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INTRODUCTION

1. Motivation

Water management and treatment have been crucial to human health, environmental
protection, and sustainable development since ancient civilizations. Early systems focused
primarily on diverting wastewater, with treatment emerging only in the 19th century during
industrialization due to increasing urbanization, pollution, and waterborne diseases. The
development of the activated sludge process in 1914 marked a breakthrough in wastewater
treatment, enabling more efficient removal of organic pollutants. Over the 20th century, advances
in biological treatment, aeration, and chemical processes, combined with stricter regulations have
driven the adoption of modern, large-scale, and energy-intensive treatment plants. Today, the focus
extends beyond pollution removal to resource recovery, energy efficiency, and sustainability.

As global populations rise and water scarcity intensifies, the demand for high-quality water
treatment is increasing. Modern WWTPs rely heavily on accurate sensor measurements for key
variables such as dissolved oxygen, nitrate, and nitrite. These sensors are critical for effective
process control, energy management, and compliance with environmental regulations. Faulty
sensors can lead to inefficient treatment, higher energy consumption, reduced effluent quality, and
increased greenhouse gas (GHG) emissions. Given that wastewater treatment contributes up to 5%
of global GHG emissions, reducing emissions through efficient operation has become a key
environmental priority.

The complexity of WWTP processes, characterized by non-linear dynamics, variable influent
composition, and interdependent biological reactions, requires advanced monitoring and control
strategies. Mathematical and data-driven models, including Principal Component Analysis (PCA)
and multivariate statistical process monitoring, play a crucial role in early fault detection, diagnosis,
and process optimization. These tools help minimize environmental impact, reduce energy costs,
and enhance operational reliability. Moreover, integrating energy recovery and renewable energy
solutions offers the potential for plants to move toward energy neutrality, contributing to both
economic and environmental sustainability.

This research is motivated by the urgent need to improve WWTP reliability, sustainability, and
efficiency. By investigating sensor fault detection, diagnosis, and the associated environmental and
economic impacts, the study addresses a critical knowledge gap. Accurate sensor monitoring not
only ensures compliance with evolving regulations but also supports optimized energy use, GHG
emission reduction, and the broader goals of circular economy and water resource recovery. In
essence, advancing sensor-based monitoring and control in WWTPs is vital for the safe, cost-

effective, and environmentally responsible management of modern wastewater treatment systems.



CURRENT STATE OF KNOWLEDGE

2. Current state of the knowledge in modelling activated sludge technology based
WWTP

2.1. Introduction

Chemical process monitoring in WWTPs is essential for efficiency, effluent quality, and
advanced control, relying on mechanistic or data-driven models to predict process variables and
optimize operations (Frank, 1990; Yoon & MacGregor, 2001). Dynamic models aid in nutrient
removal plant optimization, crisis management, and testing of operational scenarios (Henze et al.,
2000). The International Water Association developed standardized Activated Sludge Models
(ASM1-ASM3) to represent carbon, nitrogen, and phosphorus removal, supporting design, operation,
and optimization of WWTPs (Rieger et al., 2012; Hauduc et al., 2011; Gernaey et al., 2004; Henze et
al., 2000).

European COST Action groups established Benchmark Simulation Models (BSM1 and BSM2)
to evaluate control strategies and plant performance, including influent scenarios, energy use, sludge
production, and long-term facility assessment, enabling objective comparison of control laws and
optimization of processes such as anaerobic digestion and biogas generation (Alex et al., 1999, 2008;
Beraud et al., 2009).

2.2. Description of the Activated Sludge Model No. 1

The ASM1 model is perhaps the model most commonly employed for describing WWT
processes worldwide, despite the fact that it has been expanded since its conception to incorporate
more chemical oxygen demand fractions, to accommodate new experimental findings (Sollfrank and
Gujer, 1991), to define the growth and population dynamics of floc forming and filamentous bacteria
(Gujer and Kappeler, 1992), and to define improved biological phosphorus removal (Henze et al.,
1995).

The various processes included in the ASM1 model are defined as it follows (Jeppsson, 1996):

Aerobic growth of heterotrophs:

V= () (o) x 1)
processl = uy Ko+ S5 Kon + So B.H .
Anoxic growth of heterotrophs
SS KOH SNO
2= - ( ) : H_ ), ( ) n X 2.2
process Uy Ks + S <K0,H n 50) Kyo + Sno Ng " AB,H (2.2)
Aerobic growth of autotrophs:
SNH SO
3=y, ( ) : X 23
process Ua Knm + Sun <KO,A n 50) BA (2.3)

Decay of heterotrophs:



process4 = by - Xpy (2.4)
Decay of autotrophs:

processS = by - Xp 4 (2.5)
Ammonification of soluble organic nitrogen:

process6 =k, - Syp - Xppy (2.6)

Hydrolysis of entrapped organics:

processT = ky, - Xs/ X1 . ( S0 +1p - < Ko ) . ( SN0 )]
" Ko+ Xs/Xpw) [\Kom+So " \Kou+So) \Kyo+Sno (2.7)
XBH
Hydrolysis of entrapped organic nitrogen:
_ 1, ._Xs/XpH So (_Kou ). Sno . .
process8 = kn Kx+(Xs/Xp,H) [(KO,H+SO 1 (KO,H+50) (KNO+SNO)] XpH (2.8)

Xnp/Xs)

2.3. Description of the Benchmark Simulation Model No. 1

The concept of Benchmark Simulation Model No. 1 appears to be straightforward. It is based on
a modified Ludzack-Ettinger configuration that allows the WWT plant to meet stringent COD and
nitrogen removal regulations (Tchobanoglous et al., 2003).

The benchmark layout consists of a five-compartment activated sludge reactor. Out of the five
compartments, two are anoxic tanks and the other three are aerobic tanks.

The general equation for the mass balance of the first reactor (non-aerated) is (Alex et al., 2008):
dZ 51 1

dt’ = Fs,l (QintZint + QrZr + QpoZpo + 721Vas1 — (Qine + Or 2.9)
+ Qpo)Zas1)

where Q;r; is the internal recycle, Q, represents the external recycle and @y, is the overflow rate of

the primary settler.

For the rest of the reactors, the mass balance equation is:
AZ sk 1
3 - Voor (Qk-1Zask-1 *+ TzxVask — QuZask) (2.10)
where k represents the of the bioreactor number (2-5).
A secondary settler is positioned after the activated sludge reactor. The secondary settler is
represented using a double-exponential velocity function (Takacs et al., 1991):
Vs(Xse) = max[0, min{vy’, vy (e T Xse=Xmin) — ¢ ~TpXsc=Xmin))}] (2.11)
where v, represents the settling velocity, v, is the theoretical maximum settling velocity (m/d), v, is
the practical maximum Vesiling settling velocity (m/d), r; is the hindered zone settling parameter
(mqg), 1, Is the flocculant zone settling parameter (m*g), X, is the sludge concentration and X,y,;,, is
the minimum attainable suspended solids concentration (g/m?®).

The plant includes an internal recirculation flow to supply nitrates in the anoxic reactors from the
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aerobic reactors, and an external recirculation in order to provide sludge from the secondary settler to
the anoxic reactors. The benchmark layout comprises a simple control strategy with two Pl control
loops.

2.4. Tools used for dynamic modelling

Matlab is a multipurpose programming language and numerical computing environment that
includes tools for matrices manipulation, algorithm implementation, and a variety of functions
(MathWorks, 2025a). Simulink is a graphical programming environment for block diagrams that
works with Matlab (MathWorks, 2025b). It is generally used for modelling and simulating dynamic
systems, as well as continuous testing and verification systems. Through the specifically designed S-

functions, the Benchmark Simulated Models are applied in this work.

2.5. WWTP operation performance evaluation

In the present work four separate performance indices were used to assess the overall impact of
the WWTP dysfunctional operation on plant performance: aeration energy (AE), pumping energy
(PE), effluent quality (EQ) and the newly introduced greenhouse gas emissions.

The aeration energy index is calculated using the oxygen mass transfer coefficient of aerobic
bioreactors (K ,), which is directly related to the injected air flow rate, as shown in equation (2.12).

Tdays
Sosat (
AE = T-1.8-1000 ’ f Z Vhioreactor * Kra;(t)dt 212)
. 0 aerated reactors .

where S, . is the oxygen saturation concentration (mg O/L), Taays is the time in days of the
evaluation, Vp;oreactor represents the volume of the bioreactor (m®) and Ky a; is the mass transfer
coefficient in the aerated bioreactor i.

The pumping energy index is calculated using the flow rates of nitrate recirculation, return

activated sludge recycling, and waste, as shown in equation (2.13):
Tdays
J [0.004 - Qng(t) + 0.08 - Qras(t) + 0.05 - Quqste(t)]dt
0
with Qur the flow rate of the nitrate recirculation (m*/day), Qg4 the flow rate of the return activated

(
2.13)

PE =~
T
sludge (m*/day), Qqste the flow rate of waste from the secondary settler (m*/day). Both aeration and
pumping energy are measured in kWh/day.

The effluent quality index is calculated using the total suspended solids (TSS), chemical
oxygen demand (COD), biochemical oxygen demand (BOD), total Kjeldahl nitrogen (TKN), and
nitrate and nitrite concentrations in the effluent flow stream, as presented in equation (2.14). They are

multiplied by the effluent flow rate. This index is expressed in kilograms of pollutant units per day.



Tdays

1
EQ = T.1000 Of [PUrss(t) + PUcop(t) + PUgop(t) + PUrgy (t) + PUpno ()] - ;
2.14
’ Qeffluent(t)dt

where PUrgs denotes total suspended solids, PU.,p refers to the chemical oxygen demand and
PUgqp to the biochemical oxygen demand, PUrgy considers the Total Kjeldahl Nitrogen, PUy,o

accounts for the nitrate and nitrite and Q. fiyen: 1S the effluent flow rate.

2.6. Evaluation of the detection and diagnosis performance

The confusion matrix or plot is a widely used tool in classification analysis, providing a visual
representation of the performance of a model by comparing actual outcomes to predicted outcomes.
Confusion matrices were constructed for each of the analysed cases, with each matrix displaying the
counts of true positives, false positives, true negatives, and false negatives. This tabular representation
serves as the foundation for calculating key performance metrics that assess the system's detection
capabilities as they are displayed bellow:

The formula for calculating Positive Predictive Value is:

Number of true positives

PPV =

Number of true positives+Number of false positives (2 15)

Accuracy is a metric used to evaluate the performance of a classification model:

Number of correct predictions

Accuracy =
y Total number of predictions (2. 16)

The False Alarm Rate is defined as follows:

Number of false alarms

FAR =

Total number of non—fault conditions (2. 17)

The Missed Alarm Rate is defined as:

Number of missed alarms (false negatives) (2. 1 8)

MAR = FNR =

Total number of actual faults (true positives+false negatives)

The F1 score is defined as:

Precision x Recall _ PPV x TPR

F1 score =2x — =ax
Precision+Recall PPV+TPR (2. 1 9)

2.7. GHG assessment

Total GHG emissions from the municipal wastewater treatment plant's water line include both
on and off-site CO, and N,O gas emissions. Aside from CO,, N,O is considered a significant
contributor to GHGs due to its global warming potential (GWP) of approximately 265-298 times that
of CO, (Vallero, 2019).

Off-site CO, emissions (kg CO,/day) involve indirect CO, emissions from the power plant
related to the power consumed in the wastewater treatment process. They are defined as follows:
Pco,of f-site = Kpc * €p (2.20)
where kpg is the site-specific emission factor per unit of energy generated, considered with a value of
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0.19 kg CO../kWh, and ey is the total energy demand, calculated as the sum of the aeration energy
and pumping energy (Mannina et al., 2016; Listowski et al., 2011).

Off-site N,O emissions involve N,O produced by biological degradation in the wastewater
treatment plant's effluent (downstream) (Mannina et al., 2016; Prendez and Lara-Gonzales, 2008):
Pn,o,0ff-site = Neffiuent * EFeffiuent (2.21)
where Negeent 1S the nitrogen load in the effluent discharged into aquatic environments and EFeyent =
0.005-44/28 kg N,O/kg N (IPCC, 2006) is the emission factor for N,O emissions from the discharged
wastewater.

The on-site CO, emissions from the water-line of aerobic biological processes are determined
using the following expression:

Pco,on-site = Qinfiuent - 0.99 - (1 — Yy ) - Nasp - BCOD + Qunpruene - 1.03 - Yy - Nasp

kay - MCRT (2.22)

-bCOD -
1+kgy - MCRT

where: Qi fiuene 1S the plant influent flow rate (m®/day), 0.99 kg CO../kg COD is the emission factor
related to organic compounds, Yy is the heterotrophic biomass yield (massVSS/massCOD) (Alex et
al., 2008), #asp is the biodegradable COD (bCOD) removal in the activated sludge reactors, 1.03 kg
COy/kg COD is the emission factor related to activated sludge biomass, kqy is the decay rate of
heterotrophic biomass and has a value of 0.3 day™ (Alex et al., 2008), and MCRT is the mean cell
retention time, that is 15 days for this case (Mannina et al., 2016; Gori et al., 2011).

The following relationship can be used to determine the on-site N,O emissions from the water-
line.
Py, 0,0n-site = Qinfluent * (TNin — TNoyt) "Tn,0 (2.23)
where TN;,, represents the total nitrogen from the influent (kg N/m®), TN, is the total nitrogen in
the effluent (kg N/m® (Huang and Shen, 2019) and Tn,o IS the emission rate of N,O (kg N,O/kg N)
(Baresel et al., 2016).



PERSONAL CONTRIBUTIONS

3. Model of the municipal WWTP water line

3.1. Introduction

This work's case study is the wastewater treatment plant (WWTP) in Someseni, Cluj, which uses
an anaerobic-anoxic-aerobic (A?0) arrangement. The facility treats both sewage and urban runoff and
is designed with a water line that integrates physical separation, biochemical treatment, settling, and a
sludge line with biogas production. Following the A’O process, the biological stage involves the
sequential passage of wastewater through anaerobic, anoxic, and aerobic tanks, which facilitates the
release and uptake of phosphorus, denitrification, nitrification, and carbon degradation. Following this,
solid-liquid separation occurs in clarifiers. The majority of the activated sludge is recycled, but any
extra is thickened, anaerobically digested, and used to produce biogas for energy recovery.

3.2. WWTP layout and design parameters

Following its entry into the WWTP, the influent wastewater undergoes primary sedimentation.
After the primary clarifier, the wastewater enters the biodegradation tanks, where the removal of
carbon, nitrogen, and phosphorus is accomplished by processes specific to the activated sludge
technology. The three zones of biodegradation basins are anaerobic, anoxic, and aerobic. The
anaerobic zone is where phosphorus-accumulating microorganisms grow. In the anoxic zone
denitrification occurs with the help of heterotrophic bacteria that use nitrate and nitrite for cellular
respiration in the absence of molecular oxygen. As a result, nitrates and nitrites are converted to
nitrous oxides and nitrogen gas (Wanner and Grau, 1988). The last three bioreactors are forming the
aerated section of the plant. Here, air is introduced in the wastewater to ensure the necessary level of
dissolved oxygen with the help of compressors. In this compartment organic matter is converted into
aerobic biomass via assimilation and phosphorus is absorbed by phosphorus-accumulating
microorganisms. The internal recirculation sends the formed nitrates and nitrites back to the anoxic
basins to complete the denitrification step. The remaining liquid-solid mixture is fed into the
secondary settlers. 99.5% of the activated sludge, rich in microorganisms, is returned to the anaerobic
zone. The sludge from the settler's base is returned to the anaerobic reactor via the return activated
sludge stream, while the designated river receives the treated water discharge (Simon-Varhelyi et al.,

2020a). Additionally, the plant includes a biogas production section.
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3.3. Municipal WWTP model

The basis of the WWTP simulator developed and used in this work consists of BSM1 and ASM1.
The original BSM1 model was modified as needed to conform to the anaerobic-anoxic-oxic, A’O,
configuration of the municipal WWTP under investigation.

The facility uses two feedback control loops based on PI controllers. The first loop controls the
concentration of dissolved oxygen in the third aerated bioreactor. Its goal is to maintain the dissolved
oxygen to the 2 mg O-/L setpoint by adjusting the airflow fed to the three aerated reactors. The
second loop regulates the nitrates and nitrites levels in the anoxic bioreactor. It keeps the NO
concentration at the desired setpoint of 0.01 mg N/L by adjusting the mixed-liquid recycle flow, to
perform appropriate denitrification. As presented in Figure 3.1, the municipal WWTP also comprises

a primary clarifier and a secondary one. The model of the plant follows this water line structure.

Influent

Anaerobic Anoxic s Y 7 __Effluent
Blarssoton HBoeasor Aerobic Bioreactor \ p

N Secondary /

\_ Settler /

\ 4
Internal Recycle \\ /
\
External Recycle \{ Waste -~

Figure 3.1. Municipal WWTP layout

The dynamic-state simulations of both normal and faulty DO and NO concentration sensors
operation were carried out for this study using the previously developed and calibrated Matlab model
of the municipal WWTP, based on ASM1, BSM1, and Matlab & Simulink software (Varhelyi et al.,
2019).

The advantages of employing mathematical models embedded in dynamic simulators, whether
they are mechanistic or statistical, rely on their capacity to predict the future evolution of the main
process variables under diverse conditions. They offer a valuable tool for the development of the

design and new operation improvement solutions.

3.4. Conclusions

The Someseni municipal WWTP is a state-of-the-art treatment facility whose A”O configuration,
along with sophisticated separation, biochemical, and sludge management processes, enable energy
recovery through the production of biogas and guarantee the effective removal of organic matter and
nutrients. Understanding the intricate dynamics of wastewater treatment and accurately representing
site-specific conditions through meticulous calibration with actual operational data have been made
possible by the development of a mathematical simulator. The model provides a dependable tool for

forecasting plant performance in both steady-state and dynamic scenarios by combining ongoing

10



online monitoring with laboratory validation.

4. Methods for detection and diagnosis of the DO and NO sensor faults

4.1. Introduction

Maintaining the mandatory standards for water quality and wastewater treatment process
efficiency can be difficult when particular anomalies occur in the system. When abnormal operating
conditions are promptly identified and corrected, an efficient and safe operation can be ensured.
Various cases of abnormal functioning that appear in WWTPs might be caused by faulty sensors.

Advanced fault detection and diagnosis methods that use data-driven modelling, machine
learning, and artificial intelligence have been created to lessen the impact of malfunctioning sensors.

Among the most important monitoring tools in wastewater treatment facilities are dissolved
oxygen and nitrate sensors, which are crucial for preserving effective biological treatment processes.
Effective aeration and nitrogen removal are essential components of wastewater treatment, and
precise real-time data from these sensors are important for maximizing plant efficiency, cutting
operating costs, and guaranteeing adherence to environmental standards (Tchobanoglous et al.,
2014).

4.2. Investigated types of faults

Given the critical importance of the DO and NO sensors in the overall operation of the WWTP,
the detection and identification of different DO and NO sensors types of errors were examined in this
thesis. The six investigated types of sensor faults are defined and described in the following.

Bias fault type, also known as a shift or an off-set of the sensor’s generated signal values, may
be frequently caused by a miscalibrated sensor(Teh et al., 2020).

Drift type of fault appears as a time-varying deviation from the true value and it is distinguished
by a time-varying ramp signal (Teh et al., 2020).

Wrong gain type of fault is a loss of sensor effectiveness caused by a calibration error,
specifically when the calibration slope of the sensor is affected by an inappropriate gain factor or not
precisely defined in the calibration step (Rosen et al., 2008).

Loss of accuracy is an irregular degradation of the sensor's performance (Teh et al., 2020).

Fixed value fault is characterized by a sensor that generates the same constant value (Rosen et
al., 2008). Complete failure (with two instances, minimum or maximum) appears when the sensor’s
output signal equals or exceeds the sensor's minimum or maximum calibration value (Rosen et al.,

2008). This fault is a particular case of the fixed value fault.

4.3. Methods for sensor fault detection and diagnosis
Several studies have used various Multivariate Statistical Process Control (MSPC) methodologies
to examine sensor abnormal operation and strategies for detecting inaccurate information or
malfunctioning of the sensors. Control charts (Kazemi et al., 2020), independent component analysis
11



(ICA) (Villegas et al., 2010) and principal component analysis (Tao et al., 2013; Garcia-Alvarez et
al., 2009; Qin, 2009) are MSPC methods that have been used for in-depth monitoring and fault
detection.

Few studies have looked into the issue of DO sensor failures. One study developed a PCA
method for detecting three different fault types (Lee et al., 2006) and another paper investigated the
wrong output signal originating from the sensor (Sanchez-Fernandez et al., 2015).

Only a few studies examined the issues resulting from an out-of-range value of the nitrate and
nitrite concentration sensor of WWTPs. One of these studies focused on the drift of an amperometric
nitrite sensor (Britschgi et al., 2020), another one studied the estimation accuracy of a soft sensor for
nitrate concentration (Corona et al., 2013).

Fisher Discriminant Analysis (FDA) is a well-known pattern classification technique (Duda et
al., 2000), and its application in chemical process data analysis has increased steadily over the last
two decades (Fuente et al., 2008; He et al., 2005). The FDA's application to faulty sensors was
investigated for air processing units (Du and Jin, 2008).

4.3.1. Fault detection methods (Principal Component Analysis)

PCA is a data-mining methodology that is based on a process model built with ordinary process
data. PCA models are primarily used to emphasize the correlation between process variables from
raw data. The method reduces the large model training data set by linearly transforming it into a
smaller one that retains the critical information, enabling facile data interpretation. The resulting data
set includes a score matrix and a loadings matrix, which contain information revealed by the reduced
set of variables. When the number of measurements exceeds the number of states, PCA can help to
simplify process monitoring and fault detection (Wise et al., 1990).

The PCA method, which is frequently used with Hotelling's T? and Squared Prediction Error
(SPE), assumes a series of procedures to detect faults in model’s principal or residual subspace.

4.3.2. Fault diagnosis methods (Fisher Discriminant Analysis)

Fisher discriminant analysis is a pattern categorization method with a high classification
potential. The FDA's primary goal is to find the Fisher optimal discriminant vector, which maximizes
the Fisher criterion function. For the purpose of constructing a lower-dimensional feature space, the
higher-dimensional feature space of process measurements can be projected onto the obtained
optimal discriminant vectors space.

In order to identify the defects, FDA examines measured data collected under different faults
and uses a discriminant function to assess the similarity between both the current data and the data
belonging to each class. The observation is assigned to class i when the maximum discriminant
function value, g;, meets the following conditions:
9:(0)>g;x), Vj#i (4.1)

gi(X) is the discriminant function for class i given by a measured vector x€ R™, and g;(x) is the
discriminant function for class j given by the measured vector Xx.
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4.4. Conclusions

The reliability of sensor networks in wastewater treatment plants is critical for achieving high
water quality standards and maximising operational efficiency. It is impossible to overstate the
importance of crucial sensors like DO and NO sensors in biological treatment processes. Inaccurate
data from DO sensors can cause poor effluent quality and energy inefficiencies. On the other hand,
faulty NO sensors can cause eutrophication, which harms the environment.

For real-time sensor monitoring, methods such as PCA and FDA provide effective tools. These
techniques are essential for reducing downtime and guaranteeing ongoing adherence to water quality
requirements because they can identify sensor malfunctions, categorize them, and recommend
remedial actions.

The reliability and efficiency of WWTPs can be significantly improved by integrating efficient
fault detection and diagnosis techniques with routine sensor maintenance and calibration, while

enhancing the plant’s sustainable and energy-efficient operation.

5. Implementation of the faults in the Simulink model of the municipal WWTP

5.1. Introduction

Fault detection and identification are crucial to the management of wastewater treatment systems
because inaccurate sensor readings can result in incorrect chemical dosage, ineffective aeration, or
even regulatory violations. By using PCA and FDA, this work seeks to improve the capacity to
identify and diagnose sensor problems. The DO and NO sensor errors that are essential to preserving
the best possible wastewater treatment procedures are detected and identified by these models.

To improve diagnostic methods and support fault investigation, controlled simulations of sensor
errors were performed using Simulink. Six different faults of the sensors were investigated: bias,
drift, wrong gain, loss of accuracy, fixed value and complete failure. Moreover, the implementation
of sensor faults in Simulink together with the faulty free operation is a novel aspect of this work.

The datasets obtained from the simulations serve as the foundation for training and validating
PCA and FDA models. In addition, an assessment of fault detection and diagnosis methods was
rigorously performed using the confusion matrix. This metric provided a quantitative evaluation of

the classification performance under both normal and faulty conditions.

5.2. Normal and abnormal operation data sets

To generate the necessary data sets for fault detection or diagnosis, thirteen distinct simulation
scenarios were built to thoroughly examine these operational circumstances (normal and abnormal
operation) of the WWTP, in order to produce the datasets required for the subsequent analysis.

The calibrated WWTP model was simulated for a time period of 168 days, for both normal and
faulty scenarios, resulting in a set of fifteen different simulations. To reach the plant's quasi-
stationary state, the simulations were carried out under normal operating conditions for the first 139

days. For the normal operation scenario, the simulation was carried further, up to a total of 168 days,
13



without the introduction of a fault. For the malfunctioning scenarios the sensor faults were
deliberately introduced in the 140" day of each simulation. In total, twelve simulations were
performed individually, each corresponding to a different type of fault. Simulated data of the WWTP
operation were collected with a sampling time of 15 minutes to create comprehensive data sets for
further analysis.

The obtained data sets were further used to build, train, validate and test the PCA and FDA
models. The objective of these machine learning techniques was to improve the reliability and
robustness of WWTP monitoring systems by evaluating the efficacy of fault detection and
identification models.

5.3. Data sets for building the PCA fault detection model

Data collected via the simulation process over a period of 40 days of normal operation,
specifically from day 100 to day 139, were used to build the data matrix X of the PCA model. This
time frame was selected to ensure that the model was trained under consistent, error-free operating
conditions, enabling it to capture the inherent variability of the wastewater treatment plant in normal
conditions. With the help of this dataset, the PCA model was able to detect normal operating patterns
and establish a baseline (threshold) that could be used to detect deviations caused by sensor faults.

In order to simulate various types of sensor malfunctions, artificial faults were introduced into
the system at the beginning of day 140.

The fault detection capacity of the PCA model was investigated using data generated and
recorded from the 140" day till 160" day (a time frame of 20 days), separately for each of the DO and
NO sensor faulty operation. The statistical measures Hotelling's T? and Squared Prediction Error,
were used to track the system's behaviour by projecting the faulty operational data onto the principal
component space. The model was able to detect possible abnormalities by using significant

deviations in these statistical indices as indicators of sensor malfunctions.

5.4. Data sets for building the FDA fault identification model

The FDA model was trained using data generated between the 141% and 145" days (five days) of
either normal or faulty DO and NO sensor operation. In the case of faulty operation, the data sets
used for training included instances for each of the fault types. As a result, the observation training
matrix for the DO sensor operation is composed of eight separate classes, with one class representing
normal operation and the remaining seven representing each of the various fault types. For the NO
sensor operation, the observation training matrix consists of six distinct classes, one for the normal
operating conditions and five for the faulty operating conditions.

The trained FDA model's fault identification performance was evaluated using data from the first
day of abnormal sensor operation (the 140™ day). This testing strategy was developed to investigate
the ability of the FDA diagnosis method to identify the type of fault within the early hours after its
appearance. This assessment offered significant insight on the efficiently of the diagnosis method and
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its application potential for real-time working scenarios.

5.5. Assessment metrics for fault detection and diagnosis performance

This study's performance on fault detection and diagnosis capabilities is based on the assessment
metrics and methodology. This includes the construction and interpretation of confusion matrices, as
well as the calculation of key performance indicators such as accuracy, PPV, MAR and F1 score. The
confusion matrix was computed and systematically applied to each specific scenario to precisely
assess the effectiveness of the fault detection and identification techniques.

In the confusion matrix, the rows correspond to the predicted categories (Output Class), whereas
the columns denote the actual categories (Target Class). Accurately classified instances are placed
along the diagonal cells, while misclassified instances appear in the off-diagonal cells. Each cell
displays both the count of instances and the corresponding percentage of the total observations. The
rightmost column of the matrix shows the proportion of cases predicted for each category that were
classified correctly or incorrectly, aligning with metrics such as precision (or PPV) and the false
discovery rate. Likewise, the bottom row displays the proportion of actual instances of each category
that were classified correctly or incorrectly, corresponding to recall (or true positive rate) and MAR.

The overall classification accuracy is displayed in the bottom-right cell of the matrix.

6. DO sensor fault detection, diagnosis and impact on energy, water quality and
GHG emissions

6.1. Introduction

The simulation framework and the methodology designed to detect and diagnose faults of the DO
concentration sensor with the support of the dynamic simulator for a municipal WWTPs are
presented in this chapter. Particular simulations were developed for both, normal and faulty
operation. In the case of faulty operation, seven different faults of the DO concentration sensor were
considered: bias, drift, wrong gain, loss of accuracy, fixed value, complete failure minimum and
maximum. Each fault was implemented using an individual procedure that accurately replicated
actual DO sensor faults. Two statistical process monitoring techniques were considered and PCA-
based and FDA-based models were developed to detect and diagnose the considered DO sensor
faults.

The overall economic and environmental impact of the DO sensors faults in the municipal plant
is also examined. An extensive analysis is performed with special attention to energy usage and costs,
effluent quality and GHG emissions. This study emphasises the necessity of preventive maintenance,
periodic calibration, and automated fault detection systems by revealing the correlating sensor faults

with plant performance indices.

6.2. Methodology of DO sensor faults implementation

To simulate the behaviour of the seven failure types considered for the DO concentration sensor,
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customized software modules were created. They were integrated into the WWTP dynamic simulator
model. For each type of fault, the generated fault-affected output of the sensor was sent as measured
DO process variable to the Proportional-Integral DO controller. The layout of the WWTP and the DO
sensor location are presented in Figure 6.1.

DO
Q setpoint
DO
Sensor,
Influent DO
A A bi Anoxi Effl
naerobic noxic e S / uent
Az oo Aerobic Bioreactor X
. Secondary /
. Settler
Internal Recycle
External Recycle 1 Waste

Figure 6.1. Placement of the DO sensor in the municipal WWTP

The DO control loop adjusts the air flowrate to bring the measured DO to the desired setpoint
of 2 mg O,/L, with zero offset. For each of the faults, the investigation scenario was carried out as
follows. For a period of 139 days, the simulation was run without any fault. Then, beginning on the
140" day of the simulations, each fault was implemented by an individual fault operating scenario for
a total of 28 days. The process variables considered for fault identification were taken from the first
day of faulty operation, i.e., the day no. 140. For collecting data that describe normal operation, the
same measurement period of 28 days was considered.

The bias fault type was defined as a predetermined constant difference between the sensor's true
and faulty output values. The DO measured concentration was considered to have a bias of +1.5 mg
O,/L for this fault type.

The drift was simulated as an increasing bias, which was described by a time-varying ramp
signal added to the true DO value. To simulate the drift, a constant value of 0.05 mg O,/L was
integrated in time and added to the DO true value.

The wrong gain fault was simulated by the sensor's loss of effectiveness because of a gain
factor other than 1. It consisted of an incorrect calibration gain of 1.4, which resulted in a wrong
correlation factor between the sensor's input and output signal. A first-order filter with a time
constant of 0.3 days smoothly introduced the incorrect gain in time.

The loss of accuracy fault was simulated using a uniform random-number generator that
delivered a value in the interval [-2.5, 2.5] with a sampling time of 0.1 days. This signal was passed
through a first-order filter with a time constant of 0.01 days, and then to a saturation block, which
limited its output value to the positive interval [0, 6]. This random signal was then added to the DO
true value to generate the fault-affected measured process variable.

The fixed value fault was implemented by a constant value of the sensor output signal,

regardless of the true DO process variable value. For this study, a constant value of 2.2 mg O,/L was
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used (which is 10% higher than the DO control loop's nominal setpoint value of 2 mg O,/L).

A sensor's complete failure was once again characterized by unvarying values of the sensor
output signal, but these constant values were the minimum or maximum of the sensor’s calibration
interval. For the complete failure minimum and maximum alternatives, the two extreme values of 0.1
mg O,/L and 6 mg O,/L were chosen. They represent 5%, respectively 300% of the nominal setpoint
value of 2 mg O,/L considered for the DO control loop.

The application of statistical theory in process monitoring is based on the assumption that the
characteristics of the data change only when an unexpected situation (fault) takes place in the
process. Any significant deviation from this normal behaviour suggests that an unexpected event or
fault has occurred in the system (Chiang et al., 2001). It was also assumed that a single sensor would
fail at a time.

The purpose of this chapter is to support the field of wastewater treatment plant operation and
management by investigating the DO concentration sensor typical faults, the detection and
identification of the faults and revealing how these issues affect the energy use, gas emissions and
quality of effluent water. This work was published in two scientific papers (Luca et al., 2023; Luca et
al., 2021).

6.3. Process variables considered for the detection and identification of the DO
sensor faults

The total set of twenty WWTP process variables considered for building the PCA model
consisted of secondary settler flow rate and clean water effluent concentration variables (6
variables), and sludge flow rate and settler bottom effluent concentration variables (14 variables),
including temperature. The entire set of variables taken into consideration were: total nitrogen
(Niota), total Kjeldahl nitrogen (TKN), chemical oxygen demand (COD), nitrate and nitrite
nitrogen (Sno), free and saline ammonia (Syu), total suspended solids (TSS), slowly
biodegradable substrate (Xs), heterotrophic biomass (Xgy), autotrophic biomass (Xga), inert
particulate products (Xp), particulate biodegradable organic nitrogen (Xyp), soluble
biodegradable organic nitrogen (Syp), dissolved oxygen concentration (So), readily
biodegradable substrate (Ss), alkalinity (Sa), waste flow rate (Qw), and temperature (t). The first
six variables of the presented set were considered for the settler clean water effluent and the last
fourteen for its bottom stream. Inert suspended organic matter (X,) and inert soluble organic
matter (S;) concentration variables were excluded, as they would not add significant information to
the study (Tomita et al., 2002). These variables were chosen based on relative standard deviation
(RSD) values obtained during the faulty time period of simulations. The RSD is a measure of the
dispersion of data points in a data set relative to its mean. It was used as an indicator to determine
which variables provided meaningful variation. The higher the value of RSD, the higher the

variability, which meant that the data points were widely spread. Values of Syo, So and Qw were
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excluded from the FDA sets as they induced singularity on the S,, matrix (the determinant of the

matrix was equal to zero and the matrix had no inverse).

6.4. PCA model construction for DO sensor faults detection

The PCA model was built using 3840 observations from the normal operating period of 40 days.
The obtained data matrix X of 3840x20 dimensions represented the training matrix. After scaling the
data matrix, the scores matrix T and the loadings matrix P were obtained. For CPV, a threshold value
of 98.24% was chosen. As a result, the number of principal components k that contributed to a
consistent representation of the entire data set was determined to be eight. A T threshold of 20.16
and a SPE threshold of 1.26 were determined for the 99% confidence level. Any vector x of measured
variables with a T2 or SPE value greater than the two equivalent thresholds implied the abnormal
sensor operation.

Seven testing data matrices were created using the vectors of abnormal-operation measured
variables. One was created for each of the first five types of faults, to which was added the complete-
failure fault type, which had two matrices built for the minimum and maximum faulty values of the
DO sensor. For each testing data matrix (1920x20), a total of 1920 samples were used, originating
from simulation day 140 up to day 160 (excluding day no. 160). To determine faulty sensor
operation, T? and SPE values were determined for each of the sample vectors of the testing matrices
and compared to previously calculated thresholds. T? and SPE values were graphically represented
for each of the normal (training) and faulty (testing) samples, in association with the T? and SPE,
thresholds.

6.5. FDA model construction for DO sensor faults identification

Data generated during the period of the 141% and 145" days of normal and faulty DO sensor
operation were used to train the FDA model. A class was defined as the set of 480 observations of the
17 variables. These variables created the observation training matrix of 3840 lines (8 classes with 480
measurements) and 17 columns. The fault diagnosis performance of the trained FDA model was
evaluated using data from the 140" day, i.e., the first day of abnormal operation. Each case of normal
or abnormal operation had 96 measurements in the testing data set. This testing strategy was devised
to investigate the ability of the FDA diagnosis method (model) to identify the type of fault within the
first few hours following its appearance.

The values obtained for each class's discriminant function, g;, were compared in order to
diagnose the faulty sensor operation. The values of the discriminant functions g; were computed for
each of the 15-minute time-sampled measurements of testing day no. 140, which were affected by the
various types of faults (7 classes), as well as measurements corresponding to normal operation (1
class). The discriminant function with the highest value identified the faulty sensor's class and, as a

result, diagnosed the fault type.
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6.6. Results and discussions

6.6.1. Assessment metrics for fault detection of DO sensor

The effectiveness of the PCA-based and FDA-based methods for detecting and diagnosing DO
sensor faults was assessed using two different confusion matrices. This approach allowed for a
thorough evaluation of the models' performance by methodically examining their classification
accuracy. This comprehensive assessment ensured an accurate and dependable analysis of sensor
functioning by offering a quantitative estimate of the models' capabilities.

The DO sensor detection confusion matrix analyses two different classes: abnormal (with defect)
and normal (no defect). The normal class is shown in the second column (target), whereas the
abnormal class is represented in the first column (target). Figure 6.2 presents the DO sensor

confusion matrix for faults detection.

Confusion matrix for the fault detection of DO sensors

Output class
N

2
Target class

Figure 6.2. Confusion matrix of the fault detection for the DO sensor

With a 100% precision rate for the normal class, the model showed no false positives. For the
faulty class the precision was 96.7%. Furthermore, the model's overall accuracy was 99.6%,
demonstrating high proficiency in correctly classifying observations. The F1 score for the normal
class was 0.983, while the faulty class achieved a remarkable F1 score of 0.997. These scores indicate
an exceptional balance between recall and precision, with the faulty class performing particularly
well.

6.6.2. Fault detection of DO sensor faults

First, the proposed and developed PCA model was applied to the normal data set. As shown in
Figure 6.3, all of the T and SPE values from this data set were validated to be faulty-free values,
therefore they were classified as normal operation values. Furthermore, the T? plot reveals that the
difference between the normal operation values and their associated threshold was greater for T2 than
that shown by the SPE plot. This means that in normal operation mode, the SPE statistics provide the

most reliable data.

19



T2 Normal operation

20
15
10 ey
bt ; P g LT £y iy M
5H / i
| y
0 ; - |
100 105 110 115 120 125 130 135 140
Time (days) 2/ SPE_ statistic threshold
faulty-free values
SPE Normal operation
1 |
w | A
o
»0.5 4
A % \ \ ¥
or p i
100 105 110 115 120 125 130 135 140

Time (days)

Figure 6.3. T? and SPE plots of PCA monitoring the normal operation data set for the DO sensor

Figures 6.4-6.10 show the fault detection results for each type of the DO sensor investigated

faults.
The bias fault type was detected after 1h with T? statistics and in 1 h and 15 minutes with SPE

statistics, as it can be observed in Figure 6.4.
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Figure 6.4. T?and SPE plots of PCA detecting the bias type of fault for the DO sensor, with details on
the period next to the fault occurrence moment

Figure 6.5 shows the detection of the drift type of fault. The plots confirm the existence of a
fault after 8.5 h with the T? method. In this case SPE method proved to be more rapid and detected
the fault in 5.25 h. The drift type of sensor fault was expected to take longer to be detected because
the faulty signal grows slowly over time and crosses the statistical threshold only when its amplitude

becomes significant.
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Figure 6.5. T? and SPE plots of PCA detecting the drift type of fault for the DO sensor, with details on
the period next to the fault occurrence moment

For wrong gain fault type, both statistics methods proved to be just as fast, and the fault was
detected in 2 h and 30 minutes. The results for the detection of the wrong gain fault of the DO sensor
are presented in Figure 6.6.
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Figure 6.6. T? and SPE plots of PCA detecting the wrong gain type of fault for the DO sensor, with
details on the period next to the fault occurrence moment

Figure 6.7 presents the results for the loss of accuracy DO sensor type of fault. In this case, the
fault presence was detected in 3 h and 45 minutes by both, T? and SPE methods. In the case of this

fault, the detection is dependent on the random amplitude of the fault component value.
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Figure 6.7. T? and SPE plots of PCA detecting the loss of accuracy type of fault for the DO sensor,
with details on the period next to the fault occurrence moment
The detection of the fixed-value type of fault was detected in 1.25 h. For this fault, both
methods proved to be just as efficient. Figure 6.8 presents the results for the fixed value DO sensor
fault.
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Figure 6.8. T? and SPE plots of PCA detecting the fixed value type of fault for the DO sensor,with
details on the period next to the fault occurrence moment

Again, in the complete failure minimum case, the T? statistic proved to be as fast as SPE
statistic and the detection time was 1 h. The results for the complete failure minimum type of fault for

the DO sensor are presented in Figure 6.9.

22



<10 T4 Complete failure minimum

15 ! fy
ig 1 L / ! pih
o AfEEEER R I
L i i 1 ]
~ 10 139.8 139.85 139.9 139.95 140 14005 140.1 14015 1402 i/ ,-" i 14 \ %‘ 3 i'l T B
[ § ifsii 3
5 ' i X i i i ; i . i
0 il :
100 110 120 130 140 150 160
Time (days) T2/ SPE, statistic threshold
faulty-free values
%10° SPE Complete failure minimum feuity vaioes
210 ' ' . il b )
f P
il i ] ’}"}_!\!"’/r!‘;
1550 ey — | MR
H_J 1398 13985 1399 13995 140 14005 1401 14045 1402 iiiifiy EF 3+ i ERIEE
n ” B “:LL
fiavies 1zt
05+ i : i
0 2} 1
100 110 120 130 140 150 160
Time (days)

Figure 6.9. T? and SPE plots of PCA detecting the complete failure minimum type of fault for the DO
sensor, with details on the period next to the fault occurrence moment

As shown in Figure 6.10 complete failure maximum was detected after 1 h, similar to the
complete failure minimum and the bias type of faults.
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Figure 6.10. T? and SPE plots of PCA detecting the complete failure maximum type of fault for the
DO sensor, with details on the period next to the fault occurrence moment

The proposed PCA model successfully detected the occurrence of different types of DO sensor
faults. SPE usually provided faster detection than the T> method, with a higher promptitude especially
for the drift type of fault. The efficiency of T? and SPE statistics was comparable for bias, wrong
gain, loss of accuracy, fixed value, and complete failure type of defects. These results demonstrate
the capability of the designed PCA-based method for early detection of DO sensor failure by prompt

fault detection and providing reliability to the efficient operation.
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6.6.3. Assessment metrics for DO sensor faults diagnosis

For the FDA-based identification method, a complete confusion matrix was computed to evaluate
the method's performance in classifying different sensor types of faults. This matrix's normal class
(fault-free operation, designated as target 1) is represented by the first column. Listed in order of
occurrence, the following columns represent the following seven different sensor faults: bias (target 2),
drift (target 3), wrong gain (target 4), loss of accuracy (target 5), fixed value (target 6), complete

failure minimum (target 7) and complete failure maximum (target 8).

As shown in Figure 6.11, the FDA technique showed good classification performance, with an

overall accuracy of 85.8%. This value demonstrates the ability of the FDA-based method to accurately

identify different types of sensor errors.

Confusion matrix for the fault diagnosis of DO sensors
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Figure 6.11. Confusion matrix of the fault diagnosis for the DO sensor type of faults

6.6.4. Fault diagnosis of the DO sensor type of faults

As shown in Figure 6.12, the g; values revealed the consolidated normal operation (fault-free
values) diagnosis after 16.5 hours (confident identification moment). In this case, a small set of 52

observations was misclassified as drift, resulting in a MAR of 2.7%. Additionally, the F1 score was

100%

calculated to 0.973, reflecting a good balance between precision and recall.
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Figure 6.12. Faulty-free operation diagnosis for the DO sensor: graphs of the FDA discriminant
functions g;(x) for each of the normal and seven types of faults; details on the time period of confident
identification

The identification of the sensor types of fault is presented in Figures 6.13-6.19.

As shown in Figure 6.13, the bias fault type diagnosis is confirmed after 2.5 hours, for a total of
5.75 hours. As a result, the FDA discrimination reveals the complete failure maximum class for the
remaining period of the day. This resulted in a MAR value of 100% and a F1 score of 0.
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Figure 6.13. Bias type of fault diagnosis for the DO sensor: graphs of the FDA discriminant functions
gi(x) for each of the normal and seven types of faults; details on the time period of confident
identification

As shown in Figure 6.14, the diagnosis of drift type of fault is firmly acknowledged after 13.75
hours (confident identification moment). In this instance, the MAR was only 0.6%. This low
percentage of misclassification demonstrates how well the model can discriminate between faulty and
fault-free conditions. Additionally, the F1 score demonstrated a well-balanced performance between

precision and recall, reaching the value of 0.949.
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Figure 6.14. Drift type of fault diagnosis for the DO sensor: graphs of the FDA discriminant functions
gi(x) for each of the normal and seven types of faults; details on the time period of confident
identification

After 14 hours of the fault incidence moment, the diagnosis of wrong gain fault was confirmed.
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Figure 6.15 depicts the graphical representation for the diagnosis of this fault type. The model's
overall efficacy in correctly identifying observations was demonstrated by its F1 score of 0.985.
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Figure 6.15. Wrong gain type of fault diagnosis for the DO sensor: graphs of the FDA discriminant
functions g;(x) for each of the normal and seven types of faults; details on the time period of confident
identification

Figure 6.16 shows that the loss of accuracy fault is identified after 16.5 hours from the starting
moment of the fault action. Nevertheless, 62 observations were misclassified, with 19 being
mistakenly classified as normal operation and 43 as drift, resulting in a MAR of 3.2%.
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Figure 6.16. Loss of accuracy type of fault diagnosis for the DO sensor: graphs of the FDA
discriminant functions g;(x) for each of the normal and seven types of faults; details on the time period
of confident identification

Figure 6.17 shows the graphical representation of the fixed value fault. This fault type was
accurately diagnosed after 6 hours (confident identification moment). With the second-highest F1
score of 0.990, the model showed remarkable performance for identifying the fixed value fault. A
good balance between precision and recall is revealed by this high score, which further supports the

reliability of the categorisation.
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Figure 6.17. Fixed value type of fault diagnosis for the DO sensor: graphs of the FDA discriminant
functions gi(x) for each of the normal and seven types of faults; details on the time period of confident
identification

Figure 6.18 shows that the complete failure minimum is correctly diagnosed after 6.75 hours
(confident identification moment) of its appearance. The identification of complete failure was most
accurately achieved, as indicated by the highest F1 score of 0.993. The MAR was 1.4%.
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Figure 6.18. Complete failure minimum type of fault diagnosis for the DO sensor: graphs of the FDA
discriminant functions g;(x) for each of the normal and seven types of faults; details on the time period
of confident identification

As shown in Figure 6.19, the complete failure maximum is successfully diagnosed after 9.5
hours (confident identification moment). For complete failure maximum, the identification approach

showed less accurate results, with a value of 1.9% for MAR.
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Figure 6.19. Complete failure maximum type of fault diagnosis for the DO sensor: graphs of the FDA
discriminant functions g;(x) for each of the normal and types of seven faults; details on the time period
of confident identification

The FDA-based method for DO sensor faults offers a trustworthy framework for diagnosing

sensor faults in a timely manner and efficiently monitoring the development of faults.
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6.6.5. WWTP performance evaluation during operation with DO sensor faults

For both normal and faulty operation scenarios of the DO sensor faults, the performance indices
AE, PE, and EQ were determined as mean values over 28 days (starting from the 140", up to the
168™ day). The indices value for normal operating conditions and for the six different defects are
shown in Table 6.1 as AE, PE, and EQ performance indicators.

Total energy

) ) AE PE EQ
Operating regime demand
(kWh/day) (kWh/day) (kg PU/day)
(kwWh/day)

Normal operation 16,992 1,329 18,321 16,852
Bias fault 14,206 2,415 16,621 21,461
Drift fault 15,569 1,746 17,315 17,134
Wrong gain fault 15,866 1,593 17,459 16,706
Loss of accuracy fault 9,150 2,403 11,553 219,189
Fixed value fault 1,968 2,415 4,383 338,737
Complete failure minimum fault 23,537 1,039 24,576 19,804
Complete failure maximum fault 1,968 2,415 4,383 338,750

Table 6.1. Values of the performance indices for the normal and faulty operation cases

It is evident that the PE and EQ indices values for the fault types of bias, loss of accuracy, fixed
value, and complete failure maximum are significantly greater than the values for normal operation,
although AE is lower. The high DO sensor signal values of the previously four fault categories,
which are delivered to the DO controller as feedback, justify the AE values. As a result of the
increased by fault signal, the DO controller reduces aeration in an effort to lower the value of the
incorrect DO signal. This results in a reduction in aeration energy. After that, nitrification declines,
which lowers the concentration of nitrate and nitrite in the aerobic reactor and, ultimately, in the
anoxic reactor. The internal recycle flowrate is increased by the NO control loop in response to this
shift, which results in a higher pumping energy need. The increased air flow rate controlled by the
DO controller in response to the low, but incorrect value of the DO sensor signal is what causes the
high AE value in the case of the complete failure minimum type of fault.

6.6.6. Energy costs assessment for operation affected by the DO sensor faults

In general, operating a WWTP involves significant energy costs and, implicitly, considerable
economic expenses. Geopolitics, the nation's unique energy mix, distribution network costs,
environmental protection fees, extreme weather conditions, and excise and taxation levels are only a
few of the supply and demand elements that affect energy prices. The energy source also has an
impact on the cost of energy. According to Table 6.2, based on the source, energy costs range from

5.84 to 18.75 eurocents. These are average values calculated based on two different reports on energy
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costs in Europe (Kost et al., 2024), United States and global markets (Lazard, 2024) and on an online
calculator made available by the International Energy Agency (IEA) (IEA, 2024).

Table 6.2. Average costs of different energy sources

Source/Technology €cents/kWh
Lignite 9.89
Coal 9.37
Gas (CCGTY 10.78
Nuclear 18.75
Wind onshore 6.75
Wind offshore 8.55
Solar PV? commercial 8.07
Solar PV residential 12.70
Solar thermal (CSP?) 14.8
Hydro reservoir 7.95
Hydro run of river 5.84
Geothermal 8.63
Biomass 11.57

'CCGT - combined cycle gas turbines
PV - photovoltaic

CSP - concentrating solar power

For the WWTP taken into consideration in the current study, the daily cost for regular-normal
and for each type of faulty operation modes was determined. The daily costs for different energy
sources were evaluated based on energy production technologies. The costs of various energy sources
were multiplied by the total energy demand values calculated for both normal and faulty operating

scenarios to generate the data shown in Table 6.3.
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Table 6.3. Source depending sum of AE and PE energy costs computed for normal and fault affected operation of the WWTP water line for the DO sensor case

Daily operation costs (€)

Source/Technology L oss of Complete Complete
Normal operation Bias Drift Wrong gain Fixed value failure failure
accuracy g .
minimum maximum
Lignite 1,812 1,644 1,712 1,727 1,143 433 2,431 433
Coal 1,717 1,557 1,622 1,636 1,083 411 2,303 411
CCGT 1,975 1,792 1,867 1,882 1,245 472 2,649 472
Nuclear 3,435 3,116 3,247 3,274 2,166 822 4,608 822
Onshore wind 1,237 1,122 1,169 1,178 780 296 1,659 296
Offshore wind 1,566 1,421 1,480 1,493 988 375 2,101 375
Solar PV
) 1,479 1,341 1,397 1,409 932 354 1,983 354
commercial
Solar PV residential 2,327 2,111 2,199 2,217 1,467 557 3,121 557
Solar thermal (CSP) 2,712 2,460 2,563 2,584 1,710 649 3,637 649
Hydro reservoir 1,457 1,321 1,377 1,388 918 348 1,954 348
Hydro run of river 1,070 971 1,011 1,020 675 256 1,435 256
Geothermal 1,581 1,434 1,494 1,507 997 378 2,121 378
Biomass 2,120 1,923 2,003 2,020 1,337 507 2,843 507
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When examining; the.costs;assooiated-with electrical enengymsed for-the variqus-fault gases, it
can be seen that the complete failure minimum fault of the DO sensor is associated with the highest
energy costs, as the control system is forced to significantly increase the air flowrate due to the
reduced faulty value of the DO sensor. On the other hand, the large values of the DO sensor signal
associated to the complete failure maximum or the (high) fixed value type of faults, cause the DO
controller to limit the air flowrate, resulting in low energy costs. However, in these latter situations,
the effluent quality rapidly declines by a factor of more than 20, making these defects the ones with
the worst overall effects.

6.6.7. Environmental assessment of CO, and N,O emissions for operation with DO

sensor faults
For each case of faulty operation, as well as for normal operation, the on-site and off-site
emissions of CO, and N,O, the principal contributors to the Green House Gases produced by the

water line of the WWTP, were estimated. Table 6.4 displays their daily mean values.
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Table 6.4. GHG Emissions due to the different types of the DO sensor defects
Type of fault
Sl_te_of Process Type of emitted ] : Complete Complete
emissions gas Normal  Bias Drift  Wrong gain acgss 0 Fixed value failure failure
uracy minimum maximum
Power €O,
. Pco,of f-site 3,481 3,158 3,290 3,317 2,195 833 4,669 833
generation
Off-site o (kg CO-/day)
emissions Blolog_lcal_ N,O,
degradationin : 3.61 2.47 2.89 2.97 14.39 21.49 6.50 21.49
the WWT N,O,0f f—sites . . . . . . . .
effluent (kg N-O/day)
CO,,
Water-line Pco, on—site(Kg 13,689 30,459 17,851 16,178 461,439 921,028 10,604 921,168
On-site aerobic CO,/day)
emissions biological N,O,
processes Pn,0,0n-site 10.35 10.81 10.64 10.05 6.07 3.27 9.20 3.27
(kg N,O/day)
CO,,
PCOZ,total(kg 17,170 33,617 21,141 19,495 463,634 921,861 15,274 922,001
. CO,/day)
Total emissions N,O,
Py, o0 total 13.96 13.28 13.53 13.02 20.46 24.76 15.70 24.76
(kg N,O/day)
COp,
Total overall emissions Pco,, overall 21,330 37,574 25,173 23,375 469,731 929,239 19,953 929,379
(kg CO,/day)
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According to the GHG assessment results presented in Table 6.4, on-site emissions are the most
important, accounting for 75%-80% of the total emissions during normal operation, for both
Pco, totar AN P, o torar- With the exception of the complete failure minimum fault type, all cases of
the DO sensor defects resulted in increased values for the computed total CO, emissions, that is, the
sum of the on-site and off-site values.

Increased values for the N,O emissions are also found when the total N,O emissions are
assessed for the fixed value, complete failure maximum, and loss of accuracy faults. It should be
noted that complete failure minimum fault type led to higher values of the N,O emissions, which is
the opposite of the observed trend for the total CO, emissions. The total CO, and total N,O emissions
were summed together to calculate the overall CO,e emission values. All faults exhibit higher CO,
emission levels than the case of normal operation, according to the results of the overall CO,
emission. The single exception to this trend is the complete failure minimum type of fault. However,
in this specific instance the effluent quality deteriorates by more than 17.50% and the sum of the

aeration and pumping energy has the highest values of all analysed situations.

6.7. Conclusions

Using the DO sensor of a municipal A0 WWTP as a case study, PCA-based fault detection
and FDA-based fault diagnosis methods were evaluated, alongside energy and water quality
performance. The DO sensor is central to nitrification efficiency, with aeration being the main
energy consumer. Six fault types were analysed: bias, drift, wrong gain, loss of accuracy, fixed
value, and complete failure. PCA detected faults with 99.6% accuracy, typically within 2-9 hours
depending on fault type, while FDA diagnosis reached 85.8% accuracy within 2.5-16.5 hours.

Faults impacted effluent quality and energy differently: bias and drift moderately reduced
energy but worsened water quality, while loss-of-accuracy and fixed-value faults caused severe
effluent deterioration. Complete failure faults showed extremes, with either high energy demand or
drastically reduced effluent quality. CO. and N.O emissions were highest from on-site sources,
particularly under complete failure, fixed-value, and loss-of-accuracy faults. Energy costs were
also fault-dependent, with low DO readings increasing aeration demand.

The study demonstrates that PCA and FDA approaches effectively detect and diagnose DO
sensor faults, supporting safe, efficient, and sustainable WWTP operation. Results inform control

system design, energy optimization, GHG mitigation, and intelligent sensor development.

7. NO sensor fault detection, diagnosis and impact on energy, water quality and
GHG emissions
7.1. Introduction

Reliable sensor measurements are essential for regulatory compliance and optimal process

control in wastewater treatment plants. Among the many sensors employed in WWTP operations,
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the NO concentration sensor is essential for monitoring the dynamic concentrations of nitrate and
nitrite. Nitrogen compounds present in WWTPs can cause significant environmental issues.

This study focuses on detecting and identifying different NO sensor errors. Specific types of
faults of the NO concentration sensor were incorporated into the WWTP dynamic model and
several different simulations were developed to reveal the plant behaviour as a consequence of
these faults. Five different fault types were considered: bias, drift, wrong gain, loss of accuracy and
fixed value. To effectively detect these faults a PCA-based model was developed, validated and
tested. Another model, based on FDA was implemented and used to diagnose the NO sensor type
of faults.

Furthermore, the confusion matrix was employed to thoroughly evaluate fault diagnosis and
detection methods, offering a numerical assessment of the classification performance in both
normal and faulty scenarios.

The impact of NO sensor faults on WWTP performance is thoroughly examined in this chapter
through the energy cost, effluent quality and environmental assessments. For this, three different
performance indices were analysed together with the GHG emissions, all of them quantified under

normal and faulty sensor conditions.

7.2.  Methodology of NO sensor faults implementation

Dedicated software modules were developed to simulate the specific failure types considered for
the NO concentration sensor. They were incorporated into the WWTP dynamic simulation. For
each fault type, the sensor's generated fault-affected output was fed into the Proportional-Integral
NO controller as a measured NO process variable. This control loop is directly responsible for the
denitrification process of the ASM technology. The placement of this sensor is presented in Figure
7.1,

Influent

Anaerobic Anoxic
Bioreactor Bioreactor

Aerobic Bioreactor > / Effluent

\_ Secondary /
\ Settler /

Internal Recycle /"’

External Recycle I Waste

Figure 7.1. Placement of the NO sensor in the municipal WWTP

The NO control loop adjusts the internal recycle flow-rate of nitrate and nitrite to achieve the
desired setpoint of 0.01 mg N/L, with zero offset. For each of the faults, the investigation scenario
was performed similarly to the DO sensor case in terms of time. First, the simulation was run without

any of the sensor’s faults for 139 days. Each fault was then implemented for a total of 28 days,
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beginning on the 140™ day of the simulations. The values of the process variables considered in the
fault identification and testing methodology were collected starting from day 140, i.e., the first day of
faulty operation. The same duration of 28 days for the measurements collection period was
considered for data that describe the normal operation.

The bias fault was characterized by a preset constant-difference between the true and faulty
output values of the sensor. For the implementation of the fault in the simulation, a negative constant
value of -0.0098 mg N/L was added to the true value of the NO concentration.

The drift was simulated as a time-varying ramp signal subtracted from the true NO value. A
negative constant value of -0.0075 mg N/L was integrated in time and added to the NO true value.
(i.e. -75% of the NO control loop's nominal setpoint value of 0.01 mg N/L).

The sensor's loss of effectiveness as a result of a negative gain factor was used to simulate the
wrong gain fault. It had an incorrect calibration gain of -0.7, resulting in an incomplete
correlation between the sensor's input and output signal. The incorrect gain was gradually introduced
in time by a first-order filter with a time constant of 0.1 days.

A uniform random-number generator that delivered a value in the interval [-0.06, 0.06] with a
sampling time of 0.1 days was used to generate the loss of accuracy faulty signal. This signal was
processed by a first-order filter with a time constant of 0.01 days, followed by a saturation block,
which limited its output value to the positive interval [0, 3]. This random signal was then subtracted
from the NO true value to produce the inaccurately measured NO process variable.

The fixed value fault was characterized by the constant value of the sensor output signal.
For this study, a constant value of -0.0095 mg N/L (which is 95% of the nominal setpoint value of
the NO control loop of 0.01 mg N/L) was added to the NO control loop's nominal setpoint value of
0.01 mg N/L, resulting in the sensor constant value of 0.0005 mg N/L.

Each of NO concentration sensor types of faults was individually introduced at the specified
time in the dynamic simulations and generated the set of data for describing the respective particular
abnormal situation.

This chapter proposes supporting the WWTP management by investigating the way NO sensor
malfunctions affect energy usage, greenhouse gas emissions, and effluent quality. It evaluates the
effectiveness of fault detection and identification using the PCA and FDA methods, and offers
recommendations for long-term operations and maintenance of the WWTP. The presented work was

published in one scientific paper (Luca et al., 2025).

7.3. Process variables considered for the detection and identification of the NO
sensor faults

Twenty process variables were considered for the PCA model and twenty-one for the FDA

model. They consist of secondary settler concentrations (3 variables), anoxic bioreactor

concentrations (8 variables), aerated bioreactors concentrations (7 variables), internal recycle flow
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rate (1 variable), aeration flow rate (1 variable) and clean water effluent flow rate (1 variable). The
variables considered were as follows: nitrate and nitrite nitrogen (Syo), free and saline ammonia
(Snn), soluble biodegradable organic nitrogen (Syp), particulate biodegradable organic nitrogen
(Xnp), dissolved oxygen concentration (Sp), readily biodegradable substrate (Ss), slowly
biodegradable substrate (Xs), alkalinity (Sa), reactors flow rate (Q), nitrate recirculation flow rate
(Qnr) and aeration flow rate (Qgr). Measurements values of Qnr were excluded from the FDA
model.

7.4. PCA model construction for the detection of the NO sensor faults

The PCA model was developed using the 3840 observations from the 40-days of normal
operating period. A matrix of 3840 observations of the 21 considered variables defined the training
matrix X. The matrix T of scores and matrix P of loadings were obtained after scaling the training
data matrix. A threshold value of 98.98% was chosen for CPVk. As a result, the number of principal
components k considered necessary to represent the entire data set was determined to be 8. Using a
99% confidence level, the T2 threshold was 20.16 and the SPEa threshold was 0.97. A fault was
indicated by any vector x of measured variables with a T or SPE value greater than the two
corresponding thresholds.

Five different testing data matrices were constituted for each type of fault using the vectors of
abnormal operation measured variables. Each testing data matrix was built from 1920 observations
of 20 variables from the simulated time period of the day 140 up to the day 160 (excluding day no.
160). One value of the index T? and one of the index SPE were determined for each of the sample
vectors of the testing matrices. To determine faulty sensor operation, T> and SPE values were
determined for each of the sample vectors of the testing matrices and compared to previously
calculated thresholds.

The T2 and SPE values were graphically represented for each of the normal (training) and faulty

(testing) samples, in association with the T2 and SPEa thresholds.

7.5.  FDA model construction for the identification of the NO sensor faults

Six distinct data classes were created for each scenario: one for normal operation mode and five
for each of the NO sensor operation in the presence of a fault. These classes were created using data
from days no.141 up to day no. 145 (five days), and they were used to train the FDA model. Each
class was defined by 480 observations. There were 2880 lines and 20 columns in the observation
training matrix. Data from day 140, the first day of the abnormal operation, was used to assess the
trained FDA model's fault diagnosis performance. The testing data set included 96 measurements for
each case, normal or abnormal. The purpose of this testing strategy was to investigate the ability of
the FDA diagnosis method to identify the type of fault within the first few hours of its appearance.

In order to diagnose the faulty sensor operation, the values g;, obtained for each class's
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discriminant function, were compared. The discriminant functions g; were computed for each of the
15-minute time-sampled measurements from the testing day 140, which were affected by the various
types of faults (5 classes), as well as measurements corresponding to normal operation (1 class). The
highest-valued discriminant function identified the faulty sensor's class and, as a result, diagnosed

the type of fault.

7.6. Results and discussions

7.6.1. Assessment metrics for fault detection of NO sensor

Two different confusion matrices were employed to assess the effectiveness of the PCA-based
and FDA-based methods, one for detecting and one for diagnosing the NO sensor considered
malfunctions. The confusion matrix for the detection of the NO sensor faults considers two classes:
normal (faulty-free) and abnormal (faulty). The first column (target) displays the abnormal class,
while the second column (target) displays the normal class. The confusion matrix for the faults

detection of the NO sensor is presented in Figure 7.2.

Confusion matrix for the fault detection of NO sensors

Output class
N

1 2
Target class

Figure 7.2. Confusion matrix of the fault detection for the NO sensor

For the normal class, the precision is 100%, meaning there are no false positives; for the
abnormal class, it is 90.5%. Only 202 observations, representing 1.8% of all observations, were
incorrectly classified as belonging to the abnormal class. The model's overall accuracy of 98.2%
shows that it performed well in accurately detecting the NO sensor faults.

The F1 score value for the normal class equals 0.950, and for the abnormal class the F1 score is
0.989. Both scores reveal an outstanding balance between recall and precision, with the normal class
performing very well.

7.6.2. Fault detection of NO sensor faults

Based on the PCA algorithm the presence of a NO sensor fault is detected when a measured
variable vector x exceeds the threshold values for both T2 and SPE indices.
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The PCA-based NO sensor fault detection method demonstrated high efficiency in identifying
sensor defects at an early stage. Among the two statistics, the SPE-based approach exhibited superior
fault detection performance compared to the T2 method. However, utilizing both indices in
combination can enhance reliability by providing a more comprehensive assessment of fault
occurrence and persistence.

The proposed PCA model was first tested on the normal operation data set. Graphical
representations of the T? and SPE values for the samples from this data set against their
corresponding thresholds are shown in Figure 7.3. They confirm the fault-free scenario, except for
some T? statistics points. This means that for normal operation mode, the SPE statistic provides the
most relevant outcomes on fault detection, as it was also reported in literature (Yoo et al., 2004).

T2 Normal operation

25+
20~
L 15-
10._

100 105 110 115 120 125 130 135 140
Time (days)

——T? 1 SPE statistic threshold
SPE Normal operation foulty-free values

(1)00 165 110 11‘5 120 125 150 135 140
Time (days)
Figure 7.3. T? and SPE plots of PCA monitoring the normal operation data set for the NO sensor
Figures 7.4 to 7.8 show the fault detection results for each of the investigated NO sensor types
of faults.
Figure 7.4 shows that the bias fault was discovered 1.25 hours after its incidence (during the
140™ day). With only a few exceptions on the days no. 145, 152, and 159, the SPE statistic correctly

detects the faulty regime, with better results than the T statistic.
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Figure 7.4. T? and SPE plots of PCA detecting the bias type of fault for the NO sensor, with details on
the period next to the fault occurrence moment

The SPE method detected the drift fault in 19 hours and 15 minutes, faster than the Hotelling's
T?method. Figure 7.5 shows that the fault detection with T2 took 35 h and 15 minutes.
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Figure 7.5. T? and SPE plots of PCA detecting the drift type of fault for the NO sensor, with details
on the period next to the fault occurrence moment

Figure 7.6 presents the detection of the wrong gain fault. Moreover, in this fault-type case
again the SPE method also proved to be more accurate. Even though the T? method initially detects
the fault in 1.5 hours, it confirms the fault presence for the entire period of time just after 6.5 hours,
whereas the SPE method firmly recognizes the wrong gain fault for the entire 28-day interval after 2

hours and 45 minutes.
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Figure 7.6. T? and SPE plots of PCA detecting the wrong gain type of fault for the NO sensor, with
details on the period next to the fault occurrence moment

Even though the T2 confirms the loss of accuracy fault presence in 1 hour and 45 minutes while
the SPE acknowledges its presence after 3 hours and 45 minutes, the latter method detects it better
on the next days. i.e., also, for the days no. 141, 143, and 144, as shown in Figure 7.7.
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Figure 7.7. T? and SPE plots of PCA detecting the loss of accuracy type of fault for the NO sensor,
with details on the period next to the fault occurrence moment

The PCA detection of the fixed value fault is shown in Figure 7.8. Both methods were equally

effective and fast in this case, detecting the fixed value fault in 1 hour and 30 minutes.
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Figure 7.8. T? and SPE plots of PCA detecting the fixed value type of fault for the NO sensor, with
details on the period next to the fault occurrence moment

The PCA-based NO sensor fault detection method proved to be highly effective and early in
identifying faults, with the SPE statistic demonstrating superior performance over the T2 method.
7.6.3. Assessment metrics for NO sensor fault diagnosis

For the FDA identification method, a confusion matrix was also developed. The first column in
this matrix displays the normal class (fault-free operation, target 1). The following columns list the
faulty classes (targets) in the order: bias (target 2), drift (target 3), wrong gain (target 4), loss of

accuracy (target 5), and fixed value (target 6). The overall diagnosing accuracy was 97.7%, as
illustrated in Figure 7.9.
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Confusion matrix for the fault diagnosis of NO sensors
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Figure 7.9. Confusion matrix of the fault diagnosis for NO sensors type of faults

7.6.4. Fault diagnosis of the NO sensor type of faults

The g; values that correspond to the normal operation curve, represented with red colour on the
graph, identified the fault-free normal operation. From the starting moment of diagnosing the 24-
hour observation period, each of the g; points of the red curve showed the highest values during the
testing day, indicating normal operation with one single exception. This manifested for one value at
5.5h.

The recall value in this case was 99.9%, and the long-term precision was 96.8%. A balanced
assessment of precision and recall was provided by the computed F1 score of 0.983. In this instance,
the MAR has a low value of 0.1%. The graphical representation of the diagnosis for the normal

operation of the NO sensor is shown in Figure 7.10.
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Figure 7.10. Faulty-free operation diagnosis for the NO sensor: graphs of the FDA discriminant

functions gi(x) for each of the normal and five types of faults; details on the time period of confident
identification
As presented in Figure 7.11, the bias fault type was successfully diagnosed for the following
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time periods: 1h-1.5h, 5h-5.25h, 5.75h, 8.75h-13.75h, and then from 17 h until the end of the day.
The latter value was considered as the confident moment of identification. In this case the MAR was

2%. The F1 score for this classification scenario was 0.983, reflecting a good detection of the fault

type.
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Figure 7.11. Bias diagnosis for the NO sensor: graphs of the FDA discriminant functions g;(x) for
each of the normal and five types of faults; details on the time period of confident identification

The diagnosis of the drift fault was reported at the 5.5 hours point, then between 7.25h-8.25h,
9h-9.5h, 11.75h-14.75h and finally from 18h until the end of the day. After 18 hours, the yellow

curve becomes dominant in comparison with other curves, as seen in Figure 7.12. The F1 score is
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Figure 7.12. Drift diagnosis for the NO sensor: graphs of the FDA discriminant functions g;(x) for
each of the normal and five types of faults; details on the time period of confident identification

0.964 and MAR has a value of 2.4%.

Figure 7.13 displays the wrong gain fault diagnosis. This kind of defect was definitively
identified after 17.75 hours. However, it was also appropriately identified three periods of time,
previous to the confident moment identification, i.e., between 9.75h-11h, 12.25h-12.75h time
intervals and at the time moment of 14.75h. This results in a long-term precision of 100%, with a
value of the recall of 97.0% and a MAR of 3%. The F1 score is 0.985, suggesting a very good

capacity for diagnosing the fault.
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Figure 7.13. Wrong gain diagnosis for the NO sensor: graphs of the FDA discriminant functions g;(x)
for each of the normal and five types of faults; details on the time period of confident identification

Loss of accuracy fault is correctly diagnosed between 12h-13.75h. During the first day of fault
occurrence, the fault was temporarily misidentified either as a fixed value or as a drift fault.
Occasionally, this defect is mistakenly diagnosed as normal functioning or drift. Figure 7.14
illustrates the diagnostic of the fault's loss accuracy type. The long-term precision for this fault was
98.9% and the recall value was 95.4%. Both indices are demonstrating a good proportion of correct
identifications. The F1 score was 0.971 and MAR had a value of 4.6%, reflecting a good capability

to identify the loss of accuracy type of fault.
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Figure 7.14. Loss of accuracy diagnosis for the NO sensor: graphs of the FDA discriminant functions
gi(x) for each of the normal and five types of faults; details on the time period of confident
identification

As presented in Figure 7.15 the fixed value is correctly diagnosed between 2h-5.25h, 10.75h-
12.75h, 14.75h-15h and then, is persistently and rightly diagnosed after the time moment of 15.5h
(confident identification moment). For the instances where this fault was misdiagnosed, the MAR is
1.9%. The F1 score of 0.973 and the long-term precision of 96.5% reflect a strong ability to correctly
identify the fixed value type of fault.
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Figure 7.15. Fixed value diagnosis for the NO sensor: graphs of the FDA discriminant functions

gi(x) for each of the normal and five types of faults; details on the time period of confident
identification

It may be noted that the comparable NO sensor signal values considered in the faulty scenarios
lead to some very close values of the NO process variable. In the end, this resulted in similar g;
values of the discriminant function. Therefore, it was more likely that some faults would be
misdiagnosed in the immediate moment of the fault incidence, as well as in the longer or shorter time
periods that follow.

7.6.5. Performance evaluation during operation with NO sensor faults

Similar to the DO sensor faults investigations, performance indices AE, PE, and EQ were
determined as a daily mean value over the period of 28 days, for both normal and defective operating
cases of the NO sensor (140th day up to the 168th day, the last one being excluded). The AE, PE,
and EQ values for the normal operation and operation with the five types of fault scenarios are
shown in Table 7.1.

Table 7.1. Values of the performance indices for the normal and faulty operation cases of the NO

Total
EQ
. . AE PE energy
Operating regime (kg
(kwWh/day)  (kwWh/day) demand
PU/day)
(kWh/day)

Normal operation 16,992 1,329 18,321 16,852
Bias fault 17,253 1,633 18,886 15,050
Drift fault 17,776 2,320 20,096 14,911

Wrong gain fault 17,496 1,956 19,452 17,108

Loss of accuracy fault 17,752 2,232 19,984 17,186

Fixed value fault 17,848 2,415 20,263 17,198

sensor

All faults negatively influence AE, PE, and overall energy demand, resulting in higher energy

costs for aeration and for pumping the internal recycle flow. Increased pumping occurs as a result of
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the lower NO sensor signal value that drives the NO controller’s manipulated variable to higher
internal recycle flow (nitrate and nitrite flow). Additionally, due to the DO controller's increased
manipulated air flowrate variable, the AE is also increased. Bias and drift faults have a favourable
effect on EQ values, while wrong gain, loss of accuracy and fixed value faults result in lower values
of this performance index.

7.6.6. Energy costs assessment for operation affected by NO sensor faults

The daily cost for each type of faulty operation of the WWTP under consideration in this study
was calculated similarly to the ones computed for the DO sensor faults investigation. Each of the
possible types of energy source or energy production technology, potentially to be used by the AE
and PE of the WWTP, had its daily costs evaluated. Table 7.2 provides a summary of these

evaluations.
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Table 7.2. Source depending sum of AE and PE energy costs computed for normal and fault

Daily operation costs (€)

Source/Technology Normal : . Wrong Loss of Fixed
operation Blas Drift gain accuracy value

Lignite 1,812 1,868 1,987 1,924 1,976 2,004

Coal 1,717 1,770 1,883 1,823 1,873 1,899

CCGT 1,975 2,036 2,166 2,097 2,154 2,184
Nuclear 3,435 3,541 3,768 3,647 3,747 3,799
Onshore wind 1,237 1,275 1,356 1,313 1,349 1,368
Offshore wind 1,566 1,615 1,718 1,663 1,709 1,732
Solar PV commercial 1,479 1,524 1,622 1,570 1,613 1,635
Solar PV residential 2,327 2,399 2,552 2,471 2,538 2,573
Solar thermal (CSP) 2,712 2,795 2,974 2,879 2,958 2,999
Hydro reservoir 1,457 1,501 1,598 1,547 1,589 1,611
Hydro run of river 1,070 1,103 1,174 1,136 1,167 1,183
Geothermal 1,581 1,630 1,734 1,679 1,725 1,749
Biomass 2,120 2,185 2,325 2,251 2,312 2,344

affected operation of the WWTP water line for the NO sensor case

The fixed value fault of the NO sensor is the one that results in the highest energy costs,
according to an analysis of the costs of electrical energy spent by the WWTP during operation in the
presence of the various types of faults. On the other hand, the bias fault implies the lowest energy
cost.

Prior to replacing the defective sensor, the implied energy costs may be reduced by switching
to alternative, less expensive energy sources and implementing a special plan for the use of a mixed
energy source in the event of faulty sensor operation, depending on the availability of technical
solutions.

7.6.7. Environmental assessment of CO, and N,O emissions for operation with NO

sensor faults

Estimates were made of the on-site and off-site CO, and N,O emissions, which are significant
sources of the greenhouse gases emitted by the water line of the WWTP. Their daily average values
were computed when the operation of the WWTP was carried out in the presence of each of the NO

sensor types of faults. The GHG emission results are shown in Table 7.3.
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Table
emissions due
S’eﬁ’;iéf the Site of Process Type of emitted Type of fault _
emissions gas Normal Bias Drift Wrong Loss of Fixed
gain accuracy value
Power €0
generation Pco,of f—site 3,481 3,588 3,818 3,696 3,797 3,850
Off-site Biological (kg CO./day)
omisions P00, o
g P, 0,0f f—site 3.61 3.65 3.50 3.63 3.51 3.47
the WWT ke NoO/d
effluent (kg N;O/day)
CO,,
Water-line Pco, on-site 13,689 13,869 14,175 14,037 14,137 14,207
On-site aerobic (kg CO,/day)
emissions biological N.O,
processes Py, 0,0n—site 10.35 10.34 10.40 10.35 10.40 10.42
(kg N,O/day)
COy,
Pco, total 17,170 17,457 17,993 17,733 17,934 18,057
Total emissions (kg iloél day)
2\Y,
Py, o0,total 13.96 13.99 13.90 13.98 13.91 13.89
(kg N,O/day)
COZey
Total overall emissions Pco,,overall 21,330 21,626 21,135 22,899 22,079 22,196

(kg CO,/day)
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According to the GHG emission values presented in Table 7.3, on-site emissions are the most
substantial, making up almost 80%, respectively 75% of all emissions under typical operating
conditions for Pco, totar @Nd Py,o,torar- FOr all instances of investigated NO sensor faults, the
computed total CO, emissions, that is, the total of on-site and off-site values, showed higher values.
Bias and wrong gain faults showed higher total N,O emission levels than the other faults. The latter
presented slightly lower values. It is important to note that the lowest N,O emissions values were
produced by fixed value fault type, in contrast to the trend in total CO, emissions, where the bias
fault produced the highest emissions.

To determine the overall CO, emissions, the sum of the total CO, and total N,O emissions was
used. According to the findings, the majority of the malfunctions produce more overall CO,
emissions than in the event of normal operation.

The evaluation of CO, and N,O emissions computed for various NO sensor faults offers useful
guantitative data on the scope and ranking of the most problematic sensor types of faults that may

have a significant impact on the long-term operation of the WWTP.

7.7. Conclusions

This study evaluated PCA-based fault detection and FDA-based fault identification for the NO
sensor controlling nitrite/nitrate in an anoxic WWTP reactor. Faults considered included loss of
accuracy, fixed value, drift, bias, and wrong gain, using a calibrated WWTP model with two
primary control loops for DO and NO. PCA detection was fast and accurate (98.2%), with SPE
generally outperforming T2, while FDA achieved 97.7% diagnosis accuracy, with initial detection
times of 1-12h and consolidated diagnosis in 5.5-18h.

Faults affected energy use, effluent quality (EQ), and GHG emissions. Normal operation
consumed 18,321 kWh/day with EQ 16,852 kg PU/day; faults raised energy use by 10.6-20,263
kWh/day. Bias and drift slightly improved EQ but increased energy, while wrong gain, loss of
accuracy, and fixed value faults worsened EQ (>17,000 kg PU/day). GHG emissions were mainly
on-site (~75%), with fixed value faults causing the largest increases (~5%).

The results demonstrate that PCA and FDA methods are effective for NO sensor fault
management, supporting safe, efficient, and sustainable WWTP operation. Findings also provide
guidance for control system design, energy management, environmental impact mitigation,

maintenance, calibration, and intelligent sensor development.
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8. Final conclusions and personal contributions

This research examined DO and NO sensor faults in a municipal WWTP, focusing on early

detection, diagnosis, and their effects on effluent quality, energy use, and GHG emissions. PCA-

based fault detection and FDA-based fault identification proved effective for various fault types,

including bias, drift, wrong gain, loss of accuracy, fixed value, and complete failure. Faults

significantly impacted the EQ index and energy consumption, with complete failure, fixed value,

and loss of accuracy being the most detrimental. Energy-intensive aeration was particularly affected,

and all faults increased total energy use by up to 10.6%. GHG emissions were also strongly

influenced, with certain faults notably worsening the plant’s environmental footprint. The findings

demonstrate the importance of reliable sensors and effective fault management for sustainable,
efficient WWTP operation.

The most significant conclusions summarizing both quantitative and qualitative results

obtained by the present research are the following:

e Fault detection results:

O

The PCA-based model proved highly effective in detecting faults in DO and NO
concentration sensors, achieving an overall accuracy of 99.6% for the DO sensors
and 98.2% for the NO sensors;

Comparing Hotelling’s T2 and SPE statistic indices, the SPE method was faster at
detecting faults, typically identifying them in less than two hours;

Detection times for DO sensor faults ranged from less than one hour (bias,
complete failure) to 5 hours 15 minutes (drift);

Detection times for NO sensor faults ranged from less than 1 hour 15 minutes
(bias) to 19 hours 15 minutes (drift);

e Fault diagnosis results:

O

The FDA-based model demonstrated strong diagnostic performance, accurately
distinguishing between faulty and fault-free operations. It achieved an overall
accuracy of 85.8% for DO sensor faults and 97.7% for NO sensor faults;

For DO sensor faults, FDA identified faults within 2.5 to 16.5 hours;

For NO sensor faults, FDA identified faults in as little as 15 minutes to 1 hour,
with values of the confident identification moment ranging between 15 minutes

and 18 hours;

e Impact on effluent quality (EQ index):

O

For DO sensor faults, the most detrimental scenarios were complete failure
maximum, fixed value, and loss of accuracy, while wrong gain had minimal
impact;

For NO sensor faults, fixed value faults had the worst effect on the EQ index,
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while drift, wrong gain, and loss of accuracy also caused deterioration to varying
degrees;
e Impact on GHG emissions:
o For DO sensor faults, complete failure maximum and fixed value scenarios
resulted in 40 times increase in GHG emissions compared to normal operation;
o For NO sensor faults, on-site sources contributed 75% of total CO. and N2O
emissions, with fixed value faults causing the most severe impact, i.e., increasing

emissions by approximately 5%;

Energy cost implications:

o The complete failure minimum type of fault of the DO sensor led to the highest

energy costs due to the induced excessive aeration;

o For the NO sensor faults, fixed value faults resulted in the highest energy costs

among all fault types.

Future work may focus on improving the detection and identification of multiple
simultaneous sensor faults in wastewater treatment plants. This could involve developing more
advanced diagnostic models to enhance accuracy and reliability. Machine learning techniques,
such as deep learning, may help automate fault detection and improve response times.

Real-time monitoring could also be improved with adaptive control strategies and self-
correcting algorithms that adjust detection thresholds based on system data. Integrating advanced
fault detection into SCADA system of the municipal WWTP could streamline operations and
reduce costs.

By exploring these areas, future research can help make wastewater treatment systems more
efficient, reliable, and environmentally friendly, ensuring better water quality and lower energy

consumption.
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