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Abstract

The challenges of analyzing large volumes of MRI data for early diagnisus and moni-
toring of neurological diseases, such as Multiple Sclerosis (MS), Alzheimer’s disease,
and Glioblastoma, highlight the need for accurate and automated systems to assist
medical professionals. Since MRI is the most widely used method, a preliminary
step is skull stripping, a process that removes the skull to better view the brain
tissue.

This thesis aims to contribute to the development of methods for these problems.
First, an unsupervised graph-based skull stripping method is presented, which is
improved and evaluated on several datasets, showing performance comparable to
state-of-the-art methods. Then, the research continues with Multiple Sclerosis lesion
segmentation, inspecting the generalizability of the models.

Since datasets are a major limitation to these models’ performance, we address
the critical lack of pediatric data by introducing two new pediatric datasets, Ped-
iMS and PediDemi. PediMS contains patients diagnosed with MS, while PediDemi
contains pediatric patients with demyelinating lesions from pathologies other than
MS. Lastly, to address the critical issue of misidentifying small lesions, which are
often missed by standard metrics like the Dice score, we proposed a novel size-aware
metric that groups lesions based on their size and computes the Dice score for each
size category.

Ultimately, the thesis presents a set of methods and publicly available datasets
that could accelerate the development of more accurate and generalizable deep learn-
ing models for diagnosing and monitoring neurological diseases in both adults and
children.
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Chapter 1
Introduction

The aim of this thesis is to address key challenges in brain-related medical imaging
through the application of both unsupervised and supervised techniques.

With the rise of neurological disorders, there is a stronger demand for cutting-
edge algorithms that can be integrated into computer-aided tools. Enhanced by
recent technological advancements, these monitoring systems are essential for dis-
ease identification and mortality reduction [48]. They are particularly vital in the
context of neurological conditions, where early and accurate diagnosis can signifi-

cantly improve patient outcomes.

1.1 Motivation

In the last years, there has been a noticeable increase in the prevalence of different
brain-related issues, necessitating regular screenings and substantial efforts from
medical personnel. The statistics underscore the demand for precise computer-
assisted systems that could streamline medical tasks. According to [4, 11], each
year, about 5.26 out of every 100,000 people are diagnosed with glioblastoma, with
clinical trial data showing a median survival of 12 to 14 months. The survival rate
of those diagnosed patients is fewer than 10% in the second year [5]. From 2014
to 2018, an alarming 87000 individuals developed glioblastoma, a highly aggressive
brain tumor, as cited in [30]. According to [35], between 2015 and 2020 Alzheimer
disease, the most prevalent form of dementia, was estimated at 760.5 per 100,000
inhabitants. Additionally, more than 2 million individuals are estimated to suffer
from Multiple Sclerosis (MS), an autoimmune disorder impacting various cognitive,
emotional, motor, sensory, or visual functions [24, 18]. Epilepsy, another chronic

noncommunicable brain disorder, affects individuals of all ages, with an estimated
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50 million people worldwide experiencing this condition [61]. These represent just
a few of the challenges confronting the population that necessitate comprehensive
brain screenings.

Given the increasing prevalence of brain pathologies, there is a rising demand
for computer-aided tools that can benefit both patients and healthcare professionals.
These systems have the potential to assist medical staff in prioritizing patient care,

monitoring disease progression, and detecting various lesions more effectively [20].

1.2 Objectives

The focus of this thesis is on applying both unsupervised and supervised methods to
address challenges related to brain imaging. Titled "Advancements in Skull Strip-
ping and Multiple Sclerosis Lesion Segmentation for Neuroimaging Applications',
the PhD thesis aims to develop and analyze advanced brain segmentation models,
addressing key challenges in this research domain. The main research objectives are
as follows:

RO1 Skull stripping Develop skull stripping methods and assess their perfor-
mance across various datasets.

RO2 Generalizability of multiple sclerosis lesion segmentation models Investigate
the generalizability of multiple sclerosis lesion segmentation models across various
datasets to enhance their utility in real clinical scenarios.

RO3 Development of a new evaluation metric for lesion segmentation Create a
novel evaluation metric for lesion segmentation, which evaluates the model’s perfor-
mance across different lesion size categories.

RO4 Enhancement of open MS datasets Enhance the availability and quality of
publicly accessible datasets for multiple sclerosis to facilitate comparative studies

and model development.

1.3 Original contributions

Our original contributions are discussed in Chapters 3, 4, and 5, and are summarized

as follows:
1. Skull Stripping Methods

Unsupervised techniques are widely used in the medical domain, particularly
for segmentation tasks. Among these, graph-based methods are a key focus

due to their ability to efficiently represent image structure.
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A critical preliminary step in analyzing brain images is skull stripping, which

involves separating the brain from the surrounding skull [36]. We propose the

following original approaches for skull stripping:

(a)

(d)

We developed an unsupervised graph-based segmentation method called
Sphere-GUBS, which was presented in our original paper [39]. This
method transforms a user-dependent and dataset-dependent approach
into a user- and dataset-independent one. This approach based on the
Graph-Based Unsupervised Brain Segmentation (GUBS) method pre-
sented in [31]. GUBS methods require user intervation, because specific
skull-limit and brain-limit thresholds must be defined by the user for each
dataset. Our proposed approach addresses these challenges by using a
sphere to select the nodes inside the brain, thereby eliminating the need
for user intervention and dataset-dependent parameters. The method
was tested on the Neurofeedback Skull-stripped (NFBS) [46] repository.

Although experiments demonstrated that this method outperforms the
original GUBS method, we developed an improved version, Ellipsoid-
GUBS, which is detailed in [42]. This version utilizes an ellipsoid instead
of a sphere for the node selection process. The idea for using an ellipsoid
was inspired by the brain extraction technique BET* [59], as an ellip-
soid provides a closer approximation to the brain’s shape compared to a
sphere. Ellipsoid-GUBS addresses specific limitations of Sphere-GUBS,
particularly in accurately modeling brain structures. The method was
assessed using the same dataset, and experiments showed further im-

provements in performance with this enhanced approach.

Given that the center of mass of the image is not always aligned with the
center of the image, we developed an enhanced version of Ellipsoid-GUBS,
positioning the center of the ellipsoid at the image center. Initially, we
tested this new approach on the NFBS dataset, as in previous experi-
ments, and observed slight improvements in performance. Considering
these enhancements, we deemed this version optimized and subsequently
tested it on four additional datasets containing diverse patient data. A
comparison was also performed with two state-of-the-art methods, with
the new approach showing slightly better performance. These findings
are detailed in [41].

Given our focus on skull stripping and graph-based methods, we explored
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the application of Graph Convolution Neural Networks (GCNs) [66] as a
pioneering test for this task. While GCNs are typically employed for more
complex neurological problems, our interest in their potential led us to
apply this approach to the skull stripping task. However, as this method
is relatively novel and not yet widely used for this specific purpose, it does
not currently produce similar results to state-of-the-art methods. Despite
this, we plan to explore GCNs further for more complex neurological tasks

in the future. Our initial findings were presented in [40].

2. Multiple Sclerosis Lesion Segmentation

Identifying Multiple Sclerosis (MS) lesions is difficult even for medical profes-

sionals, because of their diverse shapes and sizes [14]. Deep learning-based seg-

mentation models excel in numerous domains; however, the state-of-the-art for

MS lesion segmentation remains suboptimal [6]. Competitions like ISBI2015
[8] and MICCAI2016 [10] have focused on developing segmentation algorithms
for individual datasets. In our paper [6], jointly with Dr. Liviu Badea (ICI

Bucuresti), we explored the generalizability of these models and conducted a

comprehensive analysis of segmentation methods systematically trained and

tested on multiple publicly available datasets. The key contributions are the

following:

(a)

One of the limitations of existing literature for which we propose an
original and effective solution is the diversity of dataset distributions and
image variation caused by differences in scanners and imaging protocols,
which we mitigate by using quantile normalization [2, 7]. To support our

findings, we performed an ablation study.

To demonstrate generalization, we collected the largest set of publicly
available MS lesion segmentation datasets and performed all possible tests
on independent datasets (i.e. datasets not seen during training). More
precisely, we always tested on datasets not seen during training and we
trained on all other datasets that we had at our disposal. Therefore, we

think this is the most extended study of generalizability.

Using the state-of-the-art UNet++ [67] architecture, we trained models
on individual datasets and tested them on other datasets. We chose the
UNet++ architecture because of the slightly improved results compared
to the UNet architecture [51]. We performed an ablation study compar-
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ing the two, UNet++ showing slightly improved results (but still statisti-
cally significant by a Wilcoxon test). Additionally, we trained models on
combinations of datasets and tested them on the remaining ones. With-
out specific dataset optimization, the models trained on a combination of
three datasets even slightly outperformed the winner of the MICCAI2016

competition.

In collaboration with the Clinical Pediatric Hospital Sibiu, we developed
and publicly released two datasets containing pediatric patients (Ped-
iMS [45] and PediDemi [44]). PediMS [45] is a longitudinal dataset for
cerebral lesion segmentation in multiple sclerosis (MS), comprising 9 pa-
tients, each with between one and six time points, totaling 28 MRI scans.
The second dataset, named PediDemi [44], focuses on demyelinating le-
sions in patients who exhibit cerebral demyelination but have not yet
been diagnosed with MS. This dataset includes several cases of acute dis-
seminated encephalomyelitis (ADEM). Both datasets were annotated by

medical professionals.

3. Lesion-wise metric

Metrics are essential for assessing the performance of a method [55]. For

evaluating model performance in medical image segmentation, Dice score [12]

is the most widely used metric [9, 33]. In our paper [43], jointly with Dr.

Liviu Badea (ICI Bucuresti), we introduced a new metric, the Dice Spectrum,

which, for the first time, presents an extensive evaluation of the modela€™s

performance across various lesion size categories. The major contributions are

outlined below:

(a)

Although a single score is produced by the standard Dice metric, it does
not capture detailed performance across lesion size variations, most no-
tably in detecting small lesions important for early disease identification.
We addressed this by proposing the Dice Spectrum, a novel metric that is
especially relevant for evaluating models’ ability to detect small lesions.
Even when a model achieves high overall Dice scores, it may still un-
derperform on smaller lesions. The Dice Spectrum analyzes the multiple
sclerosis lesions in a dataset and categorizes them by size, ensuring that
each category contains an equal number of lesions. For each image slice,
the lesions are grouped into their respective size categories, and a Dice

score is computed for each group.
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(b) This method was evaluated across multiple datasets and models, demon-
strating that the models generally perform poorly on small lesions. More-
over, the Dice Spectrum is not limited to multiple sclerosis lesion segmen-

tation but can be applied in other medical imaging contexts as well.



Chapter 2
Background

Image segmentation is a subfield of computer vision that partitions an image into
regions, either based on pixel similarity or according to whether the regions represent
areas of interest [37, 19, 26, 53, 65]. Image segmentation has become increasingly
popular across various industries, from automotive [21, 52] to medical fields [34, 64,
60, 25].

Methods for segmentation are typically grouped into supervised and unsuper-
vised. Unsupervised methods operate on unlabelled datasets, partitioning images
based on inherent patterns such as pixel similarity or connectivity. Supervised meth-
ods, by contrast, utilize labelled datasets where examples of input data are paired
with corresponding outcomes to guide the model in identifying meaningful patterns
and relationships [63]. Machine Learning (ML) plays a central role in both of these
approaches by enabling the extraction of patterns, structures, and insights from
complex data. Unsupervised learning, a sub-field of ML, seeks to uncover hidden
structures within unlabelled data, operating without direct feedback or predefined
labels [15]. Supervised learning, conversely, relies on labeled data to train models
for accurate pattern recognition [13, 47].

Traditional image segmentation techniques fall under the unsupervised category,
relying on pixel-level characteristics for segmentation without the need for training.
These approaches are generally classified into thresholding, clustering, edge-based,
region-based, and graph theory-based methods [22, 29].

The rapid advancements in deep learning, have demonstrated impressive perfor-
mance in image segmentation [17, 49, 16].

The state-of-the-art in supervised medical image segmentation is UNet [51]. The
UNet architecture is designed to contract an image, analyze its features, and then

reconstruct the image [49, 40]. It employs an encoder-decoder mechanism, with

10
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the encoder compressing the input data into a latent-space representation, and the
decoder transforms this representation back into the desired output [17]. The UNet
architecture uses a two-part design: a contracting path to extract image features
and an expansive path to pinpoint their exact locations [6, 51].

A powerful version of UNet is UNet++ [67], which was inspired by DesNet
[23, 49]. It redesigns the standard UNet by replacing its skip connections with
nested, dense skip pathways [56]. These pathways use dense convolution blocks to
more effectively connect feature maps from the encoder to the decoder, reducing the
semantic gap before their combination [6].

Graph Neural Networks (GNNs) are a type of network designed to process irreg-
ular data structures and aggregate pairwise relationships between entities [66, 40].

Graph Convolutional Neural Networks (GCNs), also known as Convolutional
Graph Neural Networks (ConvGNNs) [62], are a category of GNN that general-
izes the convolution operation from grids (e.g., images) to graphs [54]. Similar to
unsupervised graph-based approaches, GCNs encode information within nodes [66]
but additionally enable nodes to learn from their neighbors through graph-specific
convolutional operations [28, 40].

In the medical field, segmentation is crucial for interpreting magnetic resonance
(MR) or computed tomography (CT) images, which can be used to delineate organs
[32, 50], bones [32, 27], lesions, and abnormalities [32, 3]. Neuroimaging, a subfield
of medical imaging, focuses specifically on brain structure and function [58, 1]. MRI
images are acquired using scanners with different parameter settings, resulting in
various image types known as sequences or modalities. Each modality highlights
different tissue properties, aiding in comprehensive brain analysis[57]. Common
MRI modalities include: T1-weighted (T1w), T2-weighted (T2w), FLAIR, and PD-
weighted.

In this work, we focus on skull stripping and multiple sclerosis (MS) lesion seg-
mentation. Skull stripping is a preliminary technique used to eliminate the skull
and other non-brain tissues, leaving only the brain on MRI scans [38]. The brain’s
structure is typically well-defined with clear anatomical boundaries, and due to few
labelled datasets, we focus on traditional methods in skull stripping. Conversely,
multiple sclerosis lesions vary in shape, size, and location, presenting a far more
complex segmentation challenge. We find supervised deep learning approaches more

suitable for MS lesion segmentation, as they can learn to detect these lesions from
labeled data.



Chapter 3

Novel graph-based skull stripping
methods

This chapter outlines our contributions to developing skull stripping methods with
the focus on graph-based methods. The results presented in this chapter are detailed
in the following papers [39, 42, 41, 40].

3.1 New unsupervised graph-based skull stripping

methods

This text outlines the development of a brain segmentation method that is an evo-
lution of the GUBS approach. The key goal was to create a more robust and
automated process by eliminating the need for human intervention, which was a
significant limitation of the original GUBS method. The core of all these methods
is the use of a graph representation of an MRI image, followed by the application of
a minimal spanning tree to segment the brain.

The first major improvement was Sphere-GUBS. This version removed the need
for manual parameter settings and reduced computation time. It defined a spheri-
cal region to automatically select nodes for the graph, unlike GUBS which required
manual "seed" points. When tested on the NFBS dataset, Sphere-GUBS outper-
formed the original GUBS, achieving a notable 25% increase in precision and a 20%
increase in the Dice coefficient when using original image sizes.

A further enhancement led to Ellipsoid-GUBS. This method improved upon
Sphere-GUBS by using an ellipsoid for node selection, which proved to be more
effective. When tested on the NFBS dataset, Ellipsoid-GUBS improved upon its

12
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predecessor, showing a 3% increase in precision over Sphere-GUBS and a 28% in-
crease over the original GUBS.

The final proposed method addressed the limitations of Ellipsoid-GUBS by cen-
tering the sampling ellipsoid at the image’s geometric center instead of the center
of mass. This change aimed to improve robustness across datasets with different
head positions. This final version was tested on four datasets (NFBS, FMS, IXI,
and QIN) and compared against two widely-used state-of-the-art tools, BET2 and
BSE. The results were promising: on the QIN (infant) dataset, the method showed
significant improvements over both BET2 and BSE, including a 14% increase in
precision over BET2 and a 6% increase in the Dice coefficient over BSE. It also
performed better than BET2 and BSE on the FMS dataset. While BSE performed
best on the NFBS dataset and BET2 was slightly better on the IXI dataset, the final
proposed method generally showed competitive or superior performance, especially

for specific datasets.

3.2 Exploratory Study of Graph convolutional neu-

ral networks for skull stripping

This research proposes a graph neural network (GNN) for skull stripping. The
method converts MRI slices into graphs, where each pixel is a node, to perform
brain segmentation using a binary graph convolutional neural network (GCN).

The approach was evaluated on two datasets: NFBS and Infant T1. To manage
data size and complexity, only 5 slices (slices 50-54) from each of the 125 NFBS
subjects were used, totaling 625 2D images. The data was split for training (60%),
testing (20%), and validation (20%), and the model was trained for 100 epochs using
the Adam optimizer.

On the NFBS dataset, the GCN model achieved a sensitivity of 0.56%. When
tested on 16 scans from the Infant T1 dataset (using slices 100-105), the model’s
performance metrics were a precision of 0.62, a Dice coefficient of 0.48, and an
accuracy of 0.45.

The results for both datasets are promising but are based on a limited number
of axial slices rather than the full MRI volumes, which is a key limitation of the

evaluation.



Chapter 4
Demyelinating lesion segmentation

This chapter presents a comprehensive analysis of MS lesion segmentation, with a
focus on building generalizable models. The study’s main contributions include a
systematic, cross-dataset evaluation of model performance and the public release of
two new, rare pediatric MS datasets [6].

The researchers used the UNet++ architecture with a resnet18 encoder for its
superior performance. They trained models on individual datasets and then tested
them on others to assess their generalizability. The results showed consistent per-
formance across different datasets, marking this as the most extensive cross-dataset
analysis in the field to date. The best performance, a Dice score of 0.698, was
achieved by a model trained and tested on specific subsets of the MSSEG2016
dataset, which outperformed even top state-of-the-art models [6].

A significant contribution is the creation of two public datasets from a pediatric
hospital in Romania: PediMS (pediatric patients with MS) and PediDemi (pediatric
patients with other demyelinating conditions). These datasets address a critical
gap in publicly available data, as they represent a rare, underrepresented patient
population. The PediDemi dataset, in particular, is unique because it includes non-
MS demyelinating cases, providing a valuable resource for developing models that
can differentiate between various pathologies [6].

The study also highlights two major challenges in achieving higher performance:
insufficient dataset size and low-quality expert annotations. The authors note that
the limited size of current MS datasets is a significant bottleneck. Furthermore,
they found that even expert annotations have low inter-rater agreement (around 60-
70%), suggesting that improving annotation quality is essential for developing more
accurate models. The authors conclude that these limitations, rather than model

architecture, are the main barriers to achieving higher segmentation scores [6].

14



Chapter 5
Lesion-wise metric

This chapter introduces the Dice spectrum, a new metric for evaluating lesion seg-
mentation models. Unlike traditional metrics that provide a single, overall perfor-
mance score, the Dice spectrum offers a more detailed view of a model’s behavior
by analyzing its performance on lesions of different sizes. This is crucial because
lesions, particularly in conditions like Multiple Sclerosis, vary significantly in size
[43].

The Dice spectrum works by grouping lesions into different size categories and
calculating a separate Dice score for each group. This approach allows for a more
precise understanding of a model’s strengths and weaknesses, helping to determine
its suitability for specific clinical applications like early lesion detection or monitoring
larger lesions [43].

Evaluation of several models using the Dice spectrum on three public datasets
(MSSEG-2016, ISBI-2015, and 3D-MR-MS) revealed a consistent trend: all models
performed significantly better on larger lesions and very poorly on smaller ones.
The average Dice scores for the smallest lesions ranged from 0.02 to 0.13, while
intermediate lesions scored an average of 0.35. This finding highlights a major
limitation of current segmentation models—they are ill-suited for detecting small
lesions—and underscores the need for more sophisticated training methods. The

Dice spectrum can serve as a valuable tool for evaluating these future models [43].

15



Conclusions and future work

This thesis contributes to advancing the field of neuroimaging, a critical tool for
diagnosing and monitoring neurological disorders, by addressing two fundamental
challenges: skull stripping and multiple sclerosis (MS) lesion segmentation. The
primary goal was to enhance segmentation algorithms for brain MRI, improving
their accuracy and generalizability for clinical applications.

Chapter 3 presented the proposed methods for skull stripping. One of the key
contribution is the Sphere-GUBS, a novel skull stripping method based on spher-
ical approximations. This approach provided a foundational framework for brain
extraction, improving segmentation accuracy without the need for user intervention
or preset parameters. Building on this, we developed the Ellipsoid-GUBS method,
which further refined segmentation precision by using ellipsoidal models. By vary-
ing the center of the ellipsoid and testing it on multiple datasets, Ellipsoid-GUBS
demonstrated competitive performance when compared to state-of-the-art methods
such as BET2 and BSE, marking a considerable advancement over earlier spheri-
cal models. Furthermore, we pioneered the use of Graph Convolutional Networks
(GCNs) for skull stripping, which, while showing potential, faced challenges due
to the time-consuming nature of graph construction. The presented results were
published in the following papers: [39, 42, 41, 40]. The work on skull stripping
methods, particularly the improvements in segmentation precision through the use
of ellipsoidal models, lays a strong foundation for future research. These approaches
can be further optimized and integrated into clinical imaging workflows to improve
neuroimaging outcomes. The promise of GCNs remains an exciting avenue for explo-
ration; however, future work should focus on exploring the GCNs on more complex
neurological problems, such as brain connectivity and EEG emotion recognition.
Collaborating with clinical researchers will also be essential to validate the real-world
applicability of these methods and to address any practical challenges encountered
in clinical settings.

Chapter 4 focused on the MS lesion segmentation, namely addressing the chal-

16
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lenge of generalizability across diverse datasets. By training a state-of-the-art UNet++
architecture on a wide range of datasets, we demonstrated that model performance
improves with larger and more heterogeneous data. Additionally, we employed quan-
tile normalization to mitigate scanner-related distribution shifts, which contributed
to improved performance across datasets. This work emphasized the importance of
dataset diversity and normalization techniques in developing segmentation models
that can generalize to real-world clinical data. Standardizing axial slices further
enhanced out-of-distribution performance, bringing these models closer to practical
application. The results are presented in paper [6]. We also introduced two pedi-
atric datasets [45, 44], one containing MS patients and one containing demyelinating
lesions, for patients that have not been diagnosed with MS yet. By this we wanted
to contribute to further developement of MS methods.

While progress has been made in improving generalizability, challenges remain,
particularly in achieving the level of performance necessary for clinical applications.
Current models tend to favor larger lesions, limiting their effectiveness in early de-
tection of small lesions, which are crucial for early-stage MS diagnosis. Future work
should prioritize collecting additional data from a broader range of scanners and pa-
tient cohorts, as well as addressing the variability in expert annotations to improve
the quality and consistency of training datasets. Furthermore, exploring novel loss
functions that explicitly target smaller lesions during training could significantly
enhance the detection of early-stage MS lesions, making these models more suitable
for clinical screening applications.

Chapter 5 introduced the Dice spectrum [43], a novel metric for assessing the
performance of MS lesion segmentation models across different lesion sizes. The Dice
spectrum offers a more detailed evaluation, particularly valuable in clinical scenarios
where detecting small lesions is critical, such as in early-stage MS. By computing
separate Dice scores for different lesion size categories, the Dice spectrum provides
insights into model performance that traditional global metrics may overlook, partic-
ularly in detecting smaller, early-stage lesions. While the Dice spectrum represents
a valuable advancement in evaluating lesion segmentation models, its application
is currently limited to the evaluation stage. Future research should aim to inte-
grate size-specific performance considerations into the training process itself. By
incorporating metrics like the Dice spectrum into the model training pipeline, seg-
mentation models can be better tailored to address the challenges posed by varying
lesion sizes. Additionally, expanding the Dice spectrum to other performance met-

rics, such as Sensitivity and Specificity, could further enhance the evaluation and
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selection of models for specific clinical applications. Investigating the influence of
different training methods and loss functions on size-specific performance will enable
the development of more targeted and clinically effective segmentation models.

In conclusion, this thesis has introduced new methods and evaluation metrics
that advance the state of neuroimaging, particularly in skull stripping and MS le-
sion segmentation. By addressing these critical challenges and proposing future
directions for research, this work paves the way for more accurate and clinically
applicable tools that could significantly enhance the diagnosis and treatment of
neurological disorders, ultimately improving patient outcomes.

In addition to the future work directions outlined at the end of each chapter,
several other research avenues are being considered. One direction involves opti-
mizing the proposed unsupervised methods for skull stripping and integrating them
into comprehensive neuroimaging preprocessing pipelines suitable for clinical use.
Evaluating these methods on more diverse datasets-including pathological cases and
non-adult populations-will be essential to assess their broader applicability.

Another important direction focuses on the use of Graph Convolutional Networks
(GCNs), particularly in domains where connectivity is a key factor, such as func-
tional MRI, diffusion tractography, or EEG-based emotion recognition. Future work
will explore how GCNs can be embedded into tools intended for clinical applications.

In the domain of multiple sclerosis lesion segmentation, this thesis has empha-
sized the need for models that generalize across institutions, scanners, and pa-
tient cohorts. Future work should aim to build larger and more diverse annotated
datasets. Additionally, segmentation research should expand beyond MS to include
other demyelinating conditions such as ADEM. Segmenting spinal cord lesions is
another critical direction, as patients diagnosed with MS who present brain lesions
frequently also exhibit spinal cord involvement.

A further promising direction lies in the development of models tailored to detect
small lesions, which are crucial for early-stage MS diagnosis. Future research could
focus on custom loss functions that give greater weight to small lesions, and on
progressive training strategies that guide the model from easier to more complex
detection tasks. Incorporating temporal information about lesion evolution may

also help improve sensitivity in early diagnosis.
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