuzzy numbers. In some applications it su¢ ces to work only with trapezoidal fuzzy numbers or
other classes of fuzzy numbers with simpler form. Such an example can be found in Section 2.8 where
fuzzy numbers are ranked by using trapezoidal fuzzy numbers. However, sometimes we are interested
to preserve as much as possible from the information carried out by a fuzzy number. This topic should
be regarded as a topic in the completeness of the previously discussed one, where approximations with
simpler form are investigated. In this thesis we have proved that the so called Bernstein operators of
max-product kind could be useful tools when it comes to approximate fuzzy numbers such that most
of the informations to be preserved. Besides their capability to approximate fuzzy numbers with the
same accuracy as the linear counterparts, they have important shape preserving properties such as the
preservation of the support, the convergence towards the core, and the convergence with respect to the
important characteristics of fuzzy numbers. In order to obtain a part of the main results of the thesis,
I have proved some facts which are of independent importance with respect to this topic. Such results
are those from Section 1.12 where the ambiguity and value are represented in terms of membership
function and then approximations of these characteristics are investigated. As expected, the better the
shape of the fuzzy number is preserved, the better estimation is obtained. Then, it should be stressed
out that the thesis contains contributions in the sensible topic of the ranking of fuzzy numbers. In the
case of trapezoidal fuzzy numbers we can say that defuzi�ers which generate orders satisfying some
desirable properties are completely determined abstraction making of equivalent orders.

I have many plans to continue the investigations in approximation problems and others. Recently
we have extended approximations of fuzzy numbers by considering approximations in the space of so
called 1-knot piecewise linear fuzzy numbers ([43]). These fuzzy numbers are piecewise linear, each
side having two segments split on the same � cut. In addition they depend on 6 parameters and
hence the approximation capability increases. In the future, together with the authors of paper [43],
we will extend our research by considering fuzzy numbers with piecewise linear sides having n knots.
Then, in the paper [20] we consider a general trapezoidal approximation problem, more exactly we
study the trapezoidal approximation which preserves a linear characteristic given in a general form.
This approach can be generalized by considering the preservation of multiple characteristics. As a
project of my own, I have become interested in the study of quadratic programming. I have observed
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that using Hilbert space theory, the study of trapezoidal approximation operators can be reduced to
the study of the solutions of quadratic programs depending on some parameters. The study of such
problems belongs to the so called sensitivity analysis. My idea is to study in detail the properties of
the so called solution function of such quadratic programs because any important result will have its
corresponding result in the case of trapezoidal or parametric approximation operators. In this research
I have been mostly inspired by the paper [86] and by the monograph [66]. In paper [86] the author
proves the Lipschitz continuity of the solution function for canonical quadratic programs depending on
two parameters c and � where c appears in the quadratic function while � is a parameter in the right-
hand side of the polyhedral constraints. In the paper [42] I have obtained the same conclusion but in a
more general setting where standard and even general quadratic programs are investigated. Moreover,
in the same paper it is proved that there exists a piecewise additive and positively homogenous relation
between the parameters and the solution. I am also studying the problem of the approximation of fuzzy
numbers, by using the F�transform (see [48]) introduced recently by Per�lieva (see [70]). Finally, I
would like to mention that there are many other interesting problems that should be investigated with
respect to max-product kind operators. I will mention here the saturation and inverse results where
we already have an accepted paper (see [45]).
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