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INTRODUCTION 

1. Motivation 

Water management and treatment have been crucial to human health, environmental 

protection, and sustainable development since ancient civilizations. Early systems focused 

primarily on diverting wastewater, with treatment emerging only in the 19th century during 

industrialization due to increasing urbanization, pollution, and waterborne diseases. The 

development of the activated sludge process in 1914 marked a breakthrough in wastewater 

treatment, enabling more efficient removal of organic pollutants. Over the 20th century, advances 

in biological treatment, aeration, and chemical processes, combined with stricter regulations have 

driven the adoption of modern, large-scale, and energy-intensive treatment plants. Today, the focus 

extends beyond pollution removal to resource recovery, energy efficiency, and sustainability. 

As global populations rise and water scarcity intensifies, the demand for high-quality water 

treatment is increasing. Modern WWTPs rely heavily on accurate sensor measurements for key 

variables such as dissolved oxygen, nitrate, and nitrite. These sensors are critical for effective 

process control, energy management, and compliance with environmental regulations. Faulty 

sensors can lead to inefficient treatment, higher energy consumption, reduced effluent quality, and 

increased greenhouse gas (GHG) emissions. Given that wastewater treatment contributes up to 5% 

of global GHG emissions, reducing emissions through efficient operation has become a key 

environmental priority. 

The complexity of WWTP processes, characterized by non-linear dynamics, variable influent 

composition, and interdependent biological reactions, requires advanced monitoring and control 

strategies. Mathematical and data-driven models, including Principal Component Analysis (PCA) 

and multivariate statistical process monitoring, play a crucial role in early fault detection, diagnosis, 

and process optimization. These tools help minimize environmental impact, reduce energy costs, 

and enhance operational reliability. Moreover, integrating energy recovery and renewable energy 

solutions offers the potential for plants to move toward energy neutrality, contributing to both 

economic and environmental sustainability. 

This research is motivated by the urgent need to improve WWTP reliability, sustainability, and 

efficiency. By investigating sensor fault detection, diagnosis, and the associated environmental and 

economic impacts, the study addresses a critical knowledge gap. Accurate sensor monitoring not 

only ensures compliance with evolving regulations but also supports optimized energy use, GHG 

emission reduction, and the broader goals of circular economy and water resource recovery. In 

essence, advancing sensor-based monitoring and control in WWTPs is vital for the safe, cost-

effective, and environmentally responsible management of modern wastewater treatment systems.  
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CURRENT STATE OF KNOWLEDGE 

2. Current state of the knowledge in modelling activated sludge technology based 

WWTP  

2.1. Introduction 

Chemical process monitoring in WWTPs is essential for efficiency, effluent quality, and 

advanced control, relying on mechanistic or data-driven models to predict process variables and 

optimize operations (Frank, 1990; Yoon & MacGregor, 2001). Dynamic models aid in nutrient 

removal plant optimization, crisis management, and testing of operational scenarios (Henze et al., 

2000). The International Water Association developed standardized Activated Sludge Models 

(ASM1-ASM3) to represent carbon, nitrogen, and phosphorus removal, supporting design, operation, 

and optimization of WWTPs (Rieger et al., 2012; Hauduc et al., 2011; Gernaey et al., 2004; Henze et 

al., 2000). 

European COST Action groups established Benchmark Simulation Models (BSM1 and BSM2) 

to evaluate control strategies and plant performance, including influent scenarios, energy use, sludge 

production, and long-term facility assessment, enabling objective comparison of control laws and 

optimization of processes such as anaerobic digestion and biogas generation (Alex et al., 1999, 2008; 

Beraud et al., 2009). 

2.2. Description of the Activated Sludge Model No. 1 

The ASM1 model is perhaps the model most commonly employed for describing WWT 

processes worldwide, despite the fact that it has been expanded since its conception to incorporate 

more chemical oxygen demand fractions, to accommodate new experimental findings (Sollfrank and 

Gujer, 1991), to define the growth and population dynamics of floc forming and filamentous bacteria 

(Gujer and Kappeler, 1992), and to define improved biological phosphorus removal (Henze et al., 

1995).  

The various processes included in the ASM1 model are defined as it follows (Jeppsson, 1996): 

Aerobic growth of heterotrophs:  

𝑝𝑟𝑜𝑐𝑒𝑠𝑠1 = 𝜇𝐻 ⋅ (
𝑆𝑆

𝐾𝑆 + 𝑆𝑆
) ⋅ (

𝑆𝑂

𝐾𝑂,𝐻 + 𝑆𝑂
) ⋅ 𝑋𝐵,𝐻 (2.1) 

Anoxic growth of heterotrophs 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠2 = 𝜇𝐻 ⋅ (
𝑆𝑆

𝐾𝑆 + 𝑆𝑆
) ⋅ (

𝐾𝑂,𝐻

𝐾𝑂,𝐻 + 𝑆𝑂
) ⋅ (

𝑆𝑁𝑂

𝐾𝑁𝑂 + 𝑆𝑁𝑂
) ⋅ 𝜂𝑔 ⋅ 𝑋𝐵,𝐻 (2.2) 

Aerobic growth of autotrophs: 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠3 = 𝜇𝐴 ⋅ (
𝑆𝑁𝐻

𝐾𝑁𝐻 + 𝑆𝑁𝐻
) ⋅ (

𝑆𝑂

𝐾𝑂,𝐴 + 𝑆𝑂
) ⋅ 𝑋𝐵,𝐴 (2.3) 

Decay of heterotrophs: 
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𝑝𝑟𝑜𝑐𝑒𝑠𝑠4 = 𝑏𝐻 ⋅ 𝑋𝐵,𝐻 (2.4) 

Decay of autotrophs: 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠5 = 𝑏𝐴 ⋅ 𝑋𝐵,𝐴 (2.5) 

Ammonification of soluble organic nitrogen: 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠6 = 𝑘𝑎 ⋅ 𝑆𝑁𝐷 ⋅ 𝑋𝐵,𝐻 (2.6) 

Hydrolysis of entrapped organics:  

𝑝𝑟𝑜𝑐𝑒𝑠𝑠7 = 𝑘𝑕 ⋅
𝑋𝑆 𝑋𝐵,𝐻⁄

𝐾𝑥 + (𝑋𝑆/𝑋𝐵,𝐻)
⋅ *(

𝑆𝑂

𝐾𝑂,𝐻 + 𝑆𝑂
+ 𝜂𝑕 ⋅ (

𝐾𝑂,𝐻

𝐾𝑂,𝐻 + 𝑆𝑂
) ⋅ (

𝑆𝑁𝑂

𝐾𝑁𝑂 + 𝑆𝑁𝑂
)+

⋅ 𝑋𝐵,𝐻 

(2.7) 

Hydrolysis of entrapped organic nitrogen:  

  𝑝𝑟𝑜𝑐𝑒𝑠𝑠8 = 𝑘𝑕 ⋅
𝑋𝑆 𝑋𝐵,𝐻⁄

𝐾𝑥+(𝑋𝑆/𝑋𝐵,𝐻)
⋅ [(

𝑆𝑂

𝐾𝑂,𝐻+𝑆𝑂
+ 𝜂𝑕 ⋅ (

𝐾𝑂,𝐻

𝐾𝑂,𝐻+𝑆𝑂
) ⋅ (

𝑆𝑁𝑂

𝐾𝑁𝑂+𝑆𝑁𝑂
)] ⋅ 𝑋𝐵,𝐻 ⋅

(𝑋𝑁𝐷 𝑋𝑆⁄ ) 

(2.8) 

2.3. Description of the Benchmark Simulation Model No. 1 

The concept of Benchmark Simulation Model No. 1 appears to be straightforward. It is based on 

a modified Ludzack-Ettinger configuration that allows the WWT plant to meet stringent COD and 

nitrogen removal regulations (Tchobanoglous et al., 2003). 

The benchmark layout consists of a five-compartment activated sludge reactor. Out of the five 

compartments, two are anoxic tanks and the other three are aerobic tanks.  

The general equation for the mass balance of the first reactor (non-aerated) is (Alex et al., 2008): 

𝑑𝑍𝑎𝑠,1

𝑑𝑡
=  

1

𝑉𝑎𝑠,1
(𝑄𝑖𝑛𝑡𝑍𝑖𝑛𝑡 + 𝑄𝑟𝑍𝑟 + 𝑄𝑝𝑜𝑍𝑝𝑜 + 𝑟𝑍,1𝑉𝑎𝑠,1 − (𝑄𝑖𝑛𝑡 + 𝑄𝑟

+ 𝑄𝑝𝑜)𝑍𝑎𝑠,1) 

(2.9) 

where 𝑄𝑖𝑛𝑡 is the internal recycle, 𝑄𝑟 represents the external recycle and 𝑄𝑝𝑜 is the overflow rate of 

the primary settler. 

For the rest of the reactors, the mass balance equation is: 

𝑑𝑍𝑎𝑠,𝑘

𝑑𝑡
=  

1

𝑉𝑎𝑠,𝑘
(𝑄𝑘−1𝑍𝑎𝑠,𝑘−1 + 𝑟𝑍,𝑘𝑉𝑎𝑠,𝑘 − 𝑄𝑘𝑍𝑎𝑠,𝑘) (2.10) 

where k represents the of the bioreactor number (2-5). 

A secondary settler is positioned after the activated sludge reactor. The secondary settler is 

represented using a double-exponential velocity function (Takacs et al., 1991): 

𝜈𝑠(𝑋𝑠𝑐) = max[0, min{𝜈0′, 𝜈0(𝑒−𝑟ℎ(𝑋𝑠𝑐−𝑋min) − 𝑒−𝑟𝑝(𝑋𝑠𝑐−𝑋min))}] (2.11) 

where 𝜈𝑠 represents the settling velocity, 𝜈0 is the theoretical maximum settling velocity (m/d), 𝜈0′ is 

the practical maximum Vesiling settling velocity (m/d), 𝑟ℎ is the hindered zone settling parameter 

(m
3
/g), 𝑟𝑝 is the flocculant zone settling parameter (m

3
/g), 𝑋𝑠𝑐 is the sludge concentration and 𝑋𝑚𝑖𝑛 is 

the minimum attainable suspended solids concentration (g/m
3
). 

The plant includes an internal recirculation flow to supply nitrates in the anoxic reactors from the 
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aerobic reactors, and an external recirculation in order to provide sludge from the secondary settler to 

the anoxic reactors. The benchmark layout comprises a simple control strategy with two PI control 

loops.  

2.4. Tools used for dynamic modelling 

Matlab is a multipurpose programming language and numerical computing environment that 

includes tools for matrices manipulation, algorithm implementation, and a variety of functions 

(MathWorks, 2025a). Simulink is a graphical programming environment for block diagrams that 

works with Matlab (MathWorks, 2025b). It is generally used for modelling and simulating dynamic 

systems, as well as continuous testing and verification systems. Through the specifically designed S-

functions, the Benchmark Simulated Models are applied in this work.  

2.5. WWTP operation performance evaluation 

In the present work four separate performance indices were used to assess the overall impact of 

the WWTP dysfunctional operation on plant performance: aeration energy (AE), pumping energy 

(PE), effluent quality (EQ) and the newly introduced greenhouse gas emissions.  

The aeration energy index is calculated using the oxygen mass transfer coefficient of aerobic 

bioreactors (KLa), which is directly related to the injected air flow rate, as shown in equation (2.12). 

𝐴𝐸 =
𝑆𝑂𝑠𝑎𝑡

𝑇 · 1.8 · 1000
· ∫ ∑ 𝑉𝑏𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟 · 𝐾𝐿𝑎𝑖(𝑡)𝑑𝑡

 

𝑎𝑒𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑎𝑐𝑡𝑜𝑟𝑠

𝑇𝑑𝑎𝑦𝑠 

0

 
(

2.12) 

where 𝑆𝑂𝑠𝑎𝑡
 is the oxygen saturation concentration (mg O2/L), Tdays is the time in days of the 

evaluation, 𝑉𝑏𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟 represents the volume of the bioreactor (m
3
) and 𝐾𝐿𝑎𝑖 is the mass transfer 

coefficient in the aerated bioreactor i. 

 The pumping energy index is calculated using the flow rates of nitrate recirculation, return 

activated sludge recycling, and waste, as shown in equation (2.13): 

𝑃𝐸 =
1

𝑇
· ∫ [0.004 · 𝑄𝑁𝑅(𝑡) + 0.08 · 𝑄𝑅𝐴𝑆(𝑡) + 0.05 · 𝑄𝑤𝑎𝑠𝑡𝑒(𝑡)]𝑑𝑡

𝑇𝑑𝑎𝑦𝑠 

0

 
(

2.13) 

with 𝑄𝑁𝑅 the flow rate of the nitrate recirculation (m
3
/day), 𝑄𝑅𝐴𝑆 the flow rate of the return activated 

sludge (m
3
/day), 𝑄𝑤𝑎𝑠𝑡𝑒 the flow rate of waste from the secondary settler (m

3
/day). Both aeration and 

pumping energy are measured in kWh/day. 

 The effluent quality index is calculated using the total suspended solids (TSS), chemical 

oxygen demand (COD), biochemical oxygen demand (BOD), total Kjeldahl nitrogen (TKN), and 

nitrate and nitrite concentrations in the effluent flow stream, as presented in equation (2.14). They are 

multiplied by the effluent flow rate. This index is expressed in kilograms of pollutant units per day. 
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𝐸𝑄 =
1

𝑇 · 1000
· ∫ [𝑃𝑈𝑇𝑆𝑆(𝑡) + 𝑃𝑈𝐶𝑂𝐷(𝑡) + 𝑃𝑈𝐵𝑂𝐷(𝑡) + 𝑃𝑈𝑇𝐾𝑁(𝑡) + 𝑃𝑈𝑁𝑂(𝑡)]

𝑇𝑑𝑎𝑦𝑠 

0

·

· 𝑄𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡(𝑡)𝑑𝑡 

(

2.14) 

where 𝑃𝑈𝑇𝑆𝑆 denotes total suspended solids, 𝑃𝑈𝐶𝑂𝐷 refers to the chemical oxygen demand and 

𝑃𝑈𝐵𝑂𝐷 to the biochemical oxygen demand, 𝑃𝑈𝑇𝐾𝑁 considers the Total Kjeldahl Nitrogen, 𝑃𝑈𝑁𝑂 

accounts for the nitrate and nitrite and 𝑄𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 is the effluent flow rate. 

2.6. Evaluation of the detection and diagnosis performance 

The confusion matrix or plot is a widely used tool in classification analysis, providing a visual 

representation of the performance of a model by comparing actual outcomes to predicted outcomes. 

Confusion matrices were constructed for each of the analysed cases, with each matrix displaying the 

counts of true positives, false positives, true negatives, and false negatives. This tabular representation 

serves as the foundation for calculating key performance metrics that assess the system's detection 

capabilities as they are displayed bellow: 

The formula for calculating Positive Predictive Value is: 

PPV =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(2.15) 

Accuracy is a metric used to evaluate the performance of a classification model: 

Accuracy =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(2.16) 

The False Alarm Rate is defined as follows: 

FAR = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛−𝑓𝑎𝑢𝑙𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
 

(2.17) 

The Missed Alarm Rate is defined as: 

MAR = FNR = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑑 𝑎𝑙𝑎𝑟𝑚𝑠 (𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑎𝑢𝑙𝑡𝑠 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 (2.18) 

The F1 score is defined as: 

F1 score = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 = 2 𝑥

𝑃𝑃𝑉 𝑥 𝑇𝑃𝑅

𝑃𝑃𝑉+𝑇𝑃𝑅
  

(2.19) 

2.7. GHG assessment 

Total GHG emissions from the municipal wastewater treatment plant's water line include both 

on and off-site CO2 and N2O gas emissions. Aside from CO2, N2O is considered a significant 

contributor to GHGs due to its global warming potential (GWP) of approximately 265-298 times that 

of CO2 (Vallero, 2019). 

Off-site CO2 emissions (kg CO2/day) involve indirect CO2 emissions from the power plant 

related to the power consumed in the wastewater treatment process. They are defined as follows: 

𝑃𝐶𝑂2,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 = 𝑘𝑃𝐺 · 𝑒𝐷 (2.20) 

where kPG is the site-specific emission factor per unit of energy generated, considered with a value of 
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0.19 kg CO2e/kWh, and eD is the total energy demand, calculated as the sum of the aeration energy 

and pumping energy (Mannina et al., 2016; Listowski et al., 2011). 

Off-site N2O emissions involve N2O produced by biological degradation in the wastewater 

treatment plant's effluent (downstream) (Mannina et al., 2016; Prendez and Lara-Gonzales, 2008): 

𝑃𝑁2𝑂,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 =  𝑁𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 ·  𝐸𝐹𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 (2.21) 

where Neffluent is the nitrogen load in the effluent discharged into aquatic environments and EFeffluent = 

0.005·44/28 kg N2O/kg N (IPCC, 2006) is the emission factor for N2O emissions from the discharged 

wastewater. 

The on-site CO2 emissions from the water-line of aerobic biological processes are determined 

using the following expression: 

𝑃𝐶𝑂2,𝑜𝑛−𝑠𝑖𝑡𝑒 = 𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 · 0.99 · (1 − 𝑌𝐻) · 𝜂𝐴𝑆𝑃 · 𝑏𝐶𝑂𝐷 + 𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 · 1.03 · 𝑌𝐻 · 𝜂𝐴𝑆𝑃

· 𝑏𝐶𝑂𝐷 ·
𝑘𝑑,𝐻 · 𝑀𝐶𝑅𝑇

1 + 𝑘𝑑,𝐻 · 𝑀𝐶𝑅𝑇
 

(2.22) 

where: 𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 is the plant influent flow rate (m
3
/day), 0.99 kg CO2e/kg COD is the emission factor 

related to organic compounds, YH is the heterotrophic biomass yield (massVSS/massCOD) (Alex et 

al., 2008), ηASP is the biodegradable COD (bCOD) removal in the activated sludge reactors, 1.03 kg 

CO2e/kg COD is the emission factor related to activated sludge biomass, kd,H  is the decay rate of 

heterotrophic biomass and has a value of 0.3 day
-1

 (Alex et al., 2008), and MCRT is the mean cell 

retention time, that is 15 days for this case (Mannina et al., 2016; Gori et al., 2011). 

 The following relationship can be used to determine the on-site N2O emissions from the water-

line. 

𝑃𝑁2𝑂,𝑜𝑛−𝑠𝑖𝑡𝑒 = 𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 · (𝑇𝑁𝑖𝑛 − 𝑇𝑁𝑜𝑢𝑡) · 𝑟𝑁2𝑂 (2.23) 

where 𝑇𝑁𝑖𝑛 represents the total nitrogen from the influent (kg N/m
3
), 𝑇𝑁𝑜𝑢𝑡 is the total nitrogen in 

the effluent (kg N/m
3
) (Huang and Shen, 2019) and 𝑟𝑁2𝑂 is the emission rate of N2O (kg N2O/kg N) 

(Baresel et al., 2016). 
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PERSONAL CONTRIBUTIONS 

3. Model of the municipal WWTP water line  

3.1. Introduction 

This work's case study is the wastewater treatment plant (WWTP) in Someseni, Cluj, which uses 

an anaerobic-anoxic-aerobic (A
2
O) arrangement. The facility treats both sewage and urban runoff and 

is designed with a water line that integrates physical separation, biochemical treatment, settling, and a 

sludge line with biogas production. Following the A
2
O process, the biological stage involves the 

sequential passage of wastewater through anaerobic, anoxic, and aerobic tanks, which facilitates the 

release and uptake of phosphorus, denitrification, nitrification, and carbon degradation. Following this, 

solid-liquid separation occurs in clarifiers. The majority of the activated sludge is recycled, but any 

extra is thickened, anaerobically digested, and used to produce biogas for energy recovery.  

3.2. WWTP layout and design parameters  

Following its entry into the WWTP, the influent wastewater undergoes primary sedimentation. 

After the primary clarifier, the wastewater enters the biodegradation tanks, where the removal of 

carbon, nitrogen, and phosphorus is accomplished by processes specific to the activated sludge 

technology. The three zones of biodegradation basins are anaerobic, anoxic, and aerobic. The 

anaerobic zone is where phosphorus-accumulating microorganisms grow. In the anoxic zone 

denitrification occurs with the help of heterotrophic bacteria that use nitrate and nitrite for cellular 

respiration in the absence of molecular oxygen. As a result, nitrates and nitrites are converted to 

nitrous oxides and nitrogen gas (Wanner and Grau, 1988). The last three bioreactors are forming the 

aerated section of the plant. Here, air is introduced in the wastewater to ensure the necessary level of 

dissolved oxygen with the help of compressors. In this compartment organic matter is converted into 

aerobic biomass via assimilation and phosphorus is absorbed by phosphorus-accumulating 

microorganisms. The internal recirculation sends the formed nitrates and nitrites back to the anoxic 

basins to complete the denitrification step. The remaining liquid-solid mixture is fed into the 

secondary settlers. 99.5% of the activated sludge, rich in microorganisms, is returned to the anaerobic 

zone. The sludge from the settler's base is returned to the anaerobic reactor via the return activated 

sludge stream, while the designated river receives the treated water discharge (Simon-Varhelyi et al., 

2020a). Additionally, the plant includes a biogas production section.  
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3.3. Municipal WWTP model 

The basis of the WWTP simulator developed and used in this work consists of BSM1 and ASM1. 

The original BSM1 model was modified as needed to conform to the anaerobic-anoxic-oxic, A
2
O, 

configuration of the municipal WWTP under investigation.  

The facility uses two feedback control loops based on PI controllers. The first loop controls the 

concentration of dissolved oxygen in the third aerated bioreactor. Its goal is to maintain the dissolved 

oxygen to the 2 mg O₂/L setpoint by adjusting the airflow fed to the three aerated reactors. The 

second loop regulates the nitrates and nitrites levels in the anoxic bioreactor. It keeps the NO 

concentration at the desired setpoint of 0.01 mg N/L by adjusting the mixed-liquid recycle flow, to 

perform appropriate denitrification. As presented in Figure 3.1, the municipal WWTP also comprises 

a primary clarifier and a secondary one. The model of the plant follows this water line structure.  

 

Figure 3.1. Municipal WWTP layout 

The dynamic-state simulations of both normal and faulty DO and NO concentration sensors 

operation were carried out for this study using the previously developed and calibrated Matlab model 

of the municipal WWTP, based on ASM1, BSM1, and Matlab & Simulink software (Varhelyi et al., 

2019). 

The advantages of employing mathematical models embedded in dynamic simulators, whether 

they are mechanistic or statistical, rely on their capacity to predict the future evolution of the main 

process variables under diverse conditions. They offer a valuable tool for the development of the 

design and new operation improvement solutions. 

3.4. Conclusions 

The Someseni municipal WWTP is a state-of-the-art treatment facility whose A
2
O configuration, 

along with sophisticated separation, biochemical, and sludge management processes, enable energy 

recovery through the production of biogas and guarantee the effective removal of organic matter and 

nutrients. Understanding the intricate dynamics of wastewater treatment and accurately representing 

site-specific conditions through meticulous calibration with actual operational data have been made 

possible by the development of a mathematical simulator. The model provides a dependable tool for 

forecasting plant performance in both steady-state and dynamic scenarios by combining ongoing 
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online monitoring with laboratory validation.   

4. Methods for detection and diagnosis of the DO and NO sensor faults  

4.1. Introduction  

Maintaining the mandatory standards for water quality and wastewater treatment process 

efficiency can be difficult when particular anomalies occur in the system. When abnormal operating 

conditions are promptly identified and corrected, an efficient and safe operation can be ensured. 

Various cases of abnormal functioning that appear in WWTPs might be caused by faulty sensors.  

Advanced fault detection and diagnosis methods that use data-driven modelling, machine 

learning, and artificial intelligence have been created to lessen the impact of malfunctioning sensors.   

Among the most important monitoring tools in wastewater treatment facilities are dissolved 

oxygen and nitrate sensors, which are crucial for preserving effective biological treatment processes. 

Effective aeration and nitrogen removal are essential components of wastewater treatment, and 

precise real-time data from these sensors are important for maximizing plant efficiency, cutting 

operating costs, and guaranteeing adherence to environmental standards (Tchobanoglous et al., 

2014). 

4.2. Investigated types of faults 

Given the critical importance of the DO and NO sensors in the overall operation of the WWTP, 

the detection and identification of different DO and NO sensors types of errors were examined in this 

thesis. The six investigated types of sensor faults are defined and described in the following. 

Bias fault type, also known as a shift or an off-set of the sensor’s generated signal values, may 

be frequently caused by a miscalibrated sensor(Teh et al., 2020). 

Drift type of fault appears as a time-varying deviation from the true value and it is distinguished 

by a time-varying ramp signal (Teh et al., 2020). 

Wrong gain type of fault is a loss of sensor effectiveness caused by a calibration error, 

specifically when the calibration slope of the sensor is affected by an inappropriate gain factor or not 

precisely defined in the calibration step (Rosen et al., 2008).  

 Loss of accuracy is an irregular degradation of the sensor's performance (Teh et al., 2020).  

 Fixed value fault is characterized by a sensor that generates the same constant value (Rosen et 

al., 2008). Complete failure (with two instances, minimum or maximum) appears when the sensor’s 

output signal equals or exceeds the sensor's minimum or maximum calibration value (Rosen et al., 

2008). This fault is a particular case of the fixed value fault.  

4.3. Methods for sensor fault detection and diagnosis  

Several studies have used various Multivariate Statistical Process Control (MSPC) methodologies 

to examine sensor abnormal operation and strategies for detecting inaccurate information or 

malfunctioning of the sensors. Control charts (Kazemi et al., 2020), independent component analysis 
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(ICA) (Villegas et al., 2010) and principal component analysis (Tao et al., 2013; Garcia-Alvarez et 

al., 2009; Qin, 2009) are MSPC methods that have been used for in-depth monitoring and fault 

detection.  

Few studies have looked into the issue of DO sensor failures. One study developed a PCA 

method for detecting three different fault types (Lee et al., 2006) and another paper investigated the 

wrong output signal originating from the sensor (Sanchez-Fernandez et al., 2015).  

Only a few studies examined the issues resulting from an out-of-range value of the nitrate and 

nitrite concentration sensor of WWTPs. One of these studies focused on the drift of an amperometric 

nitrite sensor (Britschgi et al., 2020), another one studied the estimation accuracy of a soft sensor for 

nitrate concentration (Corona et al., 2013).  

Fisher Discriminant Analysis (FDA) is a well-known pattern classification technique (Duda et 

al., 2000), and its application in chemical process data analysis has increased steadily over the last 

two decades (Fuente et al., 2008; He et al., 2005). The FDA's application to faulty sensors was 

investigated for air processing units (Du and Jin, 2008).  

4.3.1. Fault detection methods (Principal Component Analysis) 

PCA is a data-mining methodology that is based on a process model built with ordinary process 

data. PCA models are primarily used to emphasize the correlation between process variables from 

raw data. The method reduces the large model training data set by linearly transforming it into a 

smaller one that retains the critical information, enabling facile data interpretation. The resulting data 

set includes a score matrix and a loadings matrix, which contain information revealed by the reduced 

set of variables. When the number of measurements exceeds the number of states, PCA can help to 

simplify process monitoring and fault detection (Wise et al., 1990). 

The PCA method, which is frequently used with Hotelling's T
2
 and Squared Prediction Error 

(SPE), assumes a series of procedures to detect faults in model’s principal or residual subspace.  

4.3.2. Fault diagnosis methods (Fisher Discriminant Analysis) 

Fisher discriminant analysis is a pattern categorization method with a high classification 

potential. The FDA's primary goal is to find the Fisher optimal discriminant vector, which maximizes 

the Fisher criterion function. For the purpose of constructing a lower-dimensional feature space, the 

higher-dimensional feature space of process measurements can be projected onto the obtained 

optimal discriminant vectors space.  

In order to identify the defects, FDA examines measured data collected under different faults 

and uses a discriminant function to assess the similarity between both the current data and the data 

belonging to each class.  The observation is assigned to class i when the maximum discriminant 

function value, 𝑔𝑖, meets the following conditions: 

𝑔𝑖(x) > 𝑔𝑗(x), Ɐ j ≠ i (4.1) 

𝑔𝑖(x) is the discriminant function for class i given by a measured vector x∈ 𝑅𝑚, and 𝑔𝑗(x) is the 

discriminant function for class j given by the measured vector x.  
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4.4. Conclusions 

The reliability of sensor networks in wastewater treatment plants is critical for achieving high 

water quality standards and maximising operational efficiency.  It is impossible to overstate the 

importance of crucial sensors like DO and NO sensors in biological treatment processes. Inaccurate 

data from DO sensors can cause poor effluent quality and energy inefficiencies. On the other hand, 

faulty NO sensors can cause eutrophication, which harms the environment.  

For real-time sensor monitoring, methods such as PCA and FDA provide effective tools. These 

techniques are essential for reducing downtime and guaranteeing ongoing adherence to water quality 

requirements because they can identify sensor malfunctions, categorize them, and recommend 

remedial actions.  

The reliability and efficiency of WWTPs can be significantly improved by integrating efficient 

fault detection and diagnosis techniques with routine sensor maintenance and calibration, while 

enhancing the plant’s sustainable and energy-efficient operation. 

5. Implementation of the faults in the Simulink model of the municipal WWTP 

5.1. Introduction 

Fault detection and identification are crucial to the management of wastewater treatment systems 

because inaccurate sensor readings can result in incorrect chemical dosage, ineffective aeration, or 

even regulatory violations. By using PCA and FDA, this work seeks to improve the capacity to 

identify and diagnose sensor problems. The DO and NO sensor errors that are essential to preserving 

the best possible wastewater treatment procedures are detected and identified by these models. 

To improve diagnostic methods and support fault investigation, controlled simulations of sensor 

errors were performed using Simulink. Six different faults of the sensors were investigated: bias, 

drift, wrong gain, loss of accuracy, fixed value and complete failure. Moreover, the implementation 

of sensor faults in Simulink together with the faulty free operation is a novel aspect of this work.  

The datasets obtained from the simulations serve as the foundation for training and validating 

PCA and FDA models. In addition, an assessment of fault detection and diagnosis methods was 

rigorously performed using the confusion matrix. This metric provided a quantitative evaluation of 

the classification performance under both normal and faulty conditions. 

5.2. Normal and abnormal operation data sets 

To generate the necessary data sets for fault detection or diagnosis, thirteen distinct simulation 

scenarios were built to thoroughly examine these operational circumstances (normal and abnormal 

operation) of the WWTP, in order to produce the datasets required for the subsequent analysis.  

The calibrated WWTP model was simulated for a time period of 168 days, for both normal and 

faulty scenarios, resulting in a set of fifteen different simulations. To reach the plant's quasi-

stationary state, the simulations were carried out under normal operating conditions for the first 139 

days. For the normal operation scenario, the simulation was carried further, up to a total of 168 days, 
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without the introduction of a fault. For the malfunctioning scenarios the sensor faults were 

deliberately introduced in the 140
th
 day of each simulation. In total, twelve simulations were 

performed individually, each corresponding to a different type of fault. Simulated data of the WWTP 

operation were collected with a sampling time of 15 minutes to create comprehensive data sets for 

further analysis.  

The obtained data sets were further used to build, train, validate and test the PCA and FDA 

models. The objective of these machine learning techniques was to improve the reliability and 

robustness of WWTP monitoring systems by evaluating the efficacy of fault detection and 

identification models.  

5.3. Data sets for building the PCA fault detection model 

Data collected via the simulation process over a period of 40 days of normal operation, 

specifically from day 100 to day 139, were used to build the data matrix X of the PCA model. This 

time frame was selected to ensure that the model was trained under consistent, error-free operating 

conditions, enabling it to capture the inherent variability of the wastewater treatment plant in normal 

conditions. With the help of this dataset, the PCA model was able to detect normal operating patterns 

and establish a baseline (threshold) that could be used to detect deviations caused by sensor faults. 

In order to simulate various types of sensor malfunctions, artificial faults were introduced into 

the system at the beginning of day 140.  

The fault detection capacity of the PCA model was investigated using data generated and 

recorded from the 140
th
 day till 160

th 
day (a time frame of 20 days), separately for each of the DO and 

NO sensor faulty operation. The statistical measures Hotelling's T
2
 and Squared Prediction Error, 

were used to track the system's behaviour by projecting the faulty operational data onto the principal 

component space. The model was able to detect possible abnormalities by using significant 

deviations in these statistical indices as indicators of sensor malfunctions. 

5.4. Data sets for building the FDA fault identification model 

The FDA model was trained using data generated between the 141
st
 and 145

th
 days (five days) of 

either normal or faulty DO and NO sensor operation. In the case of faulty operation, the data sets 

used for training included instances for each of the fault types. As a result, the observation training 

matrix for the DO sensor operation is composed of eight separate classes, with one class representing 

normal operation and the remaining seven representing each of the various fault types. For the NO 

sensor operation, the observation training matrix consists of six distinct classes, one for the normal 

operating conditions and five for the faulty operating conditions.  

The trained FDA model's fault identification performance was evaluated using data from the first 

day of abnormal sensor operation (the 140
th
 day). This testing strategy was developed to investigate 

the ability of the FDA diagnosis method to identify the type of fault within the early hours after its 

appearance. This assessment offered significant insight on the efficiently of the diagnosis method and 
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its application potential for real-time working scenarios.  

5.5. Assessment metrics for fault detection and diagnosis performance  

This study's performance on fault detection and diagnosis capabilities is based on the assessment 

metrics and methodology. This includes the construction and interpretation of confusion matrices, as 

well as the calculation of key performance indicators such as accuracy, PPV, MAR and F1 score. The 

confusion matrix was computed and systematically applied to each specific scenario to precisely 

assess the effectiveness of the fault detection and identification techniques.  

In the confusion matrix, the rows correspond to the predicted categories (Output Class), whereas 

the columns denote the actual categories (Target Class). Accurately classified instances are placed 

along the diagonal cells, while misclassified instances appear in the off-diagonal cells. Each cell 

displays both the count of instances and the corresponding percentage of the total observations. The 

rightmost column of the matrix shows the proportion of cases predicted for each category that were 

classified correctly or incorrectly, aligning with metrics such as precision (or PPV) and the false 

discovery rate. Likewise, the bottom row displays the proportion of actual instances of each category 

that were classified correctly or incorrectly, corresponding to recall (or true positive rate) and MAR. 

The overall classification accuracy is displayed in the bottom-right cell of the matrix.  

6. DO sensor fault detection, diagnosis and impact on energy, water quality and 

GHG emissions  

6.1. Introduction 

The simulation framework and the methodology designed to detect and diagnose faults of the DO 

concentration sensor with the support of the dynamic simulator for a municipal WWTPs are 

presented in this chapter. Particular simulations were developed for both, normal and faulty 

operation. In the case of faulty operation, seven different faults of the DO concentration sensor were 

considered: bias, drift, wrong gain, loss of accuracy, fixed value, complete failure minimum and 

maximum. Each fault was implemented using an individual procedure that accurately replicated 

actual DO sensor faults. Two statistical process monitoring techniques were considered and PCA-

based and FDA-based models were developed to detect and diagnose the considered DO sensor 

faults. 

The overall economic and environmental impact of the DO sensors faults in the municipal plant 

is also examined. An extensive analysis is performed with special attention to energy usage and costs, 

effluent quality and GHG emissions. This study emphasises the necessity of preventive maintenance, 

periodic calibration, and automated fault detection systems by revealing the correlating sensor faults 

with plant performance indices.  

6.2. Methodology of DO sensor faults implementation 

To simulate the behaviour of the seven failure types considered for the DO concentration sensor, 
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customized software modules were created. They were integrated into the WWTP dynamic simulator 

model. For each type of fault, the generated fault-affected output of the sensor was sent as measured 

DO process variable to the Proportional-Integral DO controller. The layout of the WWTP and the DO 

sensor location are presented in Figure 6.1.  

 

Figure 6.1. Placement of the DO sensor in the municipal WWTP 

 The DO control loop adjusts the air flowrate to bring the measured DO to the desired setpoint 

of 2 mg O2/L, with zero offset. For each of the faults, the investigation scenario was carried out as 

follows. For a period of 139 days, the simulation was run without any fault. Then, beginning on the 

140
th
 day of the simulations, each fault was implemented by an individual fault operating scenario for 

a total of 28 days. The process variables considered for fault identification were taken from the first 

day of faulty operation, i.e., the day no. 140. For collecting data that describe normal operation, the 

same measurement period of 28 days was considered.  

 The bias fault type was defined as a predetermined constant difference between the sensor's true 

and faulty output values. The DO measured concentration was considered to have a bias of +1.5 mg 

O2/L for this fault type. 

The drift was simulated as an increasing bias, which was described by a time-varying ramp 

signal added to the true DO value. To simulate the drift, a constant value of 0.05 mg O2/L was 

integrated in time and added to the DO true value. 

 The wrong gain fault was simulated by the sensor's loss of effectiveness because of a gain 

factor other than 1. It consisted of an incorrect calibration gain of 1.4, which resulted in a wrong 

correlation factor between the sensor's input and output signal. A first-order filter with a time 

constant of 0.3 days smoothly introduced the incorrect gain in time. 

The loss of accuracy fault was simulated using a uniform random-number generator that 

delivered a value in the interval [-2.5, 2.5] with a sampling time of 0.1 days. This signal was passed 

through a first-order filter with a time constant of 0.01 days, and then to a saturation block, which 

limited its output value to the positive interval [0, 6]. This random signal was then added to the DO 

true value to generate the fault-affected measured process variable. 

 The fixed value fault was implemented by a constant value of the sensor output signal, 

regardless of the true DO process variable value. For this study, a constant value of 2.2 mg O2/L was 
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used (which is 10% higher than the DO control loop's nominal setpoint value of 2 mg O2/L). 

 A sensor's complete failure was once again characterized by unvarying values of the sensor 

output signal, but these constant values were the minimum or maximum of the sensor’s calibration 

interval. For the complete failure minimum and maximum alternatives, the two extreme values of 0.1 

mg O2/L and 6 mg O2/L were chosen. They represent 5%, respectively 300% of the nominal setpoint 

value of 2 mg O2/L considered for the DO control loop. 

The application of statistical theory in process monitoring is based on the assumption that the 

characteristics of the data change only when an unexpected situation (fault) takes place in the 

process. Any significant deviation from this normal behaviour suggests that an unexpected event or 

fault has occurred in the system (Chiang et al., 2001). It was also assumed that a single sensor would 

fail at a time. 

The purpose of this chapter is to support the field of wastewater treatment plant operation and 

management by investigating the DO concentration sensor typical faults, the detection and 

identification of the faults and revealing how these issues affect the energy use, gas emissions and 

quality of effluent water. This work was published in two scientific papers (Luca et al., 2023; Luca et 

al., 2021). 

6.3. Process variables considered for the detection and identification of the DO 

sensor faults 

The total set of twenty WWTP process variables considered for building the PCA model 

consisted of secondary settler flow rate and clean water effluent concentration variables (6 

variables), and sludge flow rate and settler bottom effluent concentration variables (14 variables), 

including temperature. The entire set of variables taken into consideration were: total nitrogen 

(Ntotal), total Kjeldahl nitrogen (TKN), chemical oxygen demand (COD), nitrate and nitrite 

nitrogen (SNO), free and saline ammonia (SNH), total suspended solids (TSS), slowly 

biodegradable substrate (XS), heterotrophic biomass (XB,H), autotrophic biomass (XB,A), inert 

particulate products (XP), particulate biodegradable organic nitrogen (XND), soluble 

biodegradable organic nitrogen (SND), dissolved oxygen concentration (SO), readily 

biodegradable substrate (SS), alkalinity (Salk), waste flow rate (QW), and temperature (t). The first 

six variables of the presented set were considered for the settler  clean water effluent and the last 

fourteen for its bottom stream. Inert suspended organic matter (XI) and inert soluble organic 

matter (SI) concentration variables were excluded, as they would not add significant information to 

the study (Tomita et al., 2002). These variables were chosen based on relative standard deviation 

(RSD) values obtained during the faulty time period of simulations. The RSD is a measure of the 

dispersion of data points in a data set relative to its mean. It was used as an indicator to determine 

which variables provided meaningful variation. The higher the value of RSD, the higher the 

variability, which meant that the data points were widely spread. Values of SNO, SO and QW were 
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excluded from the FDA sets as they induced singularity on the Sw matrix (the determinant of the 

matrix was equal to zero and the matrix had no inverse). 

6.4. PCA model construction for DO sensor faults detection 

The PCA model was built using 3840 observations from the normal operating period of 40 days. 

The obtained data matrix X of 3840x20 dimensions represented the training matrix. After scaling the 

data matrix, the scores matrix T and the loadings matrix P were obtained. For CPVk, a threshold value 

of 98.24% was chosen. As a result, the number of principal components k that contributed to a 

consistent representation of the entire data set was determined to be eight.  A T
2
 threshold of 20.16 

and a SPE threshold of 1.26 were determined for the 99% confidence level. Any vector x of measured 

variables with a T
2
 or SPE value greater than the two equivalent thresholds implied the abnormal 

sensor operation. 

 Seven testing data matrices were created using the vectors of abnormal-operation measured 

variables. One was created for each of the first five types of faults, to which was added the complete-

failure fault type, which had two matrices built for the minimum and maximum faulty values of the 

DO sensor. For each testing data matrix (1920x20), a total of 1920 samples were used, originating 

from simulation day 140 up to day 160 (excluding day no. 160). To determine faulty sensor 

operation, T
2
 and SPE values were determined for each of the sample vectors of the testing matrices 

and compared to previously calculated thresholds. T
2
 and SPE values were graphically represented 

for each of the normal (training) and faulty (testing) samples, in association with the 𝑇𝛼
2 and SPEα 

thresholds.  

6.5. FDA model construction for DO sensor faults identification 

Data generated during the period of the 141
st
 and 145

th
 days of normal and faulty DO sensor 

operation were used to train the FDA model. A class was defined as the set of 480 observations of the 

17 variables. These variables created the observation training matrix of 3840 lines (8 classes with 480 

measurements) and 17 columns. The fault diagnosis performance of the trained FDA model was 

evaluated using data from the 140
th
 day, i.e., the first day of abnormal operation. Each case of normal 

or abnormal operation had 96 measurements in the testing data set. This testing strategy was devised 

to investigate the ability of the FDA diagnosis method (model) to identify the type of fault within the 

first few hours following its appearance. 

The values obtained for each class's discriminant function, 𝑔𝑖, were compared in order to 

diagnose the faulty sensor operation. The values of the discriminant functions 𝑔𝑖 were computed for 

each of the 15-minute time-sampled measurements of testing day no. 140, which were affected by the 

various types of faults (7 classes), as well as measurements corresponding to normal operation (1 

class). The discriminant function with the highest value identified the faulty sensor's class and, as a 

result, diagnosed the fault type. 
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6.6. Results and discussions 

6.6.1. Assessment metrics for fault detection of DO sensor 

The effectiveness of the PCA-based and FDA-based methods for detecting and diagnosing DO 

sensor faults was assessed using two different confusion matrices. This approach allowed for a 

thorough evaluation of the models' performance by methodically examining their classification 

accuracy. This comprehensive assessment ensured an accurate and dependable analysis of sensor 

functioning by offering a quantitative estimate of the models' capabilities.  

The DO sensor detection confusion matrix analyses two different classes: abnormal (with defect) 

and normal (no defect). The normal class is shown in the second column (target), whereas the 

abnormal class is represented in the first column (target). Figure 6.2 presents the DO sensor 

confusion matrix for faults detection. 

 

 

Figure 6.2. Confusion matrix of the fault detection for the DO sensor 

With a 100% precision rate for the normal class, the model showed no false positives. For the 

faulty class the precision was 96.7%. Furthermore, the model's overall accuracy was 99.6%, 

demonstrating high proficiency in correctly classifying observations. The F1 score for the normal 

class was 0.983, while the faulty class achieved a remarkable F1 score of 0.997. These scores indicate 

an exceptional balance between recall and precision, with the faulty class performing particularly 

well. 

6.6.2. Fault detection of DO sensor faults 

First, the proposed and developed PCA model was applied to the normal data set. As shown in 

Figure 6.3, all of the T
2
 and SPE values from this data set were validated to be faulty-free values, 

therefore they were classified as normal operation values. Furthermore, the T
2
 plot reveals that the 

difference between the normal operation values and their associated threshold was greater for T
2
 than 

that shown by the SPE plot. This means that in normal operation mode, the SPE statistics provide the 

most reliable data.  
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Figure 6.3. T
2
 and SPE plots of PCA monitoring the normal operation data set for the DO sensor 

Figures 6.4-6.10 show the fault detection results for each type of the DO sensor investigated 

faults. 

The bias fault type was detected after 1h with T
2
 statistics and in 1 h and 15 minutes with SPE 

statistics, as it can be observed in Figure 6.4. 

 

Figure 6.4. T
2 
and SPE plots of PCA detecting the bias type of fault for the DO sensor, with details on 

the period next to the fault occurrence moment 

Figure 6.5 shows the detection of the drift type of fault. The plots confirm the existence of a 

fault after 8.5 h with the T
2
 method. In this case SPE method proved to be more rapid and detected 

the fault in 5.25 h. The drift type of sensor fault was expected to take longer to be detected because 

the faulty signal grows slowly over time and crosses the statistical threshold only when its amplitude 

becomes significant. 
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Figure 6.5. T
2
 and SPE plots of PCA detecting the drift type of fault for the DO sensor, with details on 

the period next to the fault occurrence moment 

 For wrong gain fault type, both statistics methods proved to be just as fast, and the fault was 

detected in 2 h and 30 minutes. The results for the detection of the wrong gain fault of the DO sensor 

are presented in Figure 6.6. 

 

Figure 6.6. T
2
 and SPE plots of PCA detecting the wrong gain type of fault for the DO sensor, with 

details on the period next to the fault occurrence moment 

 Figure 6.7 presents the results for the loss of accuracy DO sensor type of fault. In this case, the 

fault presence was detected in 3 h and 45 minutes by both, T
2
 and SPE methods. In the case of this 

fault, the detection is dependent on the random amplitude of the fault component value. 
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Figure 6.7. T
2
 and SPE plots of PCA detecting the loss of accuracy type of fault for the DO sensor, 

with details on the period next to the fault occurrence moment 

 The detection of the fixed-value type of fault was detected in 1.25 h. For this fault, both 

methods proved to be just as efficient. Figure 6.8 presents the results for the fixed value DO sensor 

fault. 

 

Figure 6.8. T
2
 and SPE plots of PCA detecting the fixed value type of fault for the DO sensor,with 

details on the period next to the fault occurrence moment 

 Again, in the complete failure minimum case, the T
2
 statistic proved to be as fast as SPE 

statistic and the detection time was 1 h. The results for the complete failure minimum type of fault for 

the DO sensor are presented in Figure 6.9. 
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Figure 6.9. T
2
 and SPE plots of PCA detecting the complete failure minimum type of fault for the DO 

sensor, with details on the period next to the fault occurrence moment 

As shown in Figure 6.10 complete failure maximum was detected after 1 h, similar to the 

complete failure minimum and the bias type of faults. 

 

Figure 6.10. T
2
 and SPE plots of PCA detecting the complete failure maximum type of fault for the 

DO sensor, with details on the period next to the fault occurrence moment 

The proposed PCA model successfully detected the occurrence of different types of DO sensor 

faults. SPE usually provided faster detection than the T
2
 method, with a higher promptitude especially 

for the drift type of fault. The efficiency of T
2
 and SPE statistics was comparable for bias, wrong 

gain, loss of accuracy, fixed value, and complete failure type of defects. These results demonstrate 

the capability of the designed PCA-based method for early detection of DO sensor failure by prompt 

fault detection and providing reliability to the efficient operation. 
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6.6.3. Assessment metrics for DO sensor faults diagnosis 

For the FDA-based identification method, a complete confusion matrix was computed to evaluate 

the method's performance in classifying different sensor types of faults. This matrix's normal class 

(fault-free operation, designated as target 1) is represented by the first column. Listed in order of 

occurrence, the following columns represent the following seven different sensor faults: bias (target 2), 

drift (target 3), wrong gain (target 4), loss of accuracy (target 5), fixed value (target 6), complete 

failure minimum (target 7) and complete failure maximum (target 8). 

As shown in Figure 6.11, the FDA technique showed good classification performance, with an 

overall accuracy of 85.8%. This value demonstrates the ability of the FDA-based method to accurately 

identify different types of sensor errors. 

 

Figure 6.11. Confusion matrix of the fault diagnosis for the DO sensor type of faults 

6.6.4. Fault diagnosis of the DO sensor type of faults 

As shown in Figure 6.12, the gi values revealed the consolidated normal operation (fault-free 

values) diagnosis after 16.5 hours (confident identification moment). In this case, a small set of 52 

observations was misclassified as drift, resulting in a MAR of 2.7%. Additionally, the F1 score was 

calculated to 0.973, reflecting a good balance between precision and recall. 
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 Figure 6.12. Faulty-free operation diagnosis for the DO sensor: graphs of the FDA discriminant 

functions gi(x) for each of the normal and seven types of faults; details on the time period of confident 

identification 

The identification of the sensor types of fault is presented in Figures 6.13-6.19. 

As shown in Figure 6.13, the bias fault type diagnosis is confirmed after 2.5 hours, for a total of 

5.75 hours. As a result, the FDA discrimination reveals the complete failure maximum class for the 

remaining period of the day. This resulted in a MAR value of 100% and a F1 score of 0.  

 

Figure 6.13. Bias type of fault diagnosis for the DO sensor: graphs of the FDA discriminant functions 

gi(x) for each of the normal and seven types of faults; details on the time period of confident 

identification 

As shown in Figure 6.14, the diagnosis of drift type of fault is firmly acknowledged after 13.75 

hours (confident identification moment). In this instance, the MAR was only 0.6%. This low 

percentage of misclassification demonstrates how well the model can discriminate between faulty and 

fault-free conditions. Additionally, the F1 score demonstrated a well-balanced performance between 

precision and recall, reaching the value of 0.949.  

 

Figure 6.14. Drift type of fault diagnosis for the DO sensor: graphs of the FDA discriminant functions 

gi(x) for each of the normal and seven types of faults; details on the time period of confident 

identification 

After 14 hours of the fault incidence moment, the diagnosis of wrong gain fault was confirmed. 



 

 

26 

 

Figure 6.15 depicts the graphical representation for the diagnosis of this fault type. The model's 

overall efficacy in correctly identifying observations was demonstrated by its F1 score of 0.985. 

 

Figure 6.15. Wrong gain type of fault diagnosis for the DO sensor: graphs of the FDA discriminant 

functions gi(x) for each of the normal and seven types of faults; details on the time period of confident 

identification 

 Figure 6.16 shows that the loss of accuracy fault is identified after 16.5 hours from the starting 

moment of the fault action. Nevertheless, 62 observations were misclassified, with 19 being 

mistakenly classified as normal operation and 43 as drift, resulting in a MAR of 3.2%.  

 

Figure 6.16. Loss of accuracy type of fault diagnosis for the DO sensor: graphs of the FDA 

discriminant functions gi(x) for each of the normal and seven types of faults; details on the time period 

of confident identification 

 Figure 6.17 shows the graphical representation of the fixed value fault. This fault type was 

accurately diagnosed after 6 hours (confident identification moment). With the second-highest F1 

score of 0.990, the model showed remarkable performance for identifying the fixed value fault. A 

good balance between precision and recall is revealed by this high score, which further supports the 

reliability of the categorisation.  
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Figure 6.17. Fixed value type of fault diagnosis for the DO sensor: graphs of the FDA discriminant 

functions gi(x) for each of the normal and seven types of faults; details on the time period of confident 

identification 

 Figure 6.18 shows that the complete failure minimum is correctly diagnosed after 6.75 hours 

(confident identification moment) of its appearance. The identification of complete failure was most 

accurately achieved, as indicated by the highest F1 score of 0.993. The MAR was 1.4%. 

 

Figure 6.18. Complete failure minimum type of fault diagnosis for the DO sensor: graphs of the FDA 

discriminant functions gi(x) for each of the normal and seven types of faults; details on the time period 

of confident identification 

 As shown in Figure 6.19, the complete failure maximum is successfully diagnosed after 9.5 

hours (confident identification moment). For complete failure maximum, the identification approach 

showed less accurate results, with a value of 1.9% for MAR.  

 

Figure 6.19. Complete failure maximum type of fault diagnosis for the DO sensor: graphs of the FDA 

discriminant functions gi(x) for each of the normal and types of seven faults; details on the time period 

of confident identification 

The FDA-based method for DO sensor faults offers a trustworthy framework for diagnosing 

sensor faults in a timely manner and efficiently monitoring the development of faults.  
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6.6.5. WWTP performance evaluation during operation with DO sensor faults 

For both normal and faulty operation scenarios of the DO sensor faults, the performance indices 

AE, PE, and EQ were determined as mean values over 28 days (starting from the 140
th
, up to the 

168
th 

day). The indices value for normal operating conditions and for the six different defects are 

shown in Table 6.1 as AE, PE, and EQ performance indicators. 

Table 6.1. Values of the performance indices for the normal and faulty operation cases 

 

It is evident that the PE and EQ indices values for the fault types of bias, loss of accuracy, fixed 

value, and complete failure maximum are significantly greater than the values for normal operation, 

although AE is lower. The high DO sensor signal values of the previously four fault categories, 

which are delivered to the DO controller as feedback, justify the AE values. As a result of the 

increased by fault signal, the DO controller reduces aeration in an effort to lower the value of the 

incorrect DO signal. This results in a reduction in aeration energy. After that, nitrification declines, 

which lowers the concentration of nitrate and nitrite in the aerobic reactor and, ultimately, in the 

anoxic reactor. The internal recycle flowrate is increased by the NO control loop in response to this 

shift, which results in a higher pumping energy need. The increased air flow rate controlled by the 

DO controller in response to the low, but incorrect value of the DO sensor signal is what causes the 

high AE value in the case of the complete failure minimum type of fault. 

6.6.6. Energy costs assessment for operation affected by the DO sensor faults 

In general, operating a WWTP involves significant energy costs and, implicitly, considerable 

economic expenses. Geopolitics, the nation's unique energy mix, distribution network costs, 

environmental protection fees, extreme weather conditions, and excise and taxation levels are only a 

few of the supply and demand elements that affect energy prices. The energy source also has an 

impact on the cost of energy. According to Table 6.2, based on the source, energy costs range from 

5.84 to 18.75 eurocents. These are average values calculated based on two different reports on energy 

Operating regime 
AE 

(kWh/day) 

PE 

(kWh/day) 

Total energy 

demand 

(kWh/day) 

EQ 

(kg PU/day) 

Normal operation 16,992 1,329 18,321 16,852 

Bias fault 14,206 2,415 16,621 21,461 

Drift fault 15,569 1,746 17,315 17,134 

Wrong gain fault 15,866 1,593 17,459 16,706 

Loss of accuracy fault 9,150 2,403 11,553 219,189 

Fixed value fault 1,968 2,415 4,383 338,737 

Complete failure minimum fault 23,537 1,039 24,576 19,804 

Complete failure maximum fault 1,968 2,415 4,383 338,750 
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costs in Europe (Kost et al., 2024), United States and global markets (Lazard, 2024) and on an online 

calculator made available by the International Energy Agency (IEA) (IEA, 2024). 

Table 6.2. Average costs of different energy sources 

Source/Technology €cents/kWh 

Lignite 9.89 

Coal 9.37 

Gas (CCGT
1
) 10.78 

Nuclear 18.75 

Wind onshore 6.75 

Wind offshore 8.55 

Solar PV
2
 commercial 8.07 

Solar PV residential 12.70 

Solar thermal (CSP
3
) 14.8 

Hydro reservoir 7.95 

Hydro run of river 5.84 

Geothermal 8.63 

Biomass 11.57 

1
CCGT - combined cycle gas turbines 

2
PV - photovoltaic 

3
CSP - concentrating solar power 

 

 For the WWTP taken into consideration in the current study, the daily cost for regular-normal 

and for each type of faulty operation modes was determined. The daily costs for different energy 

sources were evaluated based on energy production technologies. The costs of various energy sources 

were multiplied by the total energy demand values calculated for both normal and faulty operating 

scenarios to generate the data shown in Table 6.3.



Eroare! Utilizați fila Pornire pentru a aplica Heading 2 la textul care doriți să apară aici. 

Eroare! Utilizați fila Pornire pentru a aplica Heading 3 la textul care doriți să apară aici. 
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 Table 6.3. Source depending sum of AE and PE energy costs computed for normal and fault affected operation of the WWTP water line for the DO sensor case 

 

 

 

Source/Technology 

Daily operation costs (€) 

Normal operation Bias Drift Wrong gain 
Loss of 

accuracy 
Fixed value 

Complete 

failure 

minimum 

Complete 

failure 

maximum 

Lignite 1,812 1,644 1,712 1,727 1,143 433 2,431 433 

Coal 1,717 1,557 1,622 1,636 1,083 411 2,303 411 

CCGT 1,975 1,792 1,867 1,882 1,245 472 2,649 472 

Nuclear 3,435 3,116 3,247 3,274 2,166 822 4,608 822 

Onshore wind 1,237 1,122 1,169 1,178 780 296 1,659 296 

Offshore wind 1,566 1,421 1,480 1,493 988 375 2,101 375 

Solar PV 

commercial 
1,479 1,341 1,397 1,409 932 354 1,983 354 

Solar PV residential 2,327 2,111 2,199 2,217 1,467 557 3,121 557 

Solar thermal (CSP) 2,712 2,460 2,563 2,584 1,710 649 3,637 649 

Hydro reservoir 1,457 1,321 1,377 1,388 918 348 1,954 348 

Hydro run of river 1,070 971 1,011 1,020 675 256 1,435 256 

Geothermal 1,581 1,434 1,494 1,507 997 378 2,121 378 

Biomass 2,120 1,923 2,003 2,020 1,337 507 2,843 507 



Eroare! Utilizați fila Pornire pentru a aplica Heading 2 la textul care doriți să apară aici. 

Eroare! Utilizați fila Pornire pentru a aplica Heading 3 la textul care doriți să apară aici. 
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When examining the costs associated with electrical energy used for the various fault cases, it 

can be seen that the complete failure minimum fault of the DO sensor is associated with the highest 

energy costs, as the control system is forced to significantly increase the air flowrate due to the 

reduced faulty value of the DO sensor. On the other hand, the large values of the DO sensor signal 

associated to the complete failure maximum or the (high) fixed value type of faults, cause the DO 

controller to limit the air flowrate, resulting in low energy costs. However, in these latter situations, 

the effluent quality rapidly declines by a factor of more than 20, making these defects the ones with 

the worst overall effects. 

6.6.7. Environmental assessment of CO2 and N2O emissions for operation with DO 

sensor faults 

For each case of faulty operation, as well as for normal operation, the on-site and off-site 

emissions of CO2 and N2O, the principal contributors to the Green House Gases produced by the 

water line of the WWTP, were estimated. Table 6.4 displays their daily mean values.
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Table 6.4. GHG Emissions due to the different types of the DO sensor defects 

Site of 

emissions 
Process 

Type of emitted 

gas 

Type of fault 

Normal Bias Drift Wrong gain 
Loss of 

accuracy 
Fixed value 

Complete 

failure 

minimum 

Complete 

failure 

maximum 

Off-site 

emissions 

Power 

generation 

CO2, 

𝑃𝐶𝑂2,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒  

(kg CO2/day) 

3,481 3,158 3,290 3,317 2,195 833 4,669 833 

Biological 

degradation in 

the WWT 

effluent 

N2O, 

𝑃𝑁2𝑂,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒, 

(kg N2O/day) 

3.61 2.47 2.89 2.97 14.39 21.49 6.50 21.49 

On-site 

emissions 

Water-line 

aerobic 

biological 

processes 

CO2, 

𝑃𝐶𝑂2,𝑜𝑛−𝑠𝑖𝑡𝑒(kg 

CO2/day) 

13,689 30,459 17,851 16,178 461,439 921,028 10,604 921,168 

N2O, 

𝑃𝑁2𝑂,𝑜𝑛−𝑠𝑖𝑡𝑒  

(kg N2O/day) 

10.35 10.81 10.64 10.05 6.07 3.27 9.20 3.27 

Total emissions 

CO2, 

𝑃𝐶𝑂2,𝑡𝑜𝑡𝑎𝑙(kg 

CO2/day) 

17,170 33,617 21,141 19,495 463,634 921,861 15,274 922,001 

N2O, 

𝑃𝑁2𝑂,𝑡𝑜𝑡𝑎𝑙  

(kg N2O/day) 

13.96 13.28 13.53 13.02 20.46 24.76 15.70 24.76 

Total overall emissions 𝑃𝐶𝑂2𝑒,𝑜𝑣𝑒𝑟𝑎𝑙𝑙 

CO2e, 

(kg CO2e/day) 

21,330 37,574 25,173 23,375 469,731 929,239 19,953 929,379 
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According to the GHG assessment results presented in Table 6.4, on-site emissions are the most 

important, accounting for 75%-80% of the total emissions during normal operation, for both 

𝑃𝐶𝑂2,𝑡𝑜𝑡𝑎𝑙 and 𝑃𝑁2𝑂,𝑡𝑜𝑡𝑎𝑙. With the exception of the complete failure minimum fault type, all cases of 

the DO sensor defects resulted in increased values for the computed total CO2 emissions, that is, the 

sum of the on-site and off-site values.  

Increased values for the N2O emissions are also found when the total N2O emissions are 

assessed for the fixed value, complete failure maximum, and loss of accuracy faults. It should be 

noted that complete failure minimum fault type led to higher values of the N2O emissions, which is 

the opposite of the observed trend for the total CO2 emissions. The total CO2 and total N2O emissions 

were summed together to calculate the overall CO2e emission values. All faults exhibit higher CO2 

emission levels than the case of normal operation, according to the results of the overall CO2 

emission. The single exception to this trend is the complete failure minimum type of fault. However, 

in this specific instance the effluent quality deteriorates by more than 17.50% and the sum of the 

aeration and pumping energy has the highest values of all analysed situations. 

6.7. Conclusions 

Using the DO sensor of a municipal A
2
O WWTP as a case study, PCA-based fault detection 

and FDA-based fault diagnosis methods were evaluated, alongside energy and water quality 

performance. The DO sensor is central to nitrification efficiency, with aeration being the main 

energy consumer. Six fault types were analysed: bias, drift, wrong gain, loss of accuracy, fixed 

value, and complete failure. PCA detected faults with 99.6% accuracy, typically within 2-9 hours 

depending on fault type, while FDA diagnosis reached 85.8% accuracy within 2.5-16.5 hours. 

Faults impacted effluent quality and energy differently: bias and drift moderately reduced 

energy but worsened water quality, while loss-of-accuracy and fixed-value faults caused severe 

effluent deterioration. Complete failure faults showed extremes, with either high energy demand or 

drastically reduced effluent quality. CO₂ and N₂O emissions were highest from on-site sources, 

particularly under complete failure, fixed-value, and loss-of-accuracy faults. Energy costs were 

also fault-dependent, with low DO readings increasing aeration demand. 

The study demonstrates that PCA and FDA approaches effectively detect and diagnose DO 

sensor faults, supporting safe, efficient, and sustainable WWTP operation. Results inform control 

system design, energy optimization, GHG mitigation, and intelligent sensor development. 

7. NO sensor fault detection, diagnosis and impact on energy, water quality and 

GHG emissions 

7.1. Introduction 

Reliable sensor measurements are essential for regulatory compliance and optimal process 

control in wastewater treatment plants. Among the many sensors employed in WWTP operations, 



 

 

34 

 

the NO concentration sensor is essential for monitoring the dynamic concentrations of nitrate and 

nitrite. Nitrogen compounds present in WWTPs can cause significant environmental issues.  

This study focuses on detecting and identifying different NO sensor errors. Specific types of 

faults of the NO concentration sensor were incorporated into the WWTP dynamic model and 

several different simulations were developed to reveal the plant behaviour as a consequence of 

these faults. Five different fault types were considered: bias, drift, wrong gain, loss of accuracy and 

fixed value. To effectively detect these faults a PCA-based model was developed, validated and 

tested. Another model, based on FDA was implemented and used to diagnose the NO sensor type 

of faults. 

Furthermore, the confusion matrix was employed to thoroughly evaluate fault diagnosis and 

detection methods, offering a numerical assessment of the classification performance in both 

normal and faulty scenarios. 

The impact of NO sensor faults on WWTP performance is thoroughly examined in this chapter 

through the energy cost, effluent quality and environmental assessments. For this, three different 

performance indices were analysed together with the GHG emissions, all of them quantified under 

normal and faulty sensor conditions. 

7.2. Methodology of NO sensor faults implementation 

Dedicated software modules were developed to simulate the specific failure types considered for 

the NO concentration sensor. They were incorporated into the WWTP dynamic simulation. For 

each fault type, the sensor's generated fault-affected output was fed into the Proportional-Integral 

NO controller as a measured NO process variable. This control loop is directly responsible for the 

denitrification process of the ASM technology. The placement of this sensor is presented in Figure 

7.1. 

 

Figure 7.1. Placement of the NO sensor in the municipal WWTP 

The NO control loop adjusts the internal recycle flow-rate of nitrate and nitrite to achieve the 

desired setpoint of 0.01 mg N/L, with zero offset. For each of the faults, the investigation scenario 

was performed similarly to the DO sensor case in terms of time. First, the simulation was run without 

any of the sensor’s faults for 139 days. Each fault was then implemented for a total of 28 days, 
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beginning on the 140
th
 day of the simulations. The values of the process variables considered in the 

fault identification and testing methodology were collected starting from day 140, i.e., the first day of 

faulty operation. The same duration of 28 days for the measurements collection period was 

considered for data that describe the normal operation. 

The bias fault was characterized by a preset constant-difference between the true and faulty 

output values of the sensor. For the implementation of the fault in the simulation, a negative constant 

value of -0.0098 mg N/L was added to the true value of the NO concentration. 

The drift was simulated as a time-varying ramp signal subtracted from the true NO value. A 

negative constant value of -0.0075 mg N/L was integrated in time and added to the NO true value. 

(i.e. -75% of the NO control loop's nominal setpoint value of 0.01 mg N/L). 

The sensor's loss of effectiveness as a result of a negative gain factor was used to simulate the 

wrong gain fault. It had an incorrect calibration gain of -0.7, resulting in an incomplete 

correlation between the sensor's input and output signal. The incorrect gain was gradually introduced 

in time by a first-order filter with a time constant of 0.1 days. 

A uniform random-number generator that delivered a value in the interval [-0.06, 0.06] with a 

sampling time of 0.1 days was used to generate the loss of accuracy faulty signal. This signal was 

processed by a first-order filter with a time constant of 0.01 days, followed by a saturation block, 

which limited its output value to the positive interval [0, 3]. This random signal was then subtracted 

from the NO true value to produce the inaccurately measured NO process variable. 

The fixed value fault was characterized by the constant value of the sensor output signal. 

For this study, a constant value of -0.0095 mg N/L (which is 95% of the nominal setpoint value of 

the NO control loop of 0.01 mg N/L) was added to the NO control loop's nominal setpoint value of 

0.01 mg N/L, resulting in the sensor constant value of 0.0005 mg N/L. 

Each of NO concentration sensor types of faults was individually introduced at the specified 

time in the dynamic simulations and generated the set of data for describing the respective particular 

abnormal situation. 

This chapter proposes supporting the WWTP management by investigating the way NO sensor 

malfunctions affect energy usage, greenhouse gas emissions, and effluent quality. It evaluates the 

effectiveness of fault detection and identification using the PCA and FDA methods, and offers 

recommendations for long-term operations and maintenance of the WWTP. The presented work was 

published in one scientific paper (Luca et al., 2025). 

7.3. Process variables considered for the detection and identification of the NO 

sensor faults  

Twenty process variables were considered for the PCA model and twenty-one for the FDA 

model. They consist of secondary settler concentrations (3 variables), anoxic bioreactor 

concentrations (8 variables), aerated bioreactors concentrations (7 variables), internal recycle flow 
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rate (1 variable), aeration flow rate (1 variable) and clean water effluent flow rate (1 variable). The 

variables considered were as follows: nitrate and nitrite nitrogen (SNO), free and saline ammonia 

(SNH), soluble biodegradable organic nitrogen (SND), particulate biodegradable organic nitrogen 

(XND), dissolved oxygen concentration (SO), readily biodegradable substrate (SS), slowly 

biodegradable substrate (XS), alkalinity (Salk), reactors flow rate (Q), nitrate recirculation flow rate 

(QNR) and aeration flow rate (Qair). Measurements values of QNR were excluded from the FDA 

model. 

7.4. PCA model construction for the detection of the NO sensor faults 

The PCA model was developed using the 3840 observations from the 40-days of normal 

operating period. A matrix of 3840 observations of the 21 considered variables defined the training 

matrix X. The matrix T of scores and matrix P of loadings were obtained after scaling the training 

data matrix. A threshold value of 98.98% was chosen for CPVk. As a result, the number of principal 

components k considered necessary to represent the entire data set was determined to be 8. Using a 

99% confidence level, the 𝑇𝛼
2 threshold was 20.16 and the SPEα threshold was 0.97. A fault was 

indicated by any vector x of measured variables with a T
2
 or SPE value greater than the two 

corresponding thresholds. 

Five different testing data matrices were constituted for each type of fault using the vectors of 

abnormal operation measured variables. Each testing data matrix was built from 1920 observations 

of 20 variables from the simulated time period of the day 140 up to the day 160 (excluding day no. 

160). One value of the index T
2
 and one of the index SPE were determined for each of the sample 

vectors of the testing matrices. To determine faulty sensor operation, T
2
 and SPE values were 

determined for each of the sample vectors of the testing matrices and compared to previously 

calculated thresholds.  

The T
2
 and SPE values were graphically represented for each of the normal (training) and faulty 

(testing) samples, in association with the 𝑇𝛼
2 and SPEα thresholds. 

7.5.  FDA model construction for the identification of the NO sensor faults 

Six distinct data classes were created for each scenario: one for normal operation mode and five 

for each of the NO sensor operation in the presence of a fault. These classes were created using data 

from days no.141 up to day no. 145 (five days), and they were used to train the FDA model. Each 

class was defined by 480 observations. There were 2880 lines and 20 columns in the observation 

training matrix. Data from day 140, the first day of the abnormal operation, was used to assess the 

trained FDA model's fault diagnosis performance. The testing data set included 96 measurements for 

each case, normal or abnormal. The purpose of this testing strategy was to investigate the ability of 

the FDA diagnosis method to identify the type of fault within the first few hours of its appearance. 

In order to diagnose the faulty sensor operation, the values gi, obtained for each class's 
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discriminant function, were compared. The discriminant functions gi were computed for each of the 

15-minute time-sampled measurements from the testing day 140, which were affected by the various 

types of faults (5 classes), as well as measurements corresponding to normal operation (1 class). The 

highest-valued discriminant function identified the faulty sensor's class and, as a result, diagnosed 

the type of fault. 

7.6. Results and discussions 

7.6.1. Assessment metrics for fault detection of NO sensor 

Two different confusion matrices were employed to assess the effectiveness of the PCA-based 

and FDA-based methods, one for detecting and one for diagnosing the NO sensor considered 

malfunctions. The confusion matrix for the detection of the NO sensor faults considers two classes: 

normal (faulty-free) and abnormal (faulty). The first column (target) displays the abnormal class, 

while the second column (target) displays the normal class. The confusion matrix for the faults 

detection of the NO sensor is presented in Figure 7.2. 

 

 

Figure 7.2. Confusion matrix of the fault detection for the NO sensor 

For the normal class, the precision is 100%, meaning there are no false positives; for the 

abnormal class, it is 90.5%. Only 202 observations, representing 1.8% of all observations, were 

incorrectly classified as belonging to the abnormal class. The model's overall accuracy of 98.2% 

shows that it performed well in accurately detecting the NO sensor faults. 

The F1 score value for the normal class equals 0.950, and for the abnormal class the F1 score is 

0.989. Both scores reveal an outstanding balance between recall and precision, with the normal class 

performing very well. 

7.6.2. Fault detection of NO sensor faults 

Based on the PCA algorithm the presence of a NO sensor fault is detected when a measured 

variable vector x exceeds the threshold values for both T² and SPE indices. 
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The PCA-based NO sensor fault detection method demonstrated high efficiency in identifying 

sensor defects at an early stage. Among the two statistics, the SPE-based approach exhibited superior 

fault detection performance compared to the T² method. However, utilizing both indices in 

combination can enhance reliability by providing a more comprehensive assessment of fault 

occurrence and persistence. 

The proposed PCA model was first tested on the normal operation data set. Graphical 

representations of the T
2
 and SPE values for the samples from this data set against their 

corresponding thresholds are shown in Figure 7.3. They confirm the fault-free scenario, except for 

some T
2
 statistics points. This means that for normal operation mode, the SPE statistic provides the 

most relevant outcomes on fault detection, as it was also reported in literature (Yoo et al., 2004).  

 

Figure 7.3. T
2
 and SPE plots of PCA monitoring the normal operation data set for the NO sensor 

Figures 7.4 to 7.8 show the fault detection results for each of the investigated NO sensor types 

of faults. 

 Figure 7.4 shows that the bias fault was discovered 1.25 hours after its incidence (during the 

140
th
 day). With only a few exceptions on the days no. 145, 152, and 159, the SPE statistic correctly 

detects the faulty regime, with better results than the T
2
 statistic. 



 

 

39 

 

 

Figure 7.4. T
2
 and SPE plots of PCA detecting the bias type of fault for the NO sensor, with details on 

the period next to the fault occurrence moment 

 The SPE method detected the drift fault in 19 hours and 15 minutes, faster than the Hotelling's 

T
2 
method. Figure 7.5 shows that the fault detection with T

2
 took 35 h and 15 minutes.  

 

Figure 7.5. T
2
 and SPE plots of PCA detecting the drift type of fault for the NO sensor, with details 

on the period next to the fault occurrence moment 

 Figure 7.6 presents the detection of the wrong gain fault. Moreover, in this fault-type case 

again the SPE method also proved to be more accurate. Even though the T
2
 method initially detects 

the fault in 1.5 hours, it confirms the fault presence for the entire period of time just after 6.5 hours, 

whereas the SPE method firmly recognizes the wrong gain fault for the entire 28-day interval after 2 

hours and 45 minutes. 
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Figure 7.6. T
2
 and SPE plots of PCA detecting the wrong gain type of fault for the NO sensor, with 

details on the period next to the fault occurrence moment 

 Even though the T
2
 confirms the loss of accuracy fault presence in 1 hour and 45 minutes while 

the SPE acknowledges its presence after 3 hours and 45 minutes, the latter method detects it better 

on the next days. i.e., also, for the days no. 141, 143, and 144, as shown in Figure 7.7. 

 

Figure 7.7. T
2
 and SPE plots of PCA detecting the loss of accuracy type of fault for the NO sensor, 

with details on the period next to the fault occurrence moment 

The PCA detection of the fixed value fault is shown in Figure 7.8. Both methods were equally 

effective and fast in this case, detecting the fixed value fault in 1 hour and 30 minutes. 
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Figure 7.8. T
2
 and SPE plots of PCA detecting the fixed value type of fault for the NO sensor, with 

details on the period next to the fault occurrence moment 

The PCA-based NO sensor fault detection method proved to be highly effective and early in 

identifying faults, with the SPE statistic demonstrating superior performance over the T² method.  

7.6.3. Assessment metrics for NO sensor fault diagnosis 

For the FDA identification method, a confusion matrix was also developed. The first column in 

this matrix displays the normal class (fault-free operation, target 1). The following columns list the 

faulty classes (targets) in the order: bias (target 2), drift (target 3), wrong gain (target 4), loss of 

accuracy (target 5), and fixed value (target 6). The overall diagnosing accuracy was 97.7%, as 

illustrated in Figure 7.9.  
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Figure 7.9. Confusion matrix of the fault diagnosis for NO sensors type of faults 

7.6.4. Fault diagnosis of the NO sensor type of faults 

The gi values that correspond to the normal operation curve, represented with red colour on the 

graph, identified the fault-free normal operation. From the starting moment of diagnosing the 24-

hour observation period, each of the gi points of the red curve showed the highest values during the 

testing day, indicating normal operation with one single exception. This manifested for one value at 

5.5 h. 

The recall value in this case was 99.9%, and the long-term precision was 96.8%. A balanced 

assessment of precision and recall was provided by the computed F1 score of 0.983. In this instance, 

the MAR has a low value of 0.1%. The graphical representation of the diagnosis for the normal 

operation of the NO sensor is shown in Figure 7.10. 

Figure 7.10. Faulty-free operation diagnosis for the NO sensor: graphs of the FDA discriminant 

functions gi(x) for each of the normal and five types of faults; details on the time period of confident 

identification  

As presented in Figure 7.11, the bias fault type was successfully diagnosed for the following 
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time periods: 1h-1.5h, 5h-5.25h, 5.75h, 8.75h-13.75h, and then from 17 h until the end of the day. 

The latter value was considered as the confident moment of identification. In this case the MAR was 

2%. The F1 score for this classification scenario was 0.983, reflecting a good detection of the fault 

type. 

 

Figure 7.11. Bias diagnosis for the NO sensor: graphs of the FDA discriminant functions gi(x) for 

each of the normal and five types of faults; details on the time period of confident identification 

The diagnosis of the drift fault was reported at the 5.5 hours point, then between 7.25h-8.25h, 

9h-9.5h, 11.75h-14.75h and finally from 18h until the end of the day. After 18 hours, the yellow 

curve becomes dominant in comparison with other curves, as seen in Figure 7.12. The F1 score is 

0.964 and MAR has a value of 2.4%. 

Figure 7.13 displays the wrong gain fault diagnosis. This kind of defect was definitively 

identified after 17.75 hours. However, it was also appropriately identified three periods of time, 

previous to the confident moment identification, i.e., between 9.75h-11h, 12.25h-12.75h time 

intervals and at the time moment of 14.75h. This results in a long-term precision of 100%, with a 

value of the recall of 97.0% and a MAR of 3%. The F1 score is 0.985, suggesting a very good 

capacity for diagnosing the fault. 

Figure 7.12. Drift diagnosis for the NO sensor: graphs of the FDA discriminant functions gi(x) for 

each of the normal and five types of faults; details on the time period of confident identification 
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Figure 7.13. Wrong gain diagnosis for the NO sensor: graphs of the FDA discriminant functions gi(x) 

for each of the normal and five types of faults; details on the time period of confident identification 

Loss of accuracy fault is correctly diagnosed between 12h-13.75h. During the first day of fault 

occurrence, the fault was temporarily misidentified either as a fixed value or as a drift fault. 

Occasionally, this defect is mistakenly diagnosed as normal functioning or drift. Figure 7.14 

illustrates the diagnostic of the fault's loss accuracy type. The long-term precision for this fault was 

98.9% and the recall value was 95.4%. Both indices are demonstrating a good proportion of correct 

identifications. The F1 score was 0.971 and MAR had a value of 4.6%, reflecting a good capability 

to identify the loss of accuracy type of fault. 

 

Figure 7.14. Loss of accuracy diagnosis for the NO sensor: graphs of the FDA discriminant functions 

gi(x) for each of the normal and five types of faults; details on the time period of confident 

identification 

 As presented in Figure 7.15 the fixed value is correctly diagnosed between 2h-5.25h, 10.75h-

12.75h, 14.75h-15h and then, is persistently and rightly diagnosed after the time moment of 15.5h 

(confident identification moment). For the instances where this fault was misdiagnosed, the MAR is 

1.9%. The F1 score of 0.973 and the long-term precision of 96.5% reflect a strong ability to correctly 

identify the fixed value type of fault.  
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Figure 7.15. Fixed value diagnosis for the NO sensor: graphs of the FDA discriminant functions 

gi(x) for each of the normal and five types of faults; details on the time period of confident 

identification 

It may be noted that the comparable NO sensor signal values considered in the faulty scenarios 

lead to some very close values of the NO process variable. In the end, this resulted in similar gi 

values of the discriminant function. Therefore, it was more likely that some faults would be 

misdiagnosed in the immediate moment of the fault incidence, as well as in the longer or shorter time 

periods that follow.  

7.6.5. Performance evaluation during operation with NO sensor faults 

Similar to the DO sensor faults investigations, performance indices AE, PE, and EQ were 

determined as a daily mean value over the period of 28 days, for both normal and defective operating 

cases of the NO sensor (140th day up to the 168th day, the last one being excluded). The AE, PE, 

and EQ values for the normal operation and operation with the five types of fault scenarios are 

shown in Table 7.1. 

Table 7.1. Values of the performance indices for the normal and faulty operation cases of the NO 

sensor 

All faults negatively influence AE, PE, and overall energy demand, resulting in higher energy 

costs for aeration and for pumping the internal recycle flow. Increased pumping occurs as a result of 

Operating regime 
AE 

(kWh/day) 

PE 

(kWh/day) 

Total 

energy 

demand 

(kWh/day) 

EQ 

(kg 

PU/day) 

Normal operation 16,992 1,329 18,321 16,852 

Bias fault 17,253 1,633 18,886 15,050 

Drift fault 17,776 2,320 20,096 14,911 

Wrong gain fault 17,496 1,956 19,452 17,108 

Loss of accuracy fault 17,752 2,232 19,984 17,186 

Fixed value fault 17,848 2,415 20,263 17,198 
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the lower NO sensor signal value that drives the NO controller’s manipulated variable to higher 

internal recycle flow (nitrate and nitrite flow). Additionally, due to the DO controller's increased 

manipulated air flowrate variable, the AE is also increased. Bias and drift faults have a favourable 

effect on EQ values, while wrong gain, loss of accuracy and fixed value faults result in lower values 

of this performance index. 

7.6.6. Energy costs assessment for operation affected by NO sensor faults 

The daily cost for each type of faulty operation of the WWTP under consideration in this study 

was calculated similarly to the ones computed for the DO sensor faults investigation. Each of the 

possible types of energy source or energy production technology, potentially to be used by the AE 

and PE of the WWTP, had its daily costs evaluated. Table 7.2 provides a summary of these 

evaluations. 
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Table 7.2. Source depending sum of AE and PE energy costs computed for normal and fault 

affected operation of the WWTP water line for the NO sensor case 

The fixed value fault of the NO sensor is the one that results in the highest energy costs, 

according to an analysis of the costs of electrical energy spent by the WWTP during operation in the 

presence of the various types of faults. On the other hand, the bias fault implies the lowest energy 

cost.  

 Prior to replacing the defective sensor, the implied energy costs may be reduced by switching 

to alternative, less expensive energy sources and implementing a special plan for the use of a mixed 

energy source in the event of faulty sensor operation, depending on the availability of technical 

solutions. 

7.6.7. Environmental assessment of CO2 and N2O emissions for operation with NO 

sensor faults 

Estimates were made of the on-site and off-site CO2 and N2O emissions, which are significant 

sources of the greenhouse gases emitted by the water line of the WWTP. Their daily average values 

were computed when the operation of the WWTP was carried out in the presence of each of the NO 

sensor types of faults. The GHG emission results are shown in Table 7.3.

Source/Technology 

Daily operation costs (€) 

Normal 

operation 
Bias Drift 

Wrong 

gain 

Loss of 

accuracy 

Fixed 

value 

Lignite 1,812 1,868 1,987 1,924 1,976 2,004 

Coal 1,717 1,770 1,883 1,823 1,873 1,899 

CCGT 1,975 2,036 2,166 2,097 2,154 2,184 

Nuclear 3,435 3,541 3,768 3,647 3,747 3,799 

Onshore wind 1,237 1,275 1,356 1,313 1,349 1,368 

Offshore wind 1,566 1,615 1,718 1,663 1,709 1,732 

Solar PV commercial 1,479 1,524 1,622 1,570 1,613 1,635 

Solar PV residential 2,327 2,399 2,552 2,471 2,538 2,573 

Solar thermal (CSP) 2,712 2,795 2,974 2,879 2,958 2,999 

Hydro reservoir 1,457 1,501 1,598 1,547 1,589 1,611 

Hydro run of river 1,070 1,103 1,174 1,136 1,167 1,183 

Geothermal 1,581 1,630 1,734 1,679 1,725 1,749 

Biomass 2,120 2,185 2,325 2,251 2,312 2,344 
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  Table 7.3. GHG 

emissions due to the different 

types of the NO sensor 

defects 

 

 

Site of 

emissions 
Process 

Type of emitted 

gas 

Type of fault 

Normal Bias Drift 
Wrong 

gain 

Loss of 

accuracy 

Fixed 

value 

Off-site 

emissions 

Power 

generation 

CO2, 

𝑃𝐶𝑂2,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒  

(kg CO2/day) 

3,481 3,588 3,818 3,696 3,797 3,850 

Biological 

degradation in 

the WWT 

effluent 

N2O, 

𝑃𝑁2𝑂,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒, 

(kg N2O/day) 

3.61 3.65 3.50 3.63 3.51 3.47 

On-site 

emissions 

Water-line 

aerobic 

biological 

processes 

𝑃𝐶𝑂2,𝑜𝑛−𝑠𝑖𝑡𝑒 

CO2, 

(kg CO2/day) 

13,689 13,869 14,175 14,037 14,137 14,207 

N2O, 

𝑃𝑁2𝑂,𝑜𝑛−𝑠𝑖𝑡𝑒  

(kg N2O/day) 

10.35 10.34 10.40 10.35 10.40 10.42 

Total emissions 

𝑃𝐶𝑂2,𝑡𝑜𝑡𝑎𝑙 

CO2, 

(kg CO2/day) 

17,170 17,457 17,993 17,733 17,934 18,057 

N2O, 

𝑃𝑁2𝑂,𝑡𝑜𝑡𝑎𝑙  

(kg N2O/day) 

13.96 13.99 13.90 13.98 13.91 13.89 

Total overall emissions 𝑃𝐶𝑂2𝑒,𝑜𝑣𝑒𝑟𝑎𝑙𝑙 

CO2e, 

(kg CO2e/day) 

21,330 21,626 21,135 22,899 22,079 22,196 
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According to the GHG emission values presented in Table 7.3, on-site emissions are the most 

substantial, making up almost 80%, respectively 75% of all emissions under typical operating 

conditions for 𝑃𝐶𝑂2,𝑡𝑜𝑡𝑎𝑙 and 𝑃𝑁2𝑂,𝑡𝑜𝑡𝑎𝑙. For all instances of investigated NO sensor faults, the 

computed total CO2 emissions, that is, the total of on-site and off-site values, showed higher values. 

Bias and wrong gain faults showed higher total N2O emission levels than the other faults. The latter 

presented slightly lower values. It is important to note that the lowest N2O emissions values were 

produced by fixed value fault type, in contrast to the trend in total CO2 emissions, where the bias 

fault produced the highest emissions. 

To determine the overall CO2 emissions, the sum of the total CO2 and total N2O emissions was 

used. According to the findings, the majority of the malfunctions produce more overall CO2 

emissions than in the event of normal operation. 

 The evaluation of CO2 and N2O emissions computed for various NO sensor faults offers useful 

quantitative data on the scope and ranking of the most problematic sensor types of faults that may 

have a significant impact on the long-term operation of the WWTP.  

7.7. Conclusions 

This study evaluated PCA-based fault detection and FDA-based fault identification for the NO 

sensor controlling nitrite/nitrate in an anoxic WWTP reactor. Faults considered included loss of 

accuracy, fixed value, drift, bias, and wrong gain, using a calibrated WWTP model with two 

primary control loops for DO and NO. PCA detection was fast and accurate (98.2%), with SPE 

generally outperforming T², while FDA achieved 97.7% diagnosis accuracy, with initial detection 

times of 1-12h and consolidated diagnosis in 5.5-18h. 

Faults affected energy use, effluent quality (EQ), and GHG emissions. Normal operation 

consumed 18,321 kWh/day with EQ 16,852 kg PU/day; faults raised energy use by 10.6-20,263 

kWh/day. Bias and drift slightly improved EQ but increased energy, while wrong gain, loss of 

accuracy, and fixed value faults worsened EQ (>17,000 kg PU/day). GHG emissions were mainly 

on-site (~75%), with fixed value faults causing the largest increases (~5%). 

The results demonstrate that PCA and FDA methods are effective for NO sensor fault 

management, supporting safe, efficient, and sustainable WWTP operation. Findings also provide 

guidance for control system design, energy management, environmental impact mitigation, 

maintenance, calibration, and intelligent sensor development.



 

 

50 

 

8. Final conclusions and personal contributions 

This research examined DO and NO sensor faults in a municipal WWTP, focusing on early 

detection, diagnosis, and their effects on effluent quality, energy use, and GHG emissions. PCA-

based fault detection and FDA-based fault identification proved effective for various fault types, 

including bias, drift, wrong gain, loss of accuracy, fixed value, and complete failure. Faults 

significantly impacted the EQ index and energy consumption, with complete failure, fixed value, 

and loss of accuracy being the most detrimental. Energy-intensive aeration was particularly affected, 

and all faults increased total energy use by up to 10.6%. GHG emissions were also strongly 

influenced, with certain faults notably worsening the plant’s environmental footprint. The findings 

demonstrate the importance of reliable sensors and effective fault management for sustainable, 

efficient WWTP operation. 

 The most significant conclusions summarizing both quantitative and qualitative results 

obtained by the present research are the following: 

 Fault detection results: 

o The PCA-based model proved highly effective in detecting faults in DO and NO 

concentration sensors, achieving an overall accuracy of 99.6% for the DO sensors 

and 98.2% for the NO sensors; 

o Comparing Hotelling’s T² and SPE statistic indices, the SPE method was faster at 

detecting faults, typically identifying them in less than two hours; 

o Detection times for DO sensor faults ranged from less than one hour (bias, 

complete failure) to 5 hours 15 minutes (drift); 

o Detection times for NO sensor faults ranged from less than 1 hour 15 minutes 

(bias) to 19 hours 15 minutes (drift); 

 Fault diagnosis results: 

o The FDA-based model demonstrated strong diagnostic performance, accurately 

distinguishing between faulty and fault-free operations. It achieved an overall 

accuracy of 85.8% for DO sensor faults and 97.7% for NO sensor faults; 

o For DO sensor faults, FDA identified faults within 2.5 to 16.5 hours; 

o For NO sensor faults, FDA identified faults in as little as 15 minutes to 1 hour, 

with values of the confident identification moment ranging between 15 minutes 

and 18 hours; 

 Impact on effluent quality (EQ index): 

o For DO sensor faults, the most detrimental scenarios were complete failure 

maximum, fixed value, and loss of accuracy, while wrong gain had minimal 

impact; 

o For NO sensor faults, fixed value faults had the worst effect on the EQ index, 
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while drift, wrong gain, and loss of accuracy also caused deterioration to varying 

degrees; 

 Impact on GHG emissions: 

o For DO sensor faults, complete failure maximum and fixed value scenarios 

resulted in 40 times increase in GHG emissions compared to normal operation; 

o For NO sensor faults, on-site sources contributed 75% of total CO₂ and N₂O 

emissions, with fixed value faults causing the most severe impact, i.e., increasing 

emissions by approximately 5%; 

 Energy cost implications: 

o The complete failure minimum type of fault of the DO sensor led to the highest 

energy costs due to the induced excessive aeration; 

o For the NO sensor faults, fixed value faults resulted in the highest energy costs 

among all fault types. 

Future work may focus on improving the detection and identification of multiple 

simultaneous sensor faults in wastewater treatment plants. This could involve developing more 

advanced diagnostic models to enhance accuracy and reliability. Machine learning techniques, 

such as deep learning, may help automate fault detection and improve response times. 

Real-time monitoring could also be improved with adaptive control strategies and self-

correcting algorithms that adjust detection thresholds based on system data. Integrating advanced 

fault detection into SCADA system of the municipal WWTP could streamline operations and 

reduce costs. 

By exploring these areas, future research can help make wastewater treatment systems more 

efficient, reliable, and environmentally friendly, ensuring better water quality and lower energy 

consumption.
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