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INTRODUCTION

Sediments are the final deposition step for active contaminants and can provide
information regarding the sources and concentrations of contaminants. Starting from the
premise that lake sediments are not heavily influenced by external factors (sedimentation,
suspension, resedimentation), they could provide a strong basis for the reconstruction of the
history of lake pollution.

Persistent organic pollutants and their long lifespan can be used to provide a history of
pollution over the last hundred years. For this kind of study, it is necessary to offer accurate
chronologies of sedimentation rates, which are important not only for the sediment dating, but
also for the determination of sediment accumulation rates.

In order to trace the history of man’s effect on environmental matters, we must refer to
the period with the greatest impact, namely the last 150 years. With the industrial revolution
and the emergence of new industries and human activities, the human effect on the environment
had the greatest impact after the middle of the 19th century. Given the industrial expansion in
the post-war period in Romania, pollution was not considered a priority for the policies of the
governments of that period. Furthermore, there is no monitoring data for the compounds
selected in the study, which creates a gap in the understanding and knowledge of the extent of
pollution of environmental factors with these substances.

Many substances have trace quantities of natural origin radioactivity, radioactive trace
elements being found in all environmental matters and all lifeforms. The application of
radiometric methods for the geochronology of sediments has enjoyed serious success, the
measuring of trace quantities of radionuclide has been performed for decades. This procedure
is performed on sediment cores, taken from different depths, which are later analyzed according
to the substances and compounds of interest. With the emergence of a growing interest in the
environment and the need for knowledge of the distribution of both natural and artificial
radioactive species, these radioactive dating methods became a perfect tool for the
interpretation of chronological history of contaminated sediments. These traces are later
interpreted for sedimentation rates and establishing a chronological timeline for different
sediment depths, being later linked to the contamination profiles (Jeter, 2000).

In Romania, there is little information and studies regarding pollution with persistent
organic compounds (Covaci et al., 2006; Ene et al., 2012; Ciucure et al., 2023), and even less
studies regarding the history of pollution with persistent organic pollutants (POPs) (Winkels et
al., 1998).



Therefore, the novelty of this thesis consists in providing information regarding the
reconstruction of historical pollution, being the first determination of this kind in Romania, this
study aiming to provide new data on the extent and variation over time of pollution with
selected compounds in the last hundred years, using as methodology the dating of aquatic
sediments by Gamma spectrometry, and the analysis of three category of POPs (polycyclic
aromatic hydrocarbons, organochlorine pesticides, polychlorobiphenyls) by high-performance
analytical techniques such as Gas chromatography-Mass spectrometry (GC-MS) and Gas
chromatography-Electron Capture Detector (GC-ECD).

Three different types of lakes were chosen, in which the distribution of persistent
organic pollutants from lake sediments was interpreted, all this in order to better understand
the differences and the level of pollution between the three lakes. First is the deltaic Lake lacob,
situated in the Danube Delta, second one is the glacial Lake Muntinu (lezerul Muntinului),
which is situated at the southern part of Valcea county, very close to the famous Transalpina
Road, and the third and final lake is the lowland Lake Stiucilor, situated near the old industrial
city of Gherla.

To investigate the anthropogenic influence on POP concentrations in the sediment
layers analyzed, a series of multivariate statistical analyses were required. Diagnostic
parameters for both hydrocarbons and pesticides were based on the use of molecular ratios of
the investigated compounds. The values used for the ratios were the absolute values measured
of the 16 polycyclic aromatic hydrocarbons (PAHSs) and 20 selected organochlorine pesticides
(OCPs), which were then combined with 7 diagnostic parameters for PAHs and 7 diagnostic
parameters for OCPs.

Another section in pollution assignment is the determination of ecological and
bioecological risk aspects. There are multiple methods of determining these kinds of risks, but
in this work, the chosen methods are the sediment quality guidelines, often known as SQGs
after their acronyms. These quality guidelines performed on sediments are a mean of
interpreting the effects of contamination with different types of chemicals on the population of
organisms living in the sediments, results which are also reported to human populations. In this
work, 4 types of SQGs results were used, results used as threshold levels for 14 individual
hydrocarbons as well as the total value of hydrocarbons, values for 8 individual OCPs, and
total value reported for all 209 polychlorinated biphenyls (PCBs).

The last topic regarding modern pollution with POPs is the health risk assessment,
which is the evaluation of human health risk from exposure to pollutants such as dioxin-like

compounds, which are very toxic and persistent chemicals that tend to bioaccumulate in fatty



tissues as a result of their resistance against metabolism and their hydrophobic character. A
concept of toxic equivalency factors (TEFs) was developed by the World Health Organization
(WHO), which are estimates of toxicity attributed to a few individual compounds such as the
dioxin-like class, estimates which are still used today as a guidance for risk evaluation for
human health. In this study, PCBs are the only dioxin-like substances, but there are also TEFs
developed for a few PAHSs, mainly for the 16 U.S. Environmental Protection Agency (EPA)
PAH, as certain PAHs have very toxic and carcinogenic features.

This doctoral thesis is structured in two parts, a theoretical part consisting of the study
of literature characteristic of the topic of this thesis, and an experimental part, which includes
the new experimental results obtained, their interpretation and discussion.

The theoretical part consists of 4 chapters containing general data about persistent
organic pollutants and the classes into which they are divided, the fate of these type of
compounds in the environment, the risks involved in these compounds both on health and
biological and ecological risks, and finally the methodology for reconstructing the pollution
history.

The experimental part is also structured in 4 chapters, presenting the instrumental
methods used in this research, the results obtained from the study of the three lakes, as well as
their interpretation.

The results presented in this study were achieved during doctoral studies and were
presented at international scientific events abroad, being published or in the process of being
published in WOS-listed journals.

At the end of this thesis the following annexes can be found:

v' List of abbreviations used frequently used in the present doctoral thesis (Annex 1),
v' List of scientific publications and papers presented at scientific events based on the research

conducted during the doctoral study (Annex 2).

A GOOD UNDERSTANDING OF THE PAST ALLOWS US TO ESTABLISH
FUTURE MEASURES AND DIRECTIONS THAT ALLOW FOR SUSTAINABLE
DEVELOPMENT OF SOCIETY AND HIGH HEALTH OF THE
ENVIRONMENT AND PEOPLE.



1. Persistent organic pollutants/substances

Persistent organic pollutants (POPs) are carbon-based toxic chemicals, which by the
description of the United Nations Environmental Programme UNEP 2025a comprise of
materials with certain physico-chemical properties, and once they reach the environment, they
tend to remain in their initial form for years, are widely distributed in the environment through
natural transport processes, are stored in all living things, and are toxic to all forms of life.

They are mainly lipid-soluble compounds which tend to biomagnify and bioaccumulate
in fatty tissues, reaching the food web, therefore posing a risk to the environment and human
health for generations to come, resulting in acute and chronic toxic effects (Berntssen et al.,
2017; UNEP, 2025a).

As their name suggests, these compounds are persistent in the environment, being able
to last for years, even decades, before breaking down. They are ubiquitous in the environment,
and due to their persistence and resistance to degradation, they can be carried over very long
distances, being detected in environmental matter such as soil, sediments, benthic organisms,
water columns, and atmosphere (Mortimer, 2013). They are resistant to most of the degradation
phenomena, such as photolytic, biological, and chemical degradation, leading to long half-lives
and to a high persistence in the environmental matter (De Rosa et al., 2022).

Due to their persistence and potential toxicity to humans and environment, they were
officially banned from use in the 1980s. Although many of the persistent organic pollutants
(POPs) were banned and prohibited for use since decades ago, they can still be frequently
detected in the human body, certain studies suggesting that the woman’s body not only retains
this type of compounds in maternal serum, cord blood, and placenta, but also transmits it to
newborns through breast milk. Even at low level of exposure to POPs, they possess a high risk
of developing carcinomas, allergies, and hypersensitivity, having disrupting effects on the
reproductive, endocrine, and immune system. (Hu et al., 2021; UNEP, 2025a).

POPs include a variety of toxic chemicals, most notably polychlorinated dibenzo-p-
dioxins (PCDD), polychlorinated dibenzofurans (PCDDF), and polychlorinated biphenyls
(PCBs), organochlorine pesticides (OCPs), which have been studied extensively for decades
and were among the first classes of compounds which were included in the first list of the 2001
Stockholm Convention on the prevention, release, and reduction of POPs from the
environment. The Stockholm Convention list of compounds has been updated along the years
with other POPs such as brominated flame retardants such as polybrominated diphenyl ethers
(PBDE) added to list in 2009, hexabromocyclododecanes (HBCDD) added in 2013,



perfluorinated alkyl such as perfluorooctane sulphonate (PFOS) together with its salts in 2017
and perfluorooctane sulphonyl fluoride (PFOSF) in 2004. Other categories of POPs are
beginning to make their toxic presence felt in the environment, among them are brominated
and mixed halogenated dioxins, furans, and biphenyls, polychlorinated naphthalene, and
polycyclic aromatic hydrocarbons (PAH) (Mortimer, 2013; UNEP, 2025b).

1.1. Organochlorine pesticides (OCPs)

Organochlorine pesticides (OCPs) are a class of persistent organic pollutants, often
referred to as chlorinated aromatic hydrocarbons (Albanese & Guarino, 2022). This class
consists of a vast group of compounds, each of them having diverse structures and features.
Organic compounds which contain five or more chlorinated atoms are known as
organochlorines (Singh et al., 2022). They are very resistant to biological, microbiological, and
chemical degradation, their half-life varying from months to decades (Darko & Acquaah,
2007). Other names attributed to pesticides are insecticides, fungicides, bactericides,
herbicides, and rodenticides, with most of the pesticides having the capacity to destroy many
of the pests and weeds, but there are some classes which were specifically created for a certain
pathogen (Jayaraj et al., 2016).

They have been used for decades in worldwide agriculture, where they were applied in
large amounts, still being present in environmental elements such as atmosphere, water, soil,
sediments, marine life, and food. OCPs are very persistent chemicals, and tend to
bioaccumulate in food chains, thus being considered a health threat to living beings, aspect
which resulted in the banning of their production as well as their usage at the beginning of the
1980s (De Rosa et al., 2022).

This class of compounds were used extensively for decades mainly as insecticides, and
fungicides in agriculture by interfering with the nervous systems, but they have also been used
in public health (Sparling, 2006). OCPs have shown very good results which is why it
revolutionized agriculture in the mid-20" century, being preferred in favor of other classes of
pesticides from those times.

They are semi-volatile compounds, being therefore carried over long distances as
suspended particles and due to their hydrophobic nature, they tend to fix most often on solid
materials, being found in a wide range of environmental matter such as soil, sediments, waters,
fish, and food. As a result of their application on surface soils, they reach the aquatic
environment via runoff or atmospheric deposition, but given their hydrophobic nature, they are
removed from the surface water and fix on the bottom sediment, but they can reach the water
column due to phenomena such as water turbulence or other activities that disturb the
sediments. The sediment particles that have large organic content or porosity have a high



adsorption capacity leading to the conclusion that sediment is a major depository source for a
large number of applied pesticides and that marine environment is one of the main sites for the
accumulation of OCPs and PCBs (Kuranchie-Mensah et al., 2012; De Rosa et al., 2022).

Due to their persistence in the environment and lipophilicity, they have the tendency to
bioaccumulate and biomagnify through the food chain, being detected in all classes of living
organisms (Albanese & Guarino, 2022). Therefore, they were banned from use since the 1970s
in the USA, and worldwide since the 1980s (Purdue et al., 2007). Regardless of their banning,
some of them are still used to combat disease such as DDT for malaria in areas such as Africa,
India, and South America (IARC 113, 2018), and lindane (y-HCH) for the treatment of lice and
scabies (Schaefer et al., 2015).

In 2001, the Stockholm Convention officially classified a certain number of OCPs, as
persistent organic pollutants (POPs), 9 of them being listed in their dirty dozen list including
compounds such as aldrin, chlordane, DDT, dieldrin, endrin, hexachlorobenzene, heptachlor,
a-endosulfan, p-endosulfan, mirex, and HCH with its isomers a-, -, and y- (Albanese &
Guarino, 2022).

Many pesticide products that have been marketed over the years were and still are sold
as isomeric mixtures, even though their toxicological aspects can differ between isomers.
Therefore, there was and still is a tendency in using single-isomer products (Sutherland et al.,
2004).

A review on OCPs by Jayaraj (2016) states that around 40% out of all the used
pesticides belong to the organochlorine class, and due to their low cost, pesticides such as
DDTs, HCHes, aldrin, and dieldrin are considered among the most used from the old pesticides
(Jayaraj et al., 2016).

From the structural point of view, OCPs are divided into five groups (Blus, 2002):

I. Dichlorodiphenyltrichloroethane  (DDT) with its  degradation  compounds
dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD);

Il. Hexachlorocyclohexane (HCH) with its isomers a-, f-, 6-, y-, the first 3 isomers being all
byproducts of the latter y-HCH, also known as lindane;

I11. Cyclodienes, most notably, aldrin, dieldrin, endrin, endosulfan, heptachlor, and chlordane;

IV. Toxaphene with other related chemicals;

V. Mirex and chlordecone.

The list with the parent compounds and the degradation compounds are presented in
table 1 and table 2.



Table 1. OCPs and certain physico-chemical characteristics (from: Sparling et al., 2016)

Name Class of MF? MW S(;/I\l/ﬂ)tﬁgty Field Year of Kow Koc mp (°C)? WHO classification®
OCPs (Mg/L)* Half-life ban
p.p-DDT C14HoCls 355 0.001 15 years 1972 6 563 1085  Moderately hazardous
p.p-DDE DDTs CuHsCly 318 0.06 15 years 1972 5669 594 89 Slightly hazardous
p.p-DDD Ci4H1Cls 320 0.05 15 years 1972 5.0-6.2 5.36 110 Unlikely acute hazard
Methoxychlor C16H15ClI302 345 0.1 128 days 2003 4.8-5.1 3.13 87 Unlikely acute hazard
100-1424 Still 135.
y-HCH HCHs CeHeCls 291 7 days tolerated 3.7 5 113 Moderately hazardous
HCB CeCle 285 0.04 1000 days 1966 3.9-64 4.75 228 Unlikely acute hazard
Aldrin CoHeCls 365 0.03 365 days 1974 6.5 4.24 104 Highly hazardous
Dieldrin C12HsClsO 381 0.186 1000 days 1987 3.6-6.2 4.08 175 Highly hazardous
Endrin C1oHgClsO 381 0.24 4300 days 1987 3.2-5.3 4.00 200 Highly hazardous
4-200 Phased
Endosulfan . CoHsClsO3S 407 0.5 out since 3.1 4.09 106 Highly hazardous
Cyclodienes days 2010
Chlordane C1oHeClg 410 0.06 283;&287 1988 6 4.78 106 Moderately hazardous
Still Highly — Moderately
Heptachlor CiwoHsClz 373 0.06 250 days tolerated 44-55 438 96 hazardous

MF — molecular formula; MW — molecular weight; Kow — octanol-water coefficient; Koc — soil-water partitioning coefficient;

mp (°C) — melting point

a—PubChem, 2025g;

b — Jayaraj et al., 2016;

* — the higher the water solubility, the higher the chances of finding a certain compound dissolved in water at toxic concentrations.
A certain compound with low water solubility is less likely to be present in water columns of lakes, ponds, and rivers (Sparling et
al., 2016).



Table 2. Characteristics of metabolites and degrading compounds of certain OCP parent compounds

Water
Name Class of OCPs MF? MWw? Solubility Kow Koc  mp (°C)

(mg/L)
o,p-DDT C14HoCls 355 0.085° 6.79°  5.35° 74P
o,p -DDE DDTs C14HsCls 318 0.14° 6.00° 5.19° -
o,p -DDD C14H10Cl4 320 0.1° 5.87° 5.19° 78"
a-HCH CsHeCls 291 2¢ 389 357" 158°
B-HCH HCHs CsHsClo 291 0.2° 3.78¢ 357"  310°
J-HCH CsHeCle 291 31° 4144 3.8 138°
endrin-aldehyde C12HsCleO 381 - 4.8% - 235%
a-endosulfan CoHsCls03S 407 - 3.6¢ 230°
S-endosulfan Cyclodienes CoHeClsO3S 407 - 4.3¢ 2102
endosulfan-sulphate CoHeCls04S 423 0.222 3.66° - 3587
heptachlor-epoxide C10HsCIl;0 389 insoluble - - 16°
tecnazene C-nitro CsHCIsNO2 260 2.092 4.38% - 99?
quintozene compounds CeCIsNO; 295 0.44% 4.22° - 1462

MF — molecular formula; MW — molecular weight; Kow — octanol-water coefficient; Koc — soil-water partitioning
coefficient; mp (°C) — melting point; “-* not specified;

a—PubChem, 2025g;

b — ATSDR, 2022a;

c - IARC 20, 1979;

d — Sutherland et al., 2004;

e — NTS, 2025;

f— ATSDR, 2005;



1.1.2. Sources of OCPs

OCPs can reach the environment after the applications of pesticides, wastes polluted
with organochlorine compounds that have been discarded into certain landfills, discharges of
industrial wastes from certain units that synthesize organochlorine chemicals. Being volatile
compounds, they can also be transported over long distances, afterwards being deposited on
solid materials (Figure 2) such as soils and sediments (Jayaraj et al., 2016).

Human exposure to OCPs is achieved by inhalation of OCPs particles from air, dermal
absorption, water, and food intake, which is the main source of OCPs to human, especially
food of animal origin, some studies indicating a dietary intake between 5-30 ng/kg body weight
for adults and children (Berntssen et al., 2017; EFSA, 2006a; Singh et al., 2022; Panescu et al.,
2024a). Another important source of exposure to OCPs is long-term dermal absorption from

contaminated cosmetic products (Darbre, 2006; Singh et al., 2022).
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Figure 2. Pesticides environmental cycle (source: Singh et al., 2022)



1.2. Polychlorinated biphenyls (PCBs)

Polychlorinated biphenyls (PCBs) are a class of synthetic aromatic chemical
compounds, in which all or some hydrogen atoms that are attached to a biphenyl ring are
substituted by chlorine atoms. These pollutants are divided into 209 congeners, and are
considered highly persistent in environmental matters. PCBs carry other synonyms such as,
chlorinated biphenyls, chlorinated diphenyls, chlorobiphenyls, or polychlorobiphenyls (IARC
107, 2016).

They were discovered in 1825, synthesized by Michael Faraday, presented as “benzene
hexachloride”, obtained by the reaction of benzene with chlorine in the presence of sunlight.
They have been successfully marketed for commercial use in 1929, being entirely of anthropic
origin, produced as industrial chemicals, being marketed as complex mixtures, never as single
compounds, with multiple isomers at different degrees of chlorination and used in various
industries such as dielectric fluids for capacitors and transformers, lubricating and cutting oils,
heat transfer fluids, and as additives in pesticides, paints, carbonless copy (“NCR”) paper,
adhesives, and plastics, being produced in over a million tons from 1929 to the mid of 1970s
(Erikson, 2001; Loganathan & Lam, 2011).

Depending on the origin and country it was produced, PCBs were commercialized
under different names, Aroclor in the United States, Chlophen in Germany, Kanechlor in Japan,
Phenoclor and Pyralene in Italy, (Megson, 2019; Erikson, 2001), Fenclor in France (Erikson,
2001), Sovtol and TCB in USSR-Rusia (AMAP, 2000), and Delor in Czechoslovakia (Erikson,
2001).

Due to the fact that PCBs have shown resistance to high temperatures (UNEP, 1999),
oxidation, acids and bases (Bozlaker et al., 2008), the majority of these PCB products were
used mainly for industrial activities like dielectric fluids in electronic capacitors and
transformers (Jiang et al., 1997; Harrad et al., 1994; AMAP, 2000), production of carbonless
copy paper, additives in plastic, surface coatings in paints, lubricants and hydraulic oils
(Markowitz, 2018; Hong et al., 2005; AMAP, 2000; UNEP, 1999; Kalmaz & Kalmaz, 1979).

After several considerations from environmental representatives from different
countries, it has been decided that PCB congeners represent a hazard for the environment due
to their toxic behavior, persistency, and bioaccumulation, so their production was stopped in
the late 1970s, early 1980s (Reddy et al., 2019), but they were still being produced in some
regions until the beginning of the 1990s (AMAP, 2000). The first big official regulations

regarding PCBs were in 1998 at the Aarhus protocol, in which the goal was to reduce and to



eliminate them from the environment, but the most important decision was taken in 2001 at the
Stockholm convention, in which they were included in the first list of hazardous chemicals, the
so called “dirty dozens”, where they appear in both annex A (elimination) and annex C
(Unintentional production) (UNEP, 2025c).

They are commonly identified using the numbering system in numerical order, from
PCB 1 to the last, which is PCB 209. This system was first used back in 1980, where
Ballschmiter and Zell have developed a scheme for numbering each individual PCB congener
in ascending order depending on the number of chlorine atoms substitutions from each
sequence (Ballschmiter & Zell, 1980) (Table 5). For example, the synonym for PCB 158 is
2,3,3",4,4°,6-Hexachlorobiphenyl. This system is still used as reference in present days and its
use is even confirmed by the International Union of Pure and Applied Chemists (IUPAC).

In this class of compounds, between 2 and 10 chlorine atoms are attached to a biphenyl
molecule. Depending on the location and the number of chlorine atoms present in a PCB
molecule, data can be found about their toxicity, physicochemical characteristics, and their
origins, but their behavior in the environment is also determined by the number of chlorine
atoms from the biphenyl ring (Wolska et al., 2012).

“Each homolog group has a particular number of isomers: mono-chlorobiphenyl- 3,
di- 12, tri- 24, tetra- 42, penta- 46, hexa- 42, hepta- 24, octa- 12, nona- 3, and
decachlorobiphenyl 1 (Megson, 2019).

PCBs can be grouped according to the number of chlorine atoms, resulting in 10
homologue groups (Table 6), from nonachlorobiphenyls to decachlorobiphenyls, the majority
of PCBs (more than 60%) being tetra- to hexachlorobiphenyls (IARC Monographs 107, 2016).

From all the 209 PCBs congeners it is difficult to determine all of them, so in order to
have a proper determination, certain PCBs mixtures are used as standard for quantification of
matching congeners from environmental samples or other products. One important PCB
indicator is the 12 dioxin-like PCBs (77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189),
which is suggested by the World Health Organization (WHQO), and it is recommended to be
used for the evaluation of human health risk (Megson et al., 2019). All these dioxin-like PCBs
have been assigned toxicity equivalency factors (TEFs) by the WHO, revised by Van den Berg
et al., 2006, as they are considered to possess higher toxicity in comparison to the rest of the
PCB compounds (IARC Monograph 107, 2016).



Table 5. PCBs? number determined by Ballschmitter & Zell, 1980 and position of chlorine atoms for each phenyl ring of the PCBs determined
by IUPAC (from: IARC Monograph 107, 2016)

Position® 2 3 4 23 24 25 26 34 35 234 235 236 245 246 345 2345 2346 2356 234556
none 1 2 3 5 7 9 10 12 14 21 23 24 29 30 38 61 62 65 116
2’ 4 6 8 16 17 18 19 33 34 41 43 45 48 50 76 86 88 93 142
3 11 13 20 25 26 27 35 36 55 57 59 67 69 78 106 108 112 160
4 15 22 28 31 32 37 39 60 63 64 74 75  81* 114* 115 117 166
2’3 40 42 44 46 56 58 82 83 84 97 98 122 129 131 134 173
2’4 47 49 51 66 68 85 90 91 99 100 123* 137 139 147 181
2’5 52 53 70 72 87 92 95 101 103 124 141 144 151 185
2’6’ 54 71 73 89 94 96 102 104 125 143 145 152 186
34 77 79 105 109 110 118* 119 126* 156* 158 163 190
3,5’ g0 107 111 113 120 121 127 159 161 165 192
2’34 128 130 132 138 140 157 170 171 177 195
2’3’5 133 135 146 148 162 172 175 178 198
2°,3,6° 136 149 150 164 174 176 179 200
2245 153 154 167* 180 183 187 203
2’46 155 168 182 184 188 204
345 169* 189* 191 193 205
2’345 194 196 199 206
2,346’ 197 201 207
2,356 202 208

a — Scheme developed by Ballschmitter and Zell, 1980, for numbering each individual PCBs congener in ascending order in relation
with the number of chlorine atoms substitutions from each sequence

b — Position of chlorine atom on each ring

* — Dioxin-like PCBs indicated with another color



Table 6. PCBs homologue groups with certain physical and chemical properties (from: IARC Monograph 107, 2016)

Homologue group ~ CAS No.? I\l/zlglrfrc]ﬂ::r isNo(r)n?;s BZ no® ﬁ%{éﬁvﬁr gzl\?\;/'x; pgfftlt(i?g)c pigt"(i?g)d
Monochlorobiphenyl  27323-18-8  C12HoCl 3 1-3 188.66 18.79 25-77.9 285

Dichlorobiphenyl 25512-42-9  C12HsCl: 12 4-15 223.10 31.77 24.4-149 312

Trichlorobiphenyl ~ 25323-68-6 Ci12H/Cls 24 16-39 257.55 41.30 28-87 337
Tetrachlorobiphenyl 26914-33-0  C12HeCls 42 40-81 291.99 48.65 47-180 360
Pentachlorobiphenyl  25429-29-2  C12HsCls 46 82-127 326.44 54.30 76.5-124 381
Hexachlorobiphenyl = 26601-64-9  Ci12H4Cle 42 128-169  360.88 58.93 77-200 400
Heptachlorobiphenyl 28655-71-2  C12H3Cly 24 170-193  395.33 62.77 83-149 417
Octachlorobiphenyl ~ 55722-26-4  C12H2Clg 12 194-205  429.77 65.98 159-162 432
Nonachlorobiphenyl  53742-07-7  C12HClg 3 206-208  464.22 68.73  182.8-206 445
Decachlorobiphenyl  2051-24-3 C12Cl1o 1 209 498.66 71.10 305.9 456

a— CAS (Chemical Abstract Service)

b — PCBs number determined by Ballschmitter & Zell, 1980

¢ — Values approximated depending on the range across the isomers
d — average values for all isomers of the certain group



1.2.1. Sources of PCBs

Other by-products of PCBs continue to be released in the environment unintentionally
through chemical activities like waste incineration, fuel combustion and even from
vaporization from sources that contained PCBs products (Pandelova et al., 2006; Dyke et al.,
2003; Bozlaker et al., 2008). Even in present days, the major sources of PCBs belong to the
intense use of the old commercial products that contained PCB and their volatilization, but they
can also be released through combustion, industrial thermal processes or unintentionally as by-
products from various industries (Mao et al., 2021). However, the main sources of PCBs are
emissions from the production of electricity, production of steel, incineration of various wastes,
emissions which will later volatilize and deposit on solid materials such as soils and sediments
(Montano et al., 2022). Since they are resistant to degradation, and do not degrade rapidly in
the environment, they tend to bioaccumulate (Erikson, 2001).

Thus, these chemicals have been found in environmental matter like air (Dreyer &
Minkos 2023; Mastin et al., 2022), soil (Remelli et al., 2022; Qin et al., 2022), and water (Guzel
et al., 2022; Huang et al., 2020), with significant amounts even in vital food products like fish
(Mikolajczyk et al., 2020), meat (Barone et al., 2019), fruits (Grassi et al., 2010) and vegetables
(Shen et al., 2016).

Fruits and vegetables tend to have lower concentrations of organic pollutants like
PCDDs, PCDFs and PCBs in comparison to fish and other products of animal origins (Zuccato
et al., 1999). In the present and more recent days, lesser-known PCBs by-products have been
detected in environmental sources from different locations. They have also been found in newer
and more modern pigments and dyes, this being a strong argument that these types of PCBs do
not have their origins from legacy commercial PCBs products from the early days, thus,
attesting a new era of non-legacy PCBs presence in environmental matter (Grossman, 2013).

After being considered highly toxic and since their ban in the late 1970s, they are found
across almost all environmental matters, where they continue to be considered harmful for
humans and animals. Thus, they have become an important source that requires permanent

monitorization.



1.3. Polycyclic aromatic hydrocarbons (PAHS)

Polycyclic aromatic hydrocarbons (PAHS) are a class of compounds of organic origin
which are found ubiquitously in all environmental sections and are considered a hazard for
both human and environmental health due to their high toxicity and carcinogenicity. Their
origin is for the most part coming from anthropogenic activities, but it can derive from natural
processes as well. Many of them are classified as persistent organic pollutants and are
chemically inert.

This class of compounds has been intensively studied for several decades in order to
understand their effects and fate on the environment. Stogiannidis & Laane, 2015 cite a list of
660 parent PAH compounds developed in 1997 by Sander and Wise, which consists of a list of
aromatic compounds containing fused rings connected to each other, ranging from one
aromatic ring (benzene) up to nine-ringed PAHSs.

They are not odorless, as they can have a very faint smell. PAHs usually occur as a
multicomponent mixture, not as single compounds, and as pure state chemicals they are usually
found as white, colorless, faint yellow or green solids (ATSDR, 2014). These pure PAHSs are
usually known to be colorless, white, pale yellow, or pale-green solids (Ravindra et al., 2008b).
PAHs are classified as semi volatile organic compounds, with hydrophobic and lipophilic
characteristics, and due to their hydrophobic nature, they tend to adsorb rather fast to particulate
organic matter in sediments or soot (Stogiannidis & Laane, 2015).

PAHs are widely distributed in the environment, reaching all environmental sections
such as atmosphere, water, sediments and biota and their fate and distribution in the
environment is closely related to their physico-chemical properties (Lourenco et al., 2023).

They are present in the atmosphere in two phases, one being as gas, and the other as
particulate phase. The way they are distributed depends on factors such as the size of the
suspended particles, their vapor pressure, the ambient temperature, and the solubility of the
compound (Baek et al., 1991).

The majority of PAHSs are soluble in non-polar organic solvents and are not soluble in
water. These compounds of organic origin are comprised of two or more fused aromatic rings.
They are also referred to as polynuclear aromatic hydrocarbons (PNAS), fused ring aromatics
or condensed ring aromatics. The PAHSs that are widely found in the environment can contain
more aromatic rings, usually from two to seven rings, but the presence of compounds with
more rings was also reported. PAHs do not differ from other hydrocarbons, they having

hydrogen and carbon in their composition, but there are some compounds in which one of the



carbon atoms is replaced with one atom of nitrogen, oxygen, or sulfur, which are called
heterocyclic aromatics or polycyclic aromatic compounds (PAC) (Boehm, 2005).

These compounds have different physical and chemical features on account of their
molecular mass, which has an influence on their movement and fate in the environment. For
oils and oil derivatives in water, processes such as solubilization, evaporation, biodegradation,
and photo-oxidation take place in the first hours after the spill (Fingas, 2005). Exposing these
compounds to light and contact with other chemicals affects the toxicity of PAH mixtures or
individual PAHSs. Also, the concentration and the structures of PAHs have an influence on the
magnitude of the toxicological effects, carcinogenicity, mutagenicity, and genotoxicity (Logan,
2007).

The physico-chemical properties, the way PAHSs interact with the environment and its
organisms are strongly correlated with the number and the position of their aromatic rings
(UNEP, 1992). So, the higher the number of aromatic rings, the higher will the melting and the
boiling points be, which will result in a lower solubility in water, lower vapor pressure, and a
hydrophobic nature, leading to affinity for organic materials and deposition in sediments
(Lourenco et al., 2023).

There is a list comprising of 16 priority PAHs chosen by the U.S. EPA which includes
some of the parent PAHs which are most frequently detected in environmental monitoring. The
16 selected compounds are: naphthalene (NAP), acenaphthylene (ACY), acenaphthene (ACE),
fluorene (FL), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), pyrene (PYR),
benz[a]anthracene (BaA), chrysene (CRY), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene
(BKF), benzo[a]pyrene (BaP), indeno[123-cd]pyrene (IPYR), dibenzo[ah]anthracene
(DbahA), and benzo[ghi]perylene (BghiP) (Table 7) (U.S. EPA, 2025a), and all of them are
also included in EPA’s Priority Pollutant List (U.S. EPA 2025b).



Table 7. Characteristics of the 16 priority PAHs

Name Priority list? MFP MWP? NRP  bp (°C)® Environmental Distribution®
Naphthalene E,U CioHs 128 2 218 Particle gas phase
Acenaphthylene U Ci2Hs 152 2 280 Gas phase
Acenaphthene U Ci2H1o 154 2 279 Gas phase
Fluorene B,U C13H1o 166 2 295 Particle gas phase
Phenanthrene U CiaH1o 178 3 340 Particle gas phase
Anthracene E,U CuaH1o 178 3 342 Particle gas phase
Fluoranthene E,U CisH1o 202 3 375 Particle gas phase
Pyrene U C1sH10 202 4 393 Particle gas phase
Benz[a]anthracene C, U, CisHi2 228 4 400 Particle gas phase
Chrysene C, U, CisHi2 228 4 448 Particle gas phase
Benzo[b]fluoranthene C E U, CaoH12 252 4 481 Particle gas phase
Benzo[Kk]fluoranthene C,E,U CaoH12 252 4 480 Particle gas phase
Benzo[a]pyrene C E U, CaoH12 252 5 496 Particle gas phase
Indeno[123-cd]pyrene C E U, Ca2H12 276 5 536 Particle phase
Dibenz[ah]anthracene C,U Ca2H14 278 5 524 Particle phase
Benzo[ghi]perylene C,EU Ca2H12 276 6 550 Particle phase

Specific PAHs which are enlisted in priority pollutants lists: C - considered carcinogenic (Stout & Emsbo-Mattingly,
2008), E — European priority pollutant as defined by the European Commission (2001), U — U.S. EPA 16;

bSource: PubChem, 2025a; MF- molecular formula; MW- molecular weight; NR- number of aromatic rings; bp —
boiling point.



1.3.1. Sources of PAHSs

Their occurrence in the environment can be made from natural and anthropogenic
processes, with similar compounds being introduced in the environment by both methods, thus
leading to the necessity of using proper diagnostic tools in order to establish and differentiate
the sources (Boehm, 2005).

Most commonly, PAHSs sources are classified into natural sources such as combustion
of organic material (Wang et al., 2023; Guerrerro et al., 2019), or from volcanoes (Kozak et
al., 2017; Tomasek et al., 2021), but they are mainly originated from anthropogenic sources
such as industrial activities (Cao et al., 2022; De Almeida et al., 2018), and vehicle emissions
(Bakeas et al., 2011; McCaffery et al., 2020), with other examples of PAHSs that are produced
for commercial use, such as naphthalene, fluorene, anthracene, phenanthrene, fluoranthene,
and pyrene (Franck & Stadelhofer 1987).

The most well-known classification of PAHSs is by the temperature of their formation,
which can be of petrogenic or pyrogenic origin, either formed naturally or anthropogenic.
Boehm, 2005 classifies the formation of PAHSs according to the temperature at which they are
formed:

= PAHSs created relatively fast, in a matter of days or even a few years, at a low
temperature (<70°C) by the transformation of organic matter after the deposition in
sediments;

= slow formation of PAHs at a moderate temperature (100-300°C) by the formation of
fossil fuels and coal, recognized as petrogenic PAHS;

= PAHSs created rapidly, at a high temperature (>500°C) by incomplete (low oxygen)
combustion (pyrolysis) of organic materials, performed either naturally (combustion of
forests and grass) or anthropogenically (combustion of fossil fuels), often recognized
as pyrogenic PAHSs;

= PAHSs created naturally by biosynthesis of individual compounds performed by plants

and animals, method recognized as biogenic or diagenetic PAHSs.

1) Petrogenic PAHs

Sources of petrogenic PAHSs include reservoirs of petroleum and coal formed over
geological time, namely, when the biological organic matter is converted to petroleum or coal,
both being known as fossil fuel. Several aspects such as temperature, pressure, burial
conditions, biodegradation, and subsurface migration have a great influence on the chemical

transformation of organic matter into fossil fuels. All these aspects influence the molecular



complexity, composition, and physical properties of crude oil, coal, and the PAH structures
from fossil fuels (Boehm, 2005).

Many of the individual PAHSs can be produced naturally during the processes of fossil
fuel creation, but the PAHSs that are most commonly found in fossil fuels have between 2 and
6 aromatic rings. The main components of petroleum are the well-known 16 parent PAHs from
the U.S. EPA list, and a large number of alkylated PAHSs, as alkylated PAHs exceed the
abundance of the parent compounds, this aspect being in fact the main feature of petrogenic
PAHSs (Boehm, 2005).

i) Pyrogenic PAHs

During high temperature processes from natural and anthropogenic activities, there are
organic compounds which somehow escape the complete combustion, compounds known as
pyrogenic PAHSs. Pyrogenic PAHs are in large part produced during combustion of wood, fossil
fuels, and internal combustion of engines. Other activities include high temperature processing
of coal, residues being rich in pyrogenic PAHSs and are known as coal tars (Boehm, 2005).

Many PAHSs are generated via processes of low temperature combustion, being released
in the form of exhaust and solid residues, prevalent in aquatic environment. They reach the
aquatic environment mostly by atmospheric deposition or by rain washout (Stogiannidis &
Laane, 2015).

The high temperatures involved tend to destroy the alkylated PAHSs, thus, the main
feature of pyrogenic PAHSs is the dominance of parent compounds, therefore, PAHs which are
produced at high temperature such as fast pyrolysis or combustion processes are significantly
different from PAHSs produced by petrogenic processes, being abundant in compounds with
more than 3 aromatic rings, having mainly compounds from 4 to 6 aromatic rings (Boehm,
2005).

The number of PAHs which are produced from pyrolytic activities may vary, depending
very much on the combustion conditions, temperature, oxygen, and the fuel type (Westerholm
et al., 1988). The composition of PAHs which are produced from the combustion of fossil fuel
or biomass is highly dependent on the conditions of combustion, the content of oxygen being
the determining factor of the final number of PAHs being produced. Nevertheless, for the
determination of the composition of pyrogenic PAHs from combustion processes, it seems that
temperature is the most important factor, as lower temperature combustion generates alkylated
PAHSs, while higher temperature combustion supports the production of parent compounds
(Boehm, 2005).



2. Methodologies for reconstructing pollution history

2.1. Historical pollution

Historical Pollution often describes the interaction between some important factors in
the evolution of mankind, such as industrial and technological development. The constant
evolution of these major factors has increased production activities which later had a strong
impact on the environment and ecosystems. The constant evolution of science and knowledge
also had harmful effects on the environment and inevitably also on human life, and legislation
regarding the impact and control of these industrial and technological activities on the
environment has developed over time. Therefore, the legislation could not keep up with the
rapid pace of development. In a more simplistic manner, historical pollution could be explained
as the present environmental damage as a consequence of the pollution created from industrial
activities products extended over long periods of time (Centonze & Manacorda, 2017).

This concept of historical pollution is a relatively recent approach and emerged as a
need for awareness of the negative effects of industrial development in relation to the prospects
for improving and reducing environmental impact. (Centonze & Manacorda, 2017).

2.2. Persistence of a substance

“The term “persistent chemicals” hereby refers to any synthetic organic chemical
species that is stable in the environment for long periods of time and causes unintended effects
on the environment and health of wildlife and humans” (Loganathan & Lam, 2011).

Internationally, environmental persistence of a chemical is measured in half-life
(Loganathan & Lam, 2011), persistence also being defined as a chemical with environmental
half-life of more than two months in water or more than six months in soil or sediment (Jayaraj
etal., 2016).

The half-life (t12) is described as the amount of time necessary for the disintegration of
a certain compound and reaching half of its initial concentration. Explained in a more formal
manner would be, “the required time for the decay rate of a sample of unstable nuclei to
decrease by a factor of 2” (Arfken et al., 1984).

An important term used when discussing about the persistence of a chemical is
bioaccumulation. Bioaccumulation is a phenomenon which describes the retention and
assimilation of contaminants from external environmental sources, it presents the result of a
dynamic balance between processes such as distribution, excretion, and assimilation of a

substance in a certain organism. A very important step for the bioaccumulation to occur is the



rate of contaminant assimilation, which must be higher than the clearance rate. If the
assimilation rate is equivalent to the clearance rate, a state of equilibrium is reached. The
equilibrium concentration of a certain substance present in the organism tissue is determined
using bioaccumulation factor (BAF). This method is the result of the ratio between a certain
compound’s tissue concentration to its concentration in the environmental matter which is in
equilibrium with that organism (Lourenco et al., 2023; Neff, 2002).

Also, bioavailability is another important factor in determining the persistence of a
chemical, phenomena which could be defined as “the extent to which a chemical can be
absorbed or adsorbed by a living organism by active (biological) or passive (physical or
chemical) processes” (Neff, 2002). A certain chemical is considered bioavailable when it has
a certain form in which it can react or bind with a surface coating of a living organism.
Additionally, that certain chemical not only does it have to react with the tissues of living
organism, but it must also produce certain biological responses (Neff, 2002).

Considering the persistence of some organic compounds and their tendency to
bioaccumulate in environmental factors, this data can be used to estimate the history of
environmental pollution, in the absence of measurement data, by using layers of lake sediments
whose age can be estimated by dating methods, respectively measuring the concentrations of
POPs in these sediment layers by modern instrumental techniques. This methodology that
combines radioactive dating of sediments and analysis of POPs residues in dated sediments has
been used in various studies worldwide (Arinaitwe et al., 2016; Bigus et al., 2014; Cai et al.,
2016; Chalmers et al., 2007; Combi et al., 2020), the results obtained providing valuable
information regarding the anthropogenic impact on the environment. Moreover, the data
obtained from these measurements can be used for a series of statistical approaches aimed at
estimating the source of POPs in environmental factors. The aspects related to the methodology
used in the present thesis, estimation of the history of pollution of some lakes, and the

identification of pollution sources are presented below.

2.3. Methods for sediment dating

Analyses of sediment cores have been used for many years in the determination of
sedimentation rates and attributing calendar dates for various sediment depths. Radioactive
measurements can provide information for time periods ranging from a few months to hundreds
of years. Using this type of chronological results, different characteristics of water bodies can
be studied, such as sediment deposition, dredging operations, and especially useful for the

study of buried toxic substances. Certain water bodies, such as long waterways, are often



loaded with historical contaminants from various industries over time, these toxic substances
being buried progressively into the sediments, later becoming a record of a form of
contamination. This type of chronological information is also useful in observing the migration
or degradation of buried substances (Jeter, 2000).

210pp (lead-210) method is considered a viable method for the determination of
sediment ages, offering the best response to quiet deposition areas such as lakes, bays, and
swampy areas (Jeter, 2000). This method is used for the determination of relatively young and
undisturbed sediment cores, usually for periods between 100-150 years (Appleby and Oldfield,
1983). Aspects related to this method are presented below.

2.3.1. The cycle of 22°Pb (lead-210) in nature

Elemental lead is present in two valences, one is *2, while the other is *4. The inorganic
lead is usually found in divalent states. It has 35 isotopes, with 4 of them being the main
isotopes present in environmental matter, namely, 2%Pb (52%), 2%Pb (24%), 2°’Pb (23%), and
204pp (1%), all of them having different concentrations in rock formations (Encinar &
Moldovan, 2005).

204pp is the only one of them that is a primordial isotope and has natural abundance,
while the other three are decay compounds from 238U, 235U, and 2%2Th (Baskaran et al., 2014).
Of all 35 isotopes of lead, only three have long half-lives, the rest have half-lives of hours, even
seconds. The three mentioned isotopes are 2°Ph (T2 = 17.3 million years), 292Pb (T1, = 52.500
years), and 21°Pb (T12 = 22.2 years) (Encinar and Moldovan, 2005).

210pPp is an isotope of Pb, having natural radioactivity, and it can be found as traces in
most soils, as it is a part of the natural decay series of 28U (uranium-238) (Figure 4). It has a
second source of appearance in the environment, being produced as fallout from the
atmosphere by the radioactive decay of the rare gas 22Rn (radon-222), having a constant fallout
onto the earth’s surface in small quantities. 222Rn has a short half-life of 3.8 days, decaying into
short-lived parent isotopes of 2:°Pb (Jeter, 2000).
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Figure 4. Decay scheme for 238U. Assigned decay time expressed in years (y), days (d),
minutes (m), and seconds (s) (source: Andrews & Chang, 2014)

210pp decays via p- and y-emissions, with a small amount of the decays occurring at
ground level, and most of the decays (80.2%) are a result of excited nucleus, stabilized by low
energy gamma rays and internal conversion of electrons, which will lead to the formation of
210Bj (bismuth-210) isotope. 2°Bi has a low half-time (T1, = 5.01 days), and its decay will lead
to the formation of 2'°Po (polonium-210), later leading to the formation of the stable 2°°Pb
(Figure 5) (Mabit et al., 2014).
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Figure 5. Decay scheme for 21°Pb (source: Nachab & Hubert, 2012)

This isotope reaches a lake reservoir both directly from rain, indirectly from run-offs,
or from the decay of ??2Rn, being deposited in the mud interface by both sedimentation and
exchange processes. 2°Pb which is formed in the interior of the sediment by the decay of ?°Ra
(radium-226) is often named supported 2!°Pb and it is assumed to be in equilibrium with the
226Ra isotope (Appleby, 2001).



In literature, the excess of supported 2°Pb is referred to as unsupported 2°Pb, and its
source is primarily from atmospheric input. This isotope is the basis of this dating method,
primarily due to its resistance in the environment, and its input, which is constant and does not
migrate within the sediment, therefore, the unsupported 2°Pb will slowly decrease with depth,
due to the radioactive decay law (Figure 6). Due to anthropogenic and natural effects, the total
unsupported 2*°Pb activity undergoes an exponential decay with depth, which assumes a

uniform sedimentation rate over a period of 150 years (Simsek & Cagatay, 2014).
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Figure 6. The pathways of 22°Pb in environment and marine sediments (source: Zhang & Xu,
2023)

2.3.2. Chronological studies using the #°Pb dating method

The 2Ppb radionuclide is the most widely used for dating various solid materials
ranging from one year to 200, being used in a wide range of fields such as limnology, biology,
geology, geochemistry, speleology, etc. (Baskaran et al., 2014). This method is based on the
activity of this radionuclide in sediments, which, having been deposited 22.3 years ago (the
half-life of 2°Ph), would result in a presence of only half the amount which was initially
deposited (Appleby & Oldfield, 1978).

In lake sediments, 2°Pb activity has two sources, one source is obtained from the
sediment column by the decay of 222Rn, which is called supported ?'°Pb, and the second source
is the unsupported/excess 21°Pb from the atmospheric fallout, also called excess of ?!°Ph. For a
proper determination of age and depth of sediments, both supported and unsupported
concentration of 2°Pb must be measured. The unsupported/excess can be obtained by the

concentration of 22°Ra, as they would be in radioactive equilibrium, and it is determined by its



subtraction from the total concentration of 2'°Pb. If the sediment accumulation rate and the
erosion process are constant, then it is assumed that each sediment layer should have the same
levels of unsupported/excess of 2'%Pb, its concentration declining exponentially, resulting in a
scale of linear profile (Appleby and Oldfield, 1983).

The equation used for the calculation of the unsupported/excess 2'°Pb is the following:
210Pbex - Zlopbtotal o 210PbSup (l)

Where (Appleby, 2001):
o 219pp,, is the unsupported/excess of 2'°Pb;
o 210Phyry is the total concentration of 21%Pb;
e 20Phg,, is the concentration of supported 2'°Pb (derives from the decay of the parent

compound %?°Ra)

The analysis method which is most often used is gamma spectrometry, as it allows the
simultaneous measurement of the radionuclides from the natural disintegration chains, such as
210pp, 226Ra, 214Ph, 2%U, and 238U (Quintana et al., 2018). The chronologies resulted must then
be validated using artificial radionuclides, most often being ¥'Cs (cesium-137) and *:Am
(americium-241). The detection of 21°Pb is often combined with the detection of $3’Cs, in order
to be sure and to obtain maximum chronology information. The results from the detection of
210pp are most often reported to the **’Cs results from sediments, with the condition that the
cesium profiles should be intact (Jeter, 2000). On the other side, ?**Am is considered less
mobile in lake sediments than cesium, most often being used for the enrichment of *’Cs dating,
in case the cesium profile is disrupted (Arnaud et al., 2006; Appleby et al., 1991). Between
1954-1963, these two artificial radionuclides were heavily applied on surfaces around the globe
as a result of high-yield thermonuclear weapons testing, therefore, they are used as markers in
sedimentation records (Appleby, 2001). By measuring the surface distribution of 2!°Pb and
137Cs, both the erosion rates and soil redistribution can be estimated (Begy et al., 2021).

2.3.3. Age depth model (CRS)

Age depth model of the sediment column was built by applying the Constant Rate of
Supply (CRS) mathematical model for 22°Pb deposition. For the calculation of ?°Pb dating
results, there are usually two mathematical models considered practical, which are used
constantly. First is constant rate of supply (CRS), and constant initial concentration (CIC)
(Appleby and Oldfield, 1983).



CRS model is the most widely used (Appleby, 2001), and it assumes that the annual
quantity of unsupported 2*°Pb from the atmosphere that reaches the lake sediment is constant,
the main source of 21°Pb in lakes derives from direct atmospheric fallout, and 2°Pb that reaches
the sediment is influenced by post depositional processes and it undergoes changes according
to the law of disintegration. More than 99% of the 2°Pb which is deposited on surface is trapped
in the soil layers (Appleby and Oldfield, 1983).

Due to the occurring changes from the last 150 years, there have been massive changes
in erosion processes and sediment deposition in lacustrine environments. Along with these
changes, atmospheric Pb deposition may also vary with depth, and the logarithmic depth profile
of 21%Ph becomes nonlinear with depth (Begy, 2009).

To calculate the age of a certain depth i, comparisons are made between the cumulative
unsupported 2°Pb below depth i with the total unsupported 2°Pb in the entire sediment profile,
all this by the integration of the concentration of supported 2!°Pb, the bulk density and the
thickness of each individual sediment layer. This is the way to obtain the mass sedimentation
of each sediment layer and the age limits of the layers (Mabit et al., 2014). The sedimentation
rate and the initial concentration of excess of 21%Pb (*!%Phe) can vary over time (Appleby,
2001).

The sediment accumulation deposit below layer i can be written using as the following

equation:
Ai = Aoe_lt (2)
Age of layer i is calculated using the following equation:
— 14
t=3n7 (©)

The final step is the calculation of the mass accumulation rate for layer i using the following
equation:

_ 2Age™™ a4
LT ¢ 0 ci

(4)
Where (Appleby, 2001):

A - the inventory of 21%Pb of layer i;

Ace - the inventory of 21°Ph excess of layer i;

J - is the 21%Pb radioactive decay constant (0.03114 years™);

t — age;

Ci — is the concentration of unsupported activity of 21°Pb of layer i;
ri — mass accumulation rate.
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Annex 1

List of abbreviations used frequently used in the present doctoral thesis

241 Am Americium-241 isotope

210Bj Bismuth-210 isotope

187Cs Cesium-137 isotope

202pp Lead-202 isotope

204pp Lead-204 isotope

205pp L ead-205 isotope

206pp L ead-206 isotope

207pp Lead-207 isotope

208pp Lead-208 isotope

210pp Lead-210 isotope

210Ppey Excess of 21°Pb

2l4pp Lead-214 isotope

210pg Polonium-210 isotope

240py Plutonium-240 isotope

26Ra Radium-226 isotope

222Rn Radon-222 isotope

232Th Thorium-232 isotope

235y Uranium-235 isotope

238y Uranium-238 isotope

ug micrograms

ACE Acenaphthene

ACY Acenaphthylene

AET Apparent effects threshold

ANT Anthracene

ATSDR Agency for Toxic Substances and Disease Registry
BaA Benz[a]anthracene

BAF bioaccumulation factor

BaP Benzo[a]pyrene

BaPegq Benzo[a]pyrene equivalent concentrations
BbF Benzo[b]fluoranthene

BEDS Biological effects database for sediments
BkF benzo[k]fluoranthene

BghiP Benzo[ghi]perylene

Ba/kg Becquerel/kilogram

CcC Cis-chlordane

CIC Constant initial concentration

CPAHSs Carcinogenic Polycyclic Aromatic Hydrocarbons
CRS Constant rate of supply

CRY Chrysene




CVv Coefficient of variance

DbahA Dibenzo[ah]anthracene

DDD Dichlorodiphenyldichloroethane

DDE Dichlorodiphenyldichloroethylene

DDT Dichlorodiphenyltrichloroethane

DLCs Dioxin-like compounds

EqP Equilibrium partitioning

ERL Effects range low

ERM Effects range median

FL Fluorene

FLU Fluoranthene

GC-MS Gas chromatography coupled with Mass Spectrometry
GC-ECD Gas chromatography coupled with Electron Capture Detector
HBCDD Hexabromocyclododecanes

HCB Hexachlorobenzene

HCH Hexachlorocyclohexane

HMW High molecular weight

IARC International Agency for Research on Cancer
ICH International Conference on Harmonization
IPYR Indeno[123-cd]pyrene

Koc Soil-water partitioning coefficient

Kow Octanol-water coefficient

LEL Lowest effect level

LMW Low molecular weight

LOD Limit of detection

LOI Loss on ignition

LOQ Limit of quantification

m-ERM-Q Mean effect range median quotient

MF Molecular formula

Mp (°C) Melting point

MW Molecular weight

NAP Naphthalene

NOAA National Oceanic and Atmospheric Administration
NSTP National Status and Trends Program

ng/g dw nanograms/grams/dry weight

OCPs Organochlorine pesticides

PAHSs Polycyclic aromatic hydrocarbons

PBDE Polybrominated diphenyl ethers

PCBs Polychlorinated biphenyls

PCDD Polychlorinated dibenzo-p-dioxins

PCDDF Polychlorinated dibenzofurans

PEL Probable effect level




PFOS Perfluorooctane sulphonate

PFOSF Perfluorooctane sulphonyl fluoride

PHE Phenanthrene

POPs Persistent organic pollutants

PYR Pyrene

R? Linear correlation coefficient

RSD Relative standard deviation

SD Standard deviation

SEL Severe effect level

SQGs Sediment quality guidelines

ti2 Half-life

TC Trans-chlordane

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TEFs Toxic equivalency factors

TEL Threshold effect level

TEQ Toxic equivalency quotient/Toxic equivalent
TOC Total organic content

U.S. EPA United States Environmental Protection Agency
WHO World Health Organization
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