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Introduction

Human-Computer Interaction

The interaction paradigm assumes the continuous reciprocal influence between two in-

dividuals. From another perspective, it is a game where one acts whereas the other

reacts. In computer engineering, the interaction takes place between a computer and

an individual. Historically, this process evolved from a one way communication, where

the computer was playing the role of executor, to a bidirectional communication, with

the system as a communication partner. The communication protocol is changing, as

well, from the classical master-slave perspective to a collaborative environment.

Traditionally, when the computer is just an executor, the input channels formalised

as simple buttons are sufficient to ensure a good level of communication. Nowadays, the

interaction becomes more intuitive. The inputs are a fusion of voice, gestures, postures

or physical signals (such as acceleration, speed, orientation). The buttons still play a

major role in this process, because of their accuracy, but the migration is slowly moving

towards naturalistic input.

From the computer perspective, the output changed from the classical text inter-

faces to graphical and then to more intuitive ones, such as dialogue oriented interfaces.

The Ambient Intelligence (AmI) field models scenarios where a computer is able to

control the environment in a natural way (i.e. switch on/off lights, execute daily tasks,

communicate through spoken language) [52, 173]. Moreover, the computers may have

a personified appearance (i.e. an Embodied Conversational Agent (ECA) [155, 40] or a

Robot [64]) or even a personality [175]. More formally, we will use throughout this thesis

the concept of agent to describe an intelligent entity, such as an interactive system.

Current approaches describe the human-computer interaction as a collaborative,

dialogue-based, task [6]. Both interaction and dialogue task involve rich exchange of

information between at least two peers. The richness of input refers to the possibility

to use multi-modal exchange in the communication process: spoken language, gestures,

postures, vocalisations. The main difference between the two aspects is that, usually,

the dialogue involves knowledge management, whereas the interaction can be strictly
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reactive. So far, softer reactive dialogue models have been proposed, without being

sufficient to ensure a good communication level [137]. In our work, we refer to dialogue

as a model where certain level of response planning and knowledge management is

involved, and to interaction as a model that is mainly reactive.

Both dialogue and interaction models involve feedback detection and generation.

Several levels of feedback can occur at any point through the information exchange

process [37, 8]. These include: perception feedback (positive if the phrase can be

transcribed, negative in case of failure), interpretation (positive if the phrase can be

interpreted correctly according to the rules describing the system, negative in case of

a misinterpretation) or execution feedback (positive if a satisfactory response is gener-

ated, negative otherwise). Out of these, a special category of feedback is represented by

the human emotions. They do not act directly at a certain feedback level, previously

described, but influence them all. For example, a negative emotion in the context of a

perception failure can influence the response style. Instead of replying a simple phrase,

such as: “I am sorry, but I do not understand”, the agent could also build a solution

for the problem: “I am sorry, but I do not understand. I would increase the volume of

the microphone and let you try again.”. In this example, the system is able to detect

frustration, as a negative emotion, and propose a solution instead of just giving the

result error.

Affect Oriented Modelling

In this perspective, R. W. Picard is one of the first computer scientist working in

Affective Computing, to offer a new point of view for engineers [152]. In order to

make human-computer interfaces more interactive, she proposed to integrate emotional

models into existing approaches. She described the problem not as a strict detection

or simulation issue, but with very fuzzy boundaries. One of the challenges underlined

by Picard is that such systems would balance the detection rate against the user’s

satisfaction.

According to Oxford Dictionary [143], the Online Edition, an emotion is a strong

feeling deriving from one’s circumstances, mood, or relationships with others. On the

other hand, the opinions are the beliefs or views of a group or a majority of people.

From a general perspective, an emotion is more complex and fuzzy than an opinion.

Usually in opinion mining field, the literature refers to the valence (negative or positive)

of a certain opinion [28], which is a simplified model of an affective intensity.

From the psychological perspective, P. Ekman proposed his original emotion model

[56, 54] using only six basic emotions, considered as universal and recognizable all

around the world: Anger, Disgust, Fear, Happiness, Sadness, Surprise. This work

is the foundation of the Universality Theory [45], which states that all living beings

express emotions in the same way. W. James is one of the two pioneers in the field

of physiological perception of an emotion, foundation for most of the signal processing

techniques [92].

Even with some controversies in the area, several European inter-disciplinary or-
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ganizations decided to launch ambitious projects such as HUMAINE Consortium [86],

which aims at linking different research communities, all working on the idea of human

centred research. The initial phase of the project finished with the release of the HU-

MAINE database [49], that contains a video corpus annotated with different schemes,

among which a basic set of tools needed to analyse the data. The project continues as

an excellence network, with a lot of researchers involved.

More recently, the SEMAINE consortium, as part of the HUMAINE Excellence

Network, finished a project that focuses on the multi-modal detection aspect [175]. The

Sensitive Artificial Listener (SAL), proposed by SEMAINE, is able to detect human

emotions based on face gestures and several qualitative speech features. Besides this,

the AVEC Challenges [179] propose a set of annotated corpora to solve the same issue.

Original aspects of this thesis

None of the previous presented works focuses on the semantic level. Humans, in every-

day interaction, use natural language, among other modalities, to exchange information.

The semantic level corresponds to the information transmitted, to what is being ex-

changed. The gestures, postures and vocal features are linked to the transmission style,

or how things are being transmitted. We agree that the fusion of multi-modal features

is a difficult task, but we also state that the semantic part of the communication has

to play an important role into the detection process: the how and what have to be

considered together.

Currently, the semantic context of affective words is very poorly exploited. When

it is done, in most cases, manually annotated linguistic resources are proposed. We

suggest an approach that deals with context in affective dictionaries which is generated

automatically out of linguistic resources freely available over the web.

In order to make the machines “understand” human emotions [152], the algorithms

that deal with affect detection and simulation need to be integrated into a system.

Moreover, many of the problems regarding affect-oriented interaction systems are cur-

rently solved (partially or entirely). Therefore, the integration of all these components

into a unified platform becomes critical. Our proposition, AgentSlang, is built around

the idea of component integration and provides an architecture for this purpose. Many

other important steps have to come, but even so, this platform remains one the biggest

contributions of this thesis.

Long Term Goal

The intelligence is characterised by the ability to acquire and apply knowledge and

skills [143]. Building an intelligent agent, described by these abilities, is a very difficult

task. Nevertheless, such a behaviour can be simulated by integrating feedback detection

mechanisms, which would make the whole system more interactive [152].

The final goal of this work is to build a natural interactive environment, by using

Embodied Conversational Agents or Robots. The approaches proposed are reactive,
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based on the semantic feature extraction and emotions detected in a multi-modal con-

text. The usage of affects would increase the interactiveness of the system, while being

able to provide real-time feedback for a dialogue model.

Structure of the thesis

This thesis investigates two main directions: algorithms used to detect user’s emotional

feedback or to build affective linguistic resources, and systems constructed around the

interaction paradigm. Figure 1 presents a detailed structure of this thesis, with links

between several sub-projects.

Detection of User's 
Affective Feedback

Building an 
Interactive System

OAK

MyBlock

Syn!bad

AgentSlang

SOM Detector

Multi-Modal
Detector

Contextualized
Dictionary

Part I: Detection Part II: Systems

Chapter 5

DDMCE
Affective

Contextonyms

Chapter 2
Chapter 3

Chapter 4

ex
te

ns
io

n

al
go

rit
hm application

implem
entation

m
odelling

extension
extension

im
plementation

sub-task

ex
te

ns
ion

implementation

im
plementation

detection linguistic
resource

1

2
3

Legend:

Future work

Implemented

Existing Component

Goal / Problem

Figure 1: The thesis structure and the interaction between the different parts

As stated before, the goal of this thesis is to build a system that deals with natural

interaction. Several aspects of this problem need to be discussed:

1 The problem of natural interaction is linked to emotions and affect detection. This

is one of the major parts of this thesis.

2 Due to the lack of rich interaction data, especially for children, an experiment

dealing with corpus collection was performed.

3 The design of an interactive system is proposed, which integrates several existing

algorithms.
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The problem of Affective Feedback Detection is tackled first by a Self Organizing

Maps (SOM) Algorithm (c9). This approach led to a second algorithm, which uses

multi-modal features and a Support Vector Machine (SVM) to detect emotions (c3).

These models are described in Chapter 2.

While developing the SOM algorithm, we observed that the existing linguistic re-

sources are not accurate enough to be used in affective detection tasks. Therefore, we de-

veloped a new methodology to create a context based affective dictionary (c2)(c6)(p1).

First, a new clique exploration algorithm was developed (j1)(c7), which was applied

afterwards on a subtitle corpora, annotated with SentiWordNet [11] valences. All these

approaches are described in Chapter 3. In the future, this resource could be used as

a dictionary for the multi-modal affect detector, described in Chapter 2.

On the System part, Chapter 4 does a brief description of the protocol, formalised

as a Wizard of Oz scenario, used to collect interaction data from a storytelling envi-

ronment. Technical aspects of the experiment are described as well, by presenting the

Online Annotation Toolkit (OAK) (c1)(d1). Moreover, several psychological results

are presented to support our hypothesis, that the interaction between a child and an

avatar has similar characteristics with the interaction between a child and an adult in

video conference mode (c4)(c5).

Chapter 5 presents the architecture of the MyBlock and AgentSlang projects (c8).

These are systems that allow easy modelling of component based design for building

agents that deal with rich feedback data. Moreover, for the knowledge extraction part,

the Syn!bad library is described.

In future, the interaction model computed from the data collected with the OAK

platform would be compiled into a reactive model, which will be integrated into

AgentSlang. The multi-modal emotion detection algorithm and the contextualized af-

fect dictionary would be integrated as well into the same platform.
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Summary

Human-Computer Interaction migrates from the classic perspective to a more natural

environment, where humans are able to use natural language to exchange knowledge

with a computer. In order to fully “understand” the human’s intentions, the computer

should be able to detect emotions and reply accordingly. This thesis focuses on several

issues regarding the human affects, from various detection techniques to their integration

into a Distributed Interactive System.

Emotions are a fuzzy concept and their perception across human individuals may

vary as well. Therefore, this makes the detection problem very difficult for a computer.

From the affect detection perspective, we proposed three different approaches: an emo-

tion detection method based on Self Organizing Maps, a valence classifier based on

multi-modal features and Support Vector Machines and a technique to resolve conflicts

into a well known affective dictionary (SentiWordNet). Moreover, from the system inte-

gration perspective, two issues are approached: a Wizard of Oz experiment in a children

storytelling environment and an architecture for a Distributed Interactive System.

The first detection method is based on neural network model, the Self Organizing

Maps, which is easy to train, but very versatile for fuzzy classification. This method

works only with textual data and it uses also an Latent Semantic Analyser (LSA) feature

extraction algorithm with large dictionaries as support vectors. The issue is approached

as a Statistical Machine Learning problem and the validation is conducted on a well

known corpus for semantic affect recognition: SemEval 2007, task 14. This experiment

leads to a classification model that provides a good balance between precision and recall,

for the given corpus.

We continue on the same Machine Learning perspective, by conducting a multi-

modal classification study on a Youtube corpus. The smile, as a gesture feature, is fused

with several other features extracted from textual data. We study the influence of smile

across different configurations, with a two level linear Support Vector Machine. This

offers the possibility to study in more details the classification process and therefore,

we obtain the best results for the proposed corpus.

In the field of Emotion Detection the focus is mainly on two aspects: finding the
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best detection algorithms and building better affective dictionaries. Whereas the first

problem is tackled by the algorithms previously presented, we also focus on the second

issue as well. We are decreasing the number of inconsistencies of an existing linguis-

tic resource, the SentiWordNet dictionary, by introducing context. This is modelled

as a context graph (contextonyms), built using a subtitle database. By applying our

technique, we managed to obtain a low conflict rate, while the size of the dictionary is

preserved. Our final goal is to obtain a large affective dictionary that can be used for

emotion classification tasks. Decreasing the number of inconsistencies in this dictionary

would directly improve the precision of the method using it.

The contextonyms are cliques in a graph of word co-occurrences. Therefore, these

represent a strong semantic relation between the terms, similar to synonymic relation.

The clique extraction algorithm used for this purpose was designed for building the con-

textonym graph, since none of the existing algorithms could handle large and dynamic

graph structures. Our algorithm, the Dynamic Distributable Maximal Clique Explo-

ration Algorithm (DDMCE), was successfully validated on various random generated

databases.

From the system integration perspective, the problem of Child-Machine interaction

is tackled through a storytelling environment. From the psychological perspective, this

experiment is a validation of the interactive engagement between a child and a virtual

character. The engineering aspects of this experiment lead to the development of a new

Wizard of Oz platform (OAK), that allows online annotation of the data. Moreover,

this environment helps on designing and building new reactive dialogue models, which

can be integrated into our future system.

The second aspect of system integration is tackled by building a new architecture

for a Distributed Interactive System. This is constructed around the idea of compo-

nent based design, where the structure of the component is simple enough to allow the

integration of any existing algorithm. The proposed platform currently offers several

components for knowledge extraction, reactive dialogue management and affective feed-

back detection, among other classic components (i.e. Automatic Speech Recognition,

Text to Speech). Moreover, all the algorithms previously presented can be integrated

into this platform as different components.

12



Conclusion and Future Work

Conclusion

The issues covered by this thesis are linked to various Affective Computing and Interac-

tion problems. The computer should be able to detect emotions and reply accordingly.

The Affective Computing part is represented by several Detection Algorithms: a

text-based emotion classification method using Self Organizing Maps and a valence

classifier based on multi-modal features and Support Vector Machines. Moreover, due

to an observation made while developing the classification algorithms and since one

representative dictionary for sentiment analysis (SentiWordNet) carries a large number

of conflicts, we also proposed a method to solve these conflicts. From the Interaction

perspective, this thesis approaches two issues: an experiment created for collecting rich

interactive data, in a story telling environment and an architecture for a Distributed

Interactive System.

Detection of User’s Affective Feedback

The field of Emotion Detection focuses on two major aspects: creating better detection

algorithms and building more accurate affective dictionaries. We approached both of

these issues in this thesis.

Our first experiment is based on a Self Organizing Map classifier, which is easy to

train, but very versatile for fuzzy classification. We used a feature extraction using

a Latent Semantic Analysis on text, which served as support for our classifier. The

approach has been validated on a well known corpus for semantic affect recognition:

SemEval 2007, task 14. For this purpose, we managed to obtain a model that provides

a good balance between precision and recall, for the given corpus.

This first approach uses only text to extract features. Several recent studies in Affec-

tive Computing propose multi-modal approaches. Our second experiment is conducted

as a multi-modal classification study on a Youtube corpus. The smile, as a gesture fea-

ture, is fused with several other features extracted from textual data. For this purpose,

we generate different feature configurations to study the smile influence. These features

13
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are used with a two level linear Support Vector Machine, which offers the possibility to

study in more details the classification process. On the Youtube corpus, by using this

approach, we managed to obtain the best results, compared to the original Morency et

al. [126] approach, with a method that is fast enough for an interactive system.

Several issues regarding the classification precision and recall for Affective Comput-

ing are linked with the dictionaries used. These are either manually constructed with a

size too small to cover all the semantic cases or very large in size but carrying a large

number of internal conflicts. Decreasing the number of inconsistencies in a dictionary

directly improves the precision of the method using it. We proposed to decrease the

number of inconsistencies of an existing dictionary (SentiWordNet) by introducing con-

text. The context is modelled as a contextonym graph, built using a subtitle database.

We managed to obtain a low conflict rate, while the size of the dictionary is preserved.

By using our method, our goal is to obtain a large contextualised affective dictionary

that can be used for emotion classification tasks.

The contextonym is modelled as a strong semantic relation between the terms, sim-

ilar to synonyms. In fact, these are cliques in a graph of word co-occurrences. Since

none of the existing algorithms could handle large and dynamic graph structures, the

clique extraction algorithm used for this purpose was designed for building the con-

textonym graph. Our algorithm, the Dynamic Distributable Maximal Clique Algorithm

(DDMCE), was successfully validated on various random generated databases. One of

the strong points of this algorithms is the it addresses the issue of processing in a

distributable way large and dynamic data simultaneously. Moreover, the most impor-

tant validation is represented by the ability to successfully process the data needed to

generate our contextonyms model.

Affective Interactive Systems

From the interaction perspective, in order to obtain a rich corpus for the problem of

Child-Machine interaction, we created an innovative storytelling environment. From the

psychological perspective, this experiment is a validation of the interactive engagement

between a child and a virtual character. We measured the difference between a setup

having the virtual character as a narrator or a psychologist in video conference mode,

by using various communicative features. The only difference, we observed, between

the two scenarios is in the communication modality. This experiment also lead to the

development of a new Wizard of Oz platform (OAK), that allows online annotation of

the data. This environment allows the design of various reactive dialogue models, which

can be tested and integrated into our future system.

The final aspect of this thesis is the proposition of a new architecture for a Dis-

tributed Interactive System. By using a component based design approach, we model a

component structure that is light and simple enough to allow the integration of any ex-

isting algorithm. We propose several components for knowledge extraction (Syn!bad),

reactive dialogue management and affective feedback detection, among other classic

components (i.e. Automatic Speech Recognition, Text to Speech). This platform in-

14
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tends to be the foundation for several affect detection algorithms, starting with all the

algorithms previously presented.

Future work

From the affect detection perspective, the multi-modal approaches should be investi-

gated further. Our experience with the ACAMODIA Project showed that in practice, no

modality carries more importance than the others. In the storytelling experiment, the

feedback is sometimes recovered from speech, gestures, postures, smiles or eye-gazing.

In almost all the situations, the feedback is recovered only from one modality, while

the other are missing or occluded. For example an occlusion phenomenon in speech ap-

pears when a noise covers the dialogue making the word recognition impossible, while

an occlusion phenomenon in gestures appears for instance in a situation where the face

is covered by the user’s hand. Working with children makes this problem more difficult

because all these issues appear with a high frequency.

From the dictionary conflict resolution, our current approach uses subtitles to com-

pile a non-formal, dialogue style, linguistic model. In future, for different language

styles a corresponding context graph could be constructed. This could improve the de-

tection results for more formal environments. In the end, a large context structure can

be compiled, with words clustered by style, domain and part-of-speech. Each of these

propositions raises issues related to the Big Data Processing domain, which currently

have not been discussed by the thesis.

The AgentSlang system offers a good foundation for building Affective Interactive

Systems. Nevertheless, the number of usable components needs to increase. Currently,

we propose at least one element to solve each representative problem in our design

flow, but more need to be integrated. The dialogue management module, one of the

critical parts of our proposition, is currently a reactive approach. The state based model,

developed for the ACAMODIA Project needs to be integrated as well. Moreover, a more

complex management based on Dialogue Games Theory [51], like the one we proposed

for Ales et al. [6], could be developed.

Our final proposition, MyBlock has been validated only in terms of performance

against a similar system, the SEMAINE platform. The technical validation is only

the first step and a more extensive study of integration and acceptability needs to be

conducted with human users. For this purpose, we propose two directions: a) a demon-

strator having only Affective Feedback detection and synthesis capabilities, with a basic

reactive dialogue management, similar to the Sensitive Artificial Listener proposed by

SEMAINE b) a system having complex dialogue management based on ACAMODIA

Project or Dialogue Games Theory [6, 51]. The first direction allows to compare our

platform with SEMAINE, using the same scenario. Whereas, the second approach is

more complex and integrates all the components currently developed (i.e. Affective

Feedback Detection, Knowledge Extraction, Dialogue Management). This study can be

conducted in a storytelling environment, similar to ACAMODIA, or a scenario depen-

dent task, such as “How was your day ?” proposed by the Companions Project.
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