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Introduction

Numerous mathematical models that describe real-world processes are formulated

through equations and differential systems. These usually include a set of parame-

ters, some of which are fixed, while others are associated with the variable quantities

in the model and can be adjusted to achieve a certain objective, defined by a con-

trollability condition.

Parameter modification is mathematically realized by introducing control param-

eters, whose expressions can, in many cases, be expressed as a function of the state

variables. Once incorporated into the model equations, these lead to functional-

differential equations, whose study can be reduced to the analysis of fixed point

problems. Thus, the fixed point method becomes a fundamental tool in control

problems. The application of this method varies depending on the specifics of each

problem, as detailed in J. M. Coron’s monograph [7].

In this thesis, we study control problems related to Kolmogorov type differential

systems. The classical Kolmogorov system is of the form:{
x′ = xf (x, y)

y′ = yg (x, y)
(1)

and represents the mathematical model of population dynamics where f(x, y) and

g(x, y) represent the per capita rates of the two populations. The most well-known

example of such systems is the Lotka-Volterra system:x′ = αx− βxy

y′ = δxy − γy.
(2)

In addition to first-order Kolmogorov systems, the thesis also defines and ana-

lyzes second-order Kolmogorov type systems of the form:
(
x′

x

)′
= f(x, y)(

y′

y

)′
= g(x, y).

(3)

In the language of population dynamics, f(x, y) describes the change in per capita
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rate, and g(x, y) expresses the change in per capita rate y′

y
.

Regarding these systems, several control problems are formulated, where the

control parameters can be real numerical values, vectors, or time functions. Also,

these parameters can be either additive or multiplicative quantities that modify

the growth rates, or terms that appear directly in the nonlinear structure of the

equations.

The method used throughout the thesis is the fixed point method, which consists

of reducing the control problem to a fixed point equation. For this purpose, various

results from fixed point theory are applied, including Banach’s contraction principle,

Perov’s vectorial fixed point theorem, as well as Schauder’s, Krasnoselskii’s, and

Avramescu’s fixed point theorems. In the case of multivalued problems, we use

Nadler’s and Bohnenblust-Karlin’s fixed point theorems. The thesis is structured

into six chapters, each containing several sections and subsections. In the following,

we will detail the results obtained in each chapter.

Chapter 1: Preliminaries

Chapter 1 is dedicated to the essential preliminary concepts and fundamental

results that are used throughout the thesis. In Section 1.1, we introduce the notion

of a general control problem. Section 1.2 refers to the general form of the first-order

Kolmogorov system, where, by analogy, the form of the second-order Kolmogorov

system is also deduced. In Section 1.3, the definition of a zero-convergent matrix

is given, and the properties of such matrices are mentioned. We continue with

Section 1.4, where we present the notion of the Pompeiu-Hausdorff metric. The last

three sections present the necessary results used throughout the thesis, namely, the

fixed-point theorems used, the Bielecki type norm, and the Arzelà-Ascoli theorem.

Chapter 2: Control problems for Kolmogorov type systems

In Chapter 2, we study three Kolmogorov type control problems, each with

specific initial and controllability conditions. In Section 2.1, a Kolmogorov system

is analyzed in which both populations are influenced by the same control parameter.

The problem consists of finding a solution such that the ratio between the two

populations follows a desired evolution. By applying Banach’s fixed-point theorem

together with Bielecki type norms and imposing sufficient conditions, we obtain the

existence (and uniqueness) of a solution, both on the entire space and in a ball.

The second section is dedicated to the study of a system in which the control

influences the per capita rate of one of the two populations, with the objective of

reaching a predetermined threshold within a fixed time interval. The existence of

the solution is demonstrated by applying Schauder’s fixed-point theorem.
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In the third section, we apply Banach’s fixed-point theorem to demonstrate the

existence of a solution to a control problem where the per capita rate is modified

only for one of the two populations, with the objective of reaching a predetermined

level of the total population at the final time.

Finally, Section 2.4 presents three examples of Kolmogorov systems applied in bi-

ology, illustrating the usefulness of the theoretical results obtained. These examples

include models from population dynamics and epidemiology.

Our contributions in this chapter are as follows: In Section 2.1: Theorem 2.1

and Theorem 2.2. In Section 2.2: Theorem 2.3. In Section 2.3: Theorem 2.4. In the

last Section 2.4: Example 1, Example 2 and Example 3.

All these results were included in the work of A. Hofman and R. Precup [13].

Chapter 3: Vectorial approach through fixed-point methods for control prob-

lems of Kolmogorov differential systems

In this chapter, we analyze three Kolmogorov type control problems with initial

conditions. The method used is correlated with the type of system considered,

providing an approach tailored to each case. The method used is the vectorial one,

which allows the use of more precise constants, eliminating the dependence on the

type of norm used.

The system analyzed in Section 3.1 imposes a control over each per capita rate

of the two populations. The existence of the solution is demonstrated by applying

Perov’s theorem, under the hypothesis of Lipschitz type conditions, and Schauder’s

theorem, by imposing logarithmic growth conditions.

In Section 3.2, we study a control problem involving changes in growth rates.

The solution is guaranteed by Perov’s fixed point theorem.

Section 3.3 combines the two problems analyzed in the previous sections, consid-

ering a system in which, for one population, control is applied to the growth rate,

while for the other population, it is imposed on the per capita rate.

Finally, Section 3.4 presents four applications of the results obtained in the pre-

vious three sections. These applications illustrate the usefulness of the proposed

method and validate the applicability of fixed point theorems in diverse contexts.

Our contributions in this chapter are presented below. In Section 3.1: Theorem

3.1, Theorem 3.2. In Section 3.2: Theorem 3.3. In Section 3.3: Theorem 3.4, Remark

3.1. In the last Section 3.4: Example 1, Example 2, Example 3 and Example 4.

All these results are original and have been included in the work of A. Hofman

and R. Precup [15].
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Chapter 4: Control problems for second-order Kolmogorov differential equa-

tions and systems

In Chapter 4, we present second-order Kolmogorov differential equations and

systems. We investigate several control problems with fixed finite time T and fixed

final state xT , with additive or multiplicative control. The controllability of these

problems is demonstrated by applying fixed-point techniques, the theorems of Ba-

nach, Schauder, Krasnoselskii, Avramescu and Perov.

In Section 4.1, we study problems with additive control related to second-order

Kolmogorov equations. By imposing a Lipschitz condition and using Banach’s fixed-

point theorem, we demonstrate the existence and uniqueness of the solution. We

observe that if the Lipschitz conditions are relaxed and replaced by logarithmic

growth conditions, then using Schauder’s fixed-point theorem, it is obtained that

the control problem has at least one solution.

The last result in this section combines the first two previous results and is based

on Krasnoselskii’s fixed-point theorem for a sum of two operators.

We then continue with problems with multiplicative control, where we use

Banach’s contraction principle to demonstrate controllability.

In Section 4.2, we focus on control problems for a second-order Kolmogorov

system. The first result guarantees the existence and uniqueness of the solution using

Perov’s fixed-point theorem. Subsequently, an existence result is obtained based on

the application of Schauder’s fixed-point theorem. At the end of this chapter, we

present an application to the control problem of Avramescu’s fixed-point theorem.

Our contributions in this chapter are as follows. In Section 4.1: Theorem 4.1,

Remark 4.1, Theorem 4.2, Remark 4.2, Theorem 4.3, Theorem 4.4. In Section 4.2:

Theorem 4.5, Theorem 4.6, Theorem 4.7.

All these results are original and have been included in the work of A. Hofman

and R. Precup [14].

Chapter 5: Fixed point methods with multi-valued operators for control prob-

lems

In Chapter 5, we focus on applying fixed point methods with multivalued oper-

ators in solving a control problem for first-order Kolmogorov type equations. Here,

the controllability condition is expressed as an inclusion, and to demonstrate the

existence of solutions, fixed point theorems for multivalued operators are used, such

as Nadler’s theorem, the Bohnenblust-Karlin theorem and the multivalued version

of Krasnoselskii’s theorem.

Section 5.1 is dedicated to solving the control problem by applying Nadler’s fixed

point theorem in a ball of a given radius of the space C [0, T ]. In Section 5.2, we
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solve the control problem using Bohnenblust-Karlin’s fixed point theorem, under the

assumption of logarithmic growth conditions. In the last section, representing the

fixed point operator as the sum of two operators, we obtain a solution by applying

the multivalued version of Krasnoselskii’s theorem.

Our contributions in this chapter are as follows. In Section 5.1: Lemma 5.1,

Theorem 5.1. In Section 5.2: Theorem 5.2, Lemma 5.2. In Section 5.3: Theorem

5.3.

All the results are original and have been included in the work A. Hofman [12].

Chapter 6: Algorithms for solving control problems related to Kolmogorov

systems

This chapter is dedicated to the development and analysis of theoretical algo-

rithms for solving control problems associated with Kolmogorov type systems, both

first-order and second-order. The proposed algorithms are based on the method of

sub and super solutions, which allows constructing a sequence of approximate solu-

tions that, under certain conditions, converges to the exact solution of the control

problem.

In the two sections of the chapter, we establish sufficient conditions for the al-

gorithm to be convergent. These conditions help to determine a unique solution

depending on the control condition, using Perov’s fixed point theorem, along with

other relevant results. Also, in Section 6.2, an algorithm for obtaining an approxi-

mate solution to the problem is presented.

Our contributions in this chapter are as follows: Lemma 6.1, Lemma 6.2, Theo-

rem 6.1, Theorem 6.2, Theorem 6.3, Theorem 6.4, Theorem 6.5.

All results are original and have been included in the works A. Hofman [10,11].
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tems. Studia Universitatis Babeş-Bolyai Mathematica., 68(2):331–340, 2023,

https://doi.org/10.24193/subbmath.2023.2.09.

3. A. Hofman, R. Precup. Vector fixed point approach to control of Kolmogorov

differential systems. Contemporary Mathematics., 5:1968–1981, 2024,

https://doi.org/10.37256/cm.5220242840.

4. A. Hofman, R. Precup. Control problems for Kolmogorov type second order

7

https://www.aimspress.com/article/doi/10.3934/mmc.2022011
https://doi.org/10.24193/subbmath.2023.2.09
https://doi.org/10.37256/cm.5220242840


Contents

equations and systems. Journal of Fixed Point Theory and Applications.,

27(1):1–18, 2024, https://link.springer.com/article/10.1007/s11784

-024-01160-5.

5. A. Hofman. Fixed point methods with multi-valued operators for control prob-

lems. Discussiones Mathematicae. Differential Inclusions, Control and Opti-

mization., 44(2):153–165, 2024, https://doi.org/10.7151/dmdico.1250.

6. A. Hofman. Upper and lower solution method for control of second-order Kol-

mogorov type systems. Journal of Numerical Analysis and Approximation

Theory., 2025, accepted.

8

https://link.springer.com/article/10.1007/s11784-024-01160-5
https://link.springer.com/article/10.1007/s11784-024-01160-5
https://doi.org/10.7151/dmdico.1250


Chapter 1

Preliminaries

In the opening chapter of the thesis, we establish the fundamental concepts and

results that underlie our research. In this chapter, we present several well-known

notions and results, including the general control problem, Kolmogorov type sys-

tems, the concept of a matrix convergent to zero, the notion of Pompeiu-Hausdorff

metric, Bielecki-type norms and various fixed point theorems, the Arzelà-Ascoli the-

orem.

The concepts discussed here are well documented in the literature. Some of the

notable references include works by C. Avramescu [2], V. Barbu [4], J. M. Coron

[7], A. Granas and J. Dugundji [9], R. I. Petru [25], R. Precup [28,29], L. C. Evans

[8].

1.1 General control problem

The control of differential equations is the subject of numerous studies in the litera-

ture. Generally speaking, it consists in determining some parameters of the equation

or system of equations such that the solution satisfies certain conditions, other than

those imposed by the well-posedness of the problems, such as initial or boundary

conditions (see V. Barbu [4]).

In the work I. Ş. Haplea, L. G. Parajdi and R. Precup [16] introduced a control-

lability principle for a general control problem related to operator equations, within

the framework of fixed point theory. The general control problem consists in finding

the pair (w, λ) , a solution of the following system{
w = H0 (w, λ) ,

w ∈ W, λ ∈ Λ, (w, λ) ∈ D,
(1.1)

associated with the fixed point equation w = H0 (w, λ) . In this case, w represents

the state variable, λ is the control variable, W is the state domain, Λ is the control
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1.1. General control problem

domain and D is the controllability domain, usually given by a certain condition or

property imposed on w, or both w and λ. Note the very general form of the control

problem, in terms of sets, whereW,Λ and D ⊂ W ×Λ are not necessarily structured

sets and H0 is any function from the set W × Λ ı̂n W.

In this context, we say that the equation w = H0 (w, λ) is controllable in the

set W × Λ with respect to D, if problem (1.1) admits solutions. If the solution is

unique, we say that the equation is uniquely controllable.

Let Σ be the set of all possible solutions of the fixed point equation and let Σ1

be the set of those w that are the first components of the solutions of the fixed point

equation, i.e.,

Σ = {(w, λ) ∈ W × Λ : w = H0 (w, λ)} ,

Σ1 = {w ∈ W : there is ∃ λ ∈ Λ with (w, λ) ∈ Σ} .

Clearly, the set of all solutions of the control problem (1.1) is given by Σ ∩ D.
Consider the set-valued map F0 : Σ1 → Λ defined as

F0 (w) = {λ ∈ Λ : (w, λ) ∈ Σ ∩ D} .

Roughly speaking, F0 gives the ‘expression’ of the control variable in terms of the

state variable.

We have the following general principle for solving the control problem (1.1).

Proposition 1. If for some extension F : W → Λ of F0 from Σ1 to W, there exists

a fixed point w ∈ W of the set-valued map

H (w) := H0 (w,F (w)) ,

i.e.,

w = H0 (w, λ) , (1.2)

for some λ ∈ F (w) , then the couple (w, λ) is a solution of the control problem

(1.1).

Proof. Clearly (w, λ) ∈ Σ. Hence w ∈ Σ1 and so F (w) = F0 (w) . Then λ ∈ F0 (w)

and from the definition of F0, it follows that (w, λ) ∈ D. Therefore (w, λ) solves

(1.1).

The applicability of this general principle was tested in the work of I. Ş. Haplea,

L. G. Parajdi and R. Precup [16] on a system that models cellular dynamics in the

context of leukemia, as well as in R. Precup [30], where a control problem for the

Lotka-Volterra predator-prey system is addressed.

10



1.2. Kolmogorov type systems

1.2 Kolmogorov type systems

The Kolmogorov system was introduced as a generalization of the mathematical

model given by the mathematician Volterra in population dynamics (K. Sigmund

[33]). It takes into account general per capita rates of two interacting populations

and looks as follows: {
x′ = xf (x, y) ,

y′ = yg (x, y) .
(1.3)

Naturally, when studying the interaction between two species, the two rates f and g

depend explicitly on a series of parameters. Some of these parameters are specific to

the two species and do not undergo changes, others can be influenced, even added,

in order to control the evolution and achieve a desired equilibrium.

By changing the variables x = eu and y = ev, the system (1.3) is transformed

into the normal form u′ = f (eu, ev)

v′ = g (eu, ev) .

In this chapter, by a first-order Kolmogorov equation we mean an equation of the

form x′ = xf(t, x). As before, the change of variable x = eu leads to u′ = f (t, eu) .

By analogy, we say that a second-order equation is a second-order Kolmogorov

equation if it has the form: (
x′

x

)′

= f(t, x),

equivalently

x′′ − 1

x
x′

2

= xf(t, x).

In this case, in the language of population dynamics, f(t, x) expresses the change

in the per capita rate x′

x
. More generally, we call Kolmogorov equations of order n,

the equations of the form (
x′

x

)(n−1)

= f(t, x).

All these equations have the property that by changing the variable x = eu, they

become respectively

u′′ = f (t, eu)

and

u(n) = f (t, eu) .

11



1.3. Matrices converging to zero

1.3 Matrices converging to zero

Matrices converging to zero are important in the study of systems of equations. For

example, they take over the role of contraction constants in the vectorial version of

Banach’s fixed-point theorem, due to Perov.

Definition 2. A square matrix with non-negative elements M ∈ Mn×n (R+) is said

to converge to zero if

Mk → 0n as k → ∞,

where On represents the zero matrix of order n.

The following statements are equivalent (A. Berman and R. J. Plemmons [5]):

(a) M converges to zero;

(b) ρ (M) < 1;

(c) I −M is non-singular and (I −M)−1 = I +M +M2 + ...;

(d) I−M is non-singular and its inverse (I−M)−1 is also with non-negative values

(where I represents the identity matrix of the same dimension).

We mention that a square matrix of order two

M =

[
a b

c d

]

with non-negative values is convergent to zero if and only if

tr M < min {2, 1 + detM} , (1.4)

meaning

a+ d < 2 şi a+ d < 1 + ad− bc. (1.5)

Note that if M is convergent to zero, then a < 1 and d < 1.

1.4 The notion of Pompeiu-Hausdorff metric

If A and B are two subsets of a metric space (X, d) and a ∈ A, b ∈ B, then define:

D(a,B) = inf
b∈B

d(a, b), ρ(A,B) = sup
a∈A

D(a,B),

D(b, A) = inf
a∈A

d(a, b), ρ(B,A) = sup
b∈B

D(b, A),

12



1.5. Fixed point theorems

and the Pompeiu-Hausdorff metric is defined by

H(A,B) = max{ρ(A,B), ρ(B,A)}.

We denote by Pb,cl(X) the set of all nonempty, bounded and closed subsets of

X and by Pb,cl,cv(X) the set of all nonempty, bounded, closed and convex subsets of

X.

1.5 Fixed point theorems

Definition 3. Let (X, d) be a metric space. A mapping T : X → X is called a

contraction on X, if there exists q ∈ [0, 1) such that for all x, y ∈ X we have

d(T (x), T (y)) ≤ qd(x, y).

Definition 4. Let T : X → X. A point x ∈ X is called a fixed point of T if T (x) = x

Theorem 1.1 (Banach). Let (X, d) be a complete metric space and T : X → X

o contracţie. be a contraction. Then T admits a unique fixed point x∗ ∈ X (i.e.

T (x∗) = x∗). Moreover, x∗ can be obtained by the method of successive approxima-

tions starting from an arbitrary element x0 ∈ X, as the limit of the sequence xn

defined recursively by xn = T (xn−1), i.e. xn → x∗.

Theorem 1.2 (Schauder). Let X be a Banach space, D ⊂ X a nonempty closed,

convex, bounded set and N : D → D a compact operator (i.e., continuous, with

N(D) relatively compact). Then, N has at least one fixed point in D.

Theorem 1.3 (Krasnoselskii). Let D be a closed bounded convex subset of a Banach

space X, A : D → X a contraction and B : D → X a continuous mapping with

B (D) relatively compact. If

A (x) +B (y) ∈ D for every x, y ∈ D,

then the mapping A+B has at least one fixed point.

Theorem 1.4 (Avramescu). Let (D1, d) be a complete metric space, D2 a closed

convex subset of a normed space Y, and let Ni : D1×D2 → Di, i = 1, 2 be continuous

mappings. Assume that the following conditions are satisfied:

(a) There is a constant L ∈ [0, 1) such that

d (N1 (x, y) , N1 (x, y)) ≤ Ld (x, x)

for all x, x ∈ D1 and y ∈ D2;

13



1.6. Bielecki type norms

(b) N2 (D1 ×D2) is a relatively compact subset of Y.

Then there exists (x, y) ∈ D1 ×D2 with

N1 (x, y) = x, N2 (x, y) = y.

Theorem 1.5 (Perov). Let (X, ∥·∥) be a Banach space, D a closed subset of X×X
and N : D → D, N = (N1, N2) , Ni : D → X (i = 1, 2) be an operator with the

following property: [
∥N1 (x)−N1 (y)∥
∥N2 (x)−N2 (y)∥

]
≤M

[
∥x1 − y1∥
∥x2 − y2∥

]

for all x = (x1, x2) , y = (y1, y2) ∈ D, where M is a convergent to zero matrix of

size two. Then N has a unique fixed point in D which is the limit of the sequence(
Nk (x)

)
k≥1

of successive approximations starting from any x ∈ D.

We will conclude this section by recalling two fixed point theorems for multival-

ued mappings and with a multivalued version Krasnoselskii’s fixed point theorem

for a sum of two operators, a particular case of a more general result obtained by

R. I. Petru [25].

Theorem 1.6 (Nadler). Let (X, d) be a complete metric space, and N : X →
Pb,cl(X) such that

H(N(x), N(y)) ≤ Ld(x, y),

for all x, y ∈ X, where L < 1. Then there is x∗ ∈ X with x∗ ∈ N(x∗).

Theorem 1.7 (Bohnenblust-Karlin). Let X be a Banach space, D a convex, closed

and bounded subset of X and let N : D → Pb,cl,cv(X) be upper semicontinuous with

N(D) relatively compact. Then there is at least one fixed point x ∈ D for N, i.e.,

x ∈ N(x).

Theorem 1.8. Let (X, || · ||) be a Banach space and D ∈ Pb,cl,cv(X). Assume that

N1 : D → X and N2 : D → Pb,cl,cv(X) satisfy :

(i) N1 is a contraction.

(ii) N2 is lower semicontinous with N2(D) relatively compact.

(iii) N1(u) +N2(u) ⊂ D for all u, u ∈ D.

Then N1 +N2 has at least one fixed point in D.

1.6 Bielecki type norms

This section is devoted to a brief presentation of some notions and results that will

be used in the next section. It is intended for those less familiar with the theoretical
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1.6. Bielecki type norms

framework in which we place ourselves.

We say that an integral equation is of Volterra type if the involved integral is on

a variable interval as is the case of an equation of the form

x (t) = φ (t) +

∫ t

a

ψ (t, s, x (s)) ds, t ∈ [a, b] (1.6)

and that it is of Fredholm type if the involved integral is given on a fixed interval,

as in the equation

x (t) = φ (t) +

∫ b

a

ψ (t, s, x (s)) ds, t ∈ [a, b] .

In case that the equation involves both types of integral, we say that it is of Volterra-

Fredholm type.

When dealing with Volterra type equations it is convenient that instead of the

max-norm on the space C [a, b] given by ∥x∥ = maxt∈[a,b] |x (t)| , to consider an

equivalent norm defined by

∥x∥θ = max
t∈[a,b]

(
|x (t)| e−θ(t−a)

)
,

for some suitable number θ > 0. Such a norm is called a Bielecki norm and it is

equivalent to the max-norm, as follows from the inequalities

e−θ(b−a) ∥x∥ ≤ ∥x∥θ ≤ ∥x∥ (x ∈ C [a, b]) .

The utility of Bielecki norms lies in the possibility that, by choosing a sufficiently

large value of θ, the Lipschitz or growth constants can be made arbitrarily small.
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1.7 Arzelà-Ascoli Theorem

Theorem 1.9. A subset M ⊂ C[a, b] is relatively compact if and only if:

(a): The set M is uniformly bounded, meaning there exists a constant C > 0 such

that for any f ∈M, we have

sup
x∈[a,b]

|f(x)| ≤ C.

(b): The set M is equicontinuous, meaning for any ε > 0, there exists δ > 0 such

that

sup
f∈M

|f(x)− f(y)| ≤ ε, for any x, y ∈ [a, b] with |x− y| ≤ δ.

Based on the Arzelà-Ascoli theorem and the properties of differentiable functions,

the following result holds:

Theorem 1.10. Let M ⊂ C1[a, b] and denote M ′ = {f ′ : f ∈ M}. Then the

following statements are equivalent:

1. The set M is relatively compact in (C[a, b], ∥ · ∥∞);

2. The sets M and M ′ are uniformly bounded.

16



Chapter 2

Control problems for Kolmogorov

type systems

This chapter is structured into three parts. Section 2.1 deals with a first control

problem that we address using Banach’s fixed-point theorem, which guarantees the

existence and uniqueness of the solution. For this, the Lipschitz condition is imposed

on the nonlinear terms, and Bielecki type norms are used, which do not require the

Lipschitz constants to be subject to restrictions. Furthermore, in Section 2.2,

the conditions that ensure controllability are weakened, via Schauder’s fixed-point

theorem, in the case of a control independent of t.

In Section 2.3, a third control problem is presented in which the control af-

fects the general growth rate, and in Section 2.4, we presented three examples of

Kolmogorov type systems that intervene in biology.

The results in this chapter were published in the works of A. Hofman and R.

Precup [13].

2.1 First control problem

Let us consider the following control problem for the general Kolmogorov system

under initial conditions 
x′(t) = x(t) (f(x, y)− λ(t)) ,

y′(t) = y(t) (g(x, y)− cλ(t)) ,

x(0) = x0, y(0) = y0,

(2.1)
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2.2. Second control problem

where λ(t) is the control function and c is a positive correction factor, c ̸= 1. We

want to find a positive solution (x, y) so that

y(t)

x(t)
= r(t), (2.2)

where r is a given positive continuous function on some interval [0, T ] .

Thus the problem consists in finding how to change the per capita growth rates

for the ratio of the two species to follow a desired evolution giving by r (t) on a fixed

time interval [0, T ] . The correction factor c expresses the fact that the effect of the

control intervention on the two rates is manifested differently in the two species.

We have the following result.

Theorem 2.1. Assume that f, g ∈ C1
(
R2

+

)
, r ∈ C1 [0, T ] , r > 0 on [0, T ] and that

the functions

x · fx(x, y), y · fy(x, y), x · gx(x, y), y · gy(x, y) (2.3)

are bounded on R2
+. Then the control problem (2.1)-(2.2) has a unique solution

(x, y, λ) with x, y > 0.

If the hypothesis on the boundedness of functions (2.3) is removed, we however

have the following result.

Theorem 2.2. Assume that f, g ∈ C1
(
R2

+

)
, r ∈ C1 [0, T ] , r > 0 on [0, T ] and

that the function

− c

1− c
f (x, y) +

1

1− c
g (x, y) (2.4)

is bounded above on R2
+. Then the control problem (2.1)-(2.2) has a unique solution

(x, y, λ) with x, y > 0.

2.2 Second control problem

We consider the problem of controllability of the Kolmogorov system
x′(t) = x(t)[f(x, y)− λ],

y′(t) = y(t) · g(x, y),

x(0) = x0, y(0) = y0,

(2.5)

where λ is a constant. We want to find a solution so that x(T ) = x1

Thus the problem is to change constantly the per capita rate of only one of the

two populations for it to reach a desired threshold in a given time.
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Theorem 2.3. Let f, g ∈ C
(
R2

+

)
.

(a) If f and g are bounded on R2
+, then for every T > 0, the control problem has a

solution (x, y, λ) with x, y > 0.

(b) If x0, y0, x1 ≥ 1, then for each ρ0 > max {x0, x1, y0} , there exists Tρ0 > 0 such

that for any T ∈ (0, Tρ0 ], the control problem has a solution (x, y, λ) with

0 < x, y ≤ ρ0.

2.3 Third control problem

The problem consists in changing the growth rate (not the per capita rate) of one of

the two populations so that at time T, the total population reaches a desired level

γ. More exactly we consider the problem
x′(t) = x(t)f(x(t), y(t))− λ,

y′(t) = y(t)g(x(t), y(t)),

x(0) = x0, y(0) = y0,

x(T ) + y(T ) = γ.

(2.6)

Theorem 2.4. Let ρ > max {|x0| , |y0| , |y0 − γ|} ; f, g ∈ C1
(
[−ρ, ρ]2

)
; Mρ a bound

of |xf(x, y)| , |yg(x, y)| on [−ρ, ρ]2 and Mρ a bound of the absolute value of the

partial derivatives of the functions xf (x, y) , yg (x, y) on [−ρ, ρ]2 . If T is such that

T ≤ ρ−max {|x0| , |y0 − γ|}
2Mρ

, T ≤ ρ− |y0|
Mρ

, T <
1

3Mρ

, (2.7)

then the control problem has a unique solution (x, y, λ) with |x| , |y| ≤ ρ.

2.4 Applications

Example 1

This example refers to Theorem 2.2. Specifically, we consider the following
x′ =

(
a

1 + x2 + y2
− λ(t)

)
x,

y′ =

(
b

1 + x2 + y2
− λ(t)c

)
y,

under the control condition (2.2). Here we have

f(x, y) =
a

1 + x2 + y2
, g(x, y) =

b

1 + x2 + y2
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and the functions (2.3) are

x · fx(x, y) = − 2ax2

(1 + x2 + y2)2
,

y · fy(x, y) = − 2ay2

(1 + x2 + y2)2
,

x · gx(x, y) = − 2bx2

(1 + x2 + y2)2
,

y · gy(x, y) = − 2by2

(1 + x2 + y2)2
.

Evidently, their absolute values are bounded on R2
+ by 2 |a| and 2 |b| , respectively.

From Theorem 2.2, it follows that the system is uniquely controllable. The

expression of the control function λ (t) is given by the formula

λ(t) =
r′(t)

(1− c)r(t)
+

1

1− c

(
f(eu(t), ev(t))− g(eu(t), ev(t))

)
(2.8)

in terms of the state variables.

Example 2

The following example illustrates Theorem 2.2. The differential system repre-

sents a mathematical model of cellular dynamics in hematology, considered in the

work [21].

More specifically, we consider the control problem
x′ =

(
a

(
1− gx+ y

A

)
− λ(t)

)
x,

y′ =

(
b

(
1− x+ y

B

)
− cλ(t)

)
y,

where 0 < a < b, 0 < c < 1, g ≥ 1 and A,B > 0, again under the control condition

(2.2) which expresses the desired evolution of the ratio between the density y (t)

of leukemic cells and the density x (t) of healthy cells over a period of time. The

problem is motivated by the need to develop a treatment scheme for patients with

chronic leukemia.

In this case, we have

f(x, y) = a

(
1− gx+ y

A

)
, g(x, y) = b

(
1− x+ y

B

)
,

for which, evidently, the boundedness condition of the functions (2.3) does not hold.
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2.4. Applications

Change the function,

−cf(x, y) + g(x, y) = b− ac−
(
b

B
− acg

A

)
x−

(
ac

A
− b

B

)
y,

is upper bounded on R2
+ by b− ac if

acg

A
≤ b

B
. (2.9)

Thus, according to Theorem 2.2, if condition (2.9) is met, then the system is con-

trollable. The numerical solution of the problem leads to an approximation of the

control function λ(t) that can be related to the drug dosage required to achieve the

desired patient evolution.

Example 3

We conclude this section of applications with the following example where we

consider the well-known SIR epidemiological model
S ′ = −aSI,
I ′ = aSI − bI,

R′ = bI.

Here S(t), I (t) and R (t) represent the number of susceptible, infected, and recov-

ered/immunized individuals at time t, respectively, in a closed population of size

N. Therefore, S(t) + I(t) + R(t) = N, which allows reducing the study to a two-

dimensional Kolmogorov system{
S ′ = −aSI,
I ′ = aSI − bI.

Let S0, I0 and R0 = N − (S0 + I0) be the initial values of the three functions.

Introducing a constant vaccination rate λ, the system becomes{
S ′ = −aSI − λ,

I ′ = aSI − bI.

The control problem consists in finding the vaccination rate λ such that at time T,

the immunized population R(T ) reaches a certain fraction pN of the total population

N , with the desired value p ∈ (0, 1). The condition for controllability will be

S (T ) + I (T ) = (1− p)N.
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The problem is a particular case of the general control problem (2.6). Here ρ = N,

γ = (1− p)N, x = S, y = I, f (S, I) = −aI and g (S, I) = aS − b. Through simple

calculations, we have MN = MN = aN + b. Thus, Theorem 2.4 guarantees that

the system is uniquely controllable in time T if T is sufficiently small in the sense

of inequalities (2.7). However, if an upper bound λ for the vaccination rate λ is

imposed, then a lower bound for T is also necessary. Indeed, from

λ =
1

T
(x0 + y0 − γ) +

1

T

∫ T

0

(x (s) f (x (s) , y (s)) + y (s) g (x (s) , y (s))) ds, (2.10)

since I ≤ N, we have

λ ≥ λ =
1

T
(S0 + I0 − (1− p)N) +

1

T

∫ T

0

(−aSI + (aS − b) I) ds

=
1

T
(S0 + I0 − (1− p)N)− b

T

∫ T

0

Ids ≥ 1

T
(S0 + I0 − (1− p)N)− bN

=
1

T
(pN −R0)− bN,

from which

T ≥ pN −R0

bN + λ
.
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Chapter 3

Vector fixed point approach to

control of Kolmogorov differential

systems

In this chapter, we will use the vector method for control problems related to sys-

tems of equations. The method is described for the case of Kolmogorov systems

that frequently arise in population dynamics. Three types of problems are consid-

ered: problems with control of both per capita growth rates, problems with control

parameters acting on growth rates, and problems that combine the first two types.

Controllability is obtained using a vector approach based on Perov’s fixed point

theorem and matrices that converge to zero.

This chapter is divided into four sections. In Section 3.1, we deal with a first

control problem where both controls act on per capita rates. In Section 3.2, the

control is applied to growth rates and not to per capita rates, while in Section 3.3,

the control acts on a single equation. Finally, in Section 3.4, we provide some

examples that use the theorems presented in the three sections, concluding on the

existence and uniqueness of solutions.

The results in this chapter were published in the work A. Hofman and R. Precup

[15].

In the following we use the following numbers involving the initial and final

values:

C1 := |lnx0|+
∣∣∣∣ln x0xT

∣∣∣∣ , C2 := |ln y0|+
∣∣∣∣ln y0yT

∣∣∣∣ . (3.1)
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3.1 First control problem

We consider the control problemx′(t) = x(t) (f(x(t), y(t))− λ)

y′(t) = y(t) (g(x(t), y(t))− µ) .
(3.2)

With the assumption that the states x, y are bounded, the first result obtained

guarantees that the system can be controlled uniquely. Here, the per capita rates of

both populations are modified.

Theorem 3.1. Let ρ > 0 be such that ln ρ > C1, ln ρ > C2, and let f, g : [0, ρ]2 → R
be bounded by a constant C > 0. Assume that f and g satisfy the Lipschitz conditions

|f(x, y)− f(x̄, ȳ)| ≤ a11 |x− x̄|+ a12|y − ȳ|, (3.3)

|g(x, y)− g(x̄, ȳ)| ≤ a21 |x− x̄|+ a22|y − ȳ| (3.4)

for all x, y, x̄, ȳ ∈ [0, ρ]. Then, for each

0 < T ≤ min

{
ln ρ− C1

C
,
ln ρ− C2

C

}
(3.5)

for which the matrix

M := ρT [aij]1≤i,j≤2 (3.6)

converges to zero, the control problem (3.2) has a unique solution (x∗, y∗, λ∗, µ∗) with

x∗, y∗ positive and ∥x∗∥∞ ≤ ρ, ∥y∗∥∞ ≤ ρ.

For the next result instead of the Lipschitz conditions on f and g, we assume a

logarithmic growth.

Theorem 3.2. Let f, g : R2
+ → R be continuous and satisfy logarithmic growth

conditions

|f(x, y)| ≤ a11 |lnx|+ a12 |ln y|+ b1, (3.7)

|g(x, y)| ≤ a21 |lnx|+ a22 |ln y|+ b2,

for all x, y ∈ (0,∞) and some constants aij, bi ∈ R+ (i, j = 1, 2) . Then for each

T > 0 for which the matrix

M = T [aij]

converges to zero, the control problem (3.2) has at least one solution (x∗, y∗, λ∗, µ∗)

with x∗ > 0 and y∗ > 0.

24



3.2. Second control problem

3.2 Second control problem

We consider now the control problemx′(t) = x(t)f(x(t), y(t))− λ

y′(t) = y(t)g(x(t), y(t))− µ,
(3.8)

when the control parameters act on the growth rates.

Theorem 3.3. Assume that the functions f, g : R2 → R satisfy the following con-

ditions:

|xf(x, y)− xf(x, y)| ≤ a11|x− x|+ a12|y − y|,

|yg(x, y)− yg(x, y)| ≤ a21 |x− x|+ a22|y − y|,

for all x, y, x̄, ȳ ∈ R, and the matrix

M = T [aij]1≤i,j≤2

converges to zero. Then the control problem (3.8) has a unique solution.

3.3 Third control problem

For problem x′(t) = x(t)(f(x(t), y(t))− λ)

y′(t) = y(t)g(x(t), y(t))− µ,
(3.9)

we apply again Perov’s fixed point theorem by combining the techniques used for

the first two problems. Thus we require the Lipschitz continuity of f (x, y) and

yg (x, y) .

Theorem 3.4. Let f, g : [0, ρ]× R → R be such that

|f(x, y)− f(x̄, ȳ)| ≤ a11|x− x̄|+ a12|y − ȳ|,

|yg(x, y)− ȳg(x̄, ȳ)| ≤ a21|x− x̄|+ a22|y − ȳ|,

for all x, x̄ ∈ [0, ρ] and y, ȳ ∈ R. Assume that

|f(x, y)| ≤ C

for (x, y) ∈ [0, ρ]× R,
C1 + TC ≤ ln ρ (3.10)
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3.3. Third control problem

and that the matrix

M = T

[
ρa11 a12

ρa21 a22

]
(3.11)

is convergent to zero. Then the control problem has a unique solution (x∗, y∗, λ∗, µ∗)

such that x∗ > 0 and ∥x∗∥∞ ≤ ρ .

Remark 3.1. The proofs of the previous theorems show the advantage of the vecto-

rial method compared to the scalar one, namely that it allows us, instead of several

conditions imposed on the constants involved in the Lipschitz or growth inequalities,

to formulate a single condition imposed cumulatively using a matrix whose elements

are these constants.
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3.4 Applications

Example 1

The following example illustrates Theorem 3.1. We consider the following self-

limiting system  x′ = x
(

10−4

1+x2+y2
− λ

)
y′ = y

(
2·10−4

1+4x2+y2
− µ

)
,

where T = 5, ρ = 100, x0 = e, y0 = e2 and the final controllability conditions are

x5 = e2 and y5 = e. We have C = 2 · 10−4,∣∣∂f
∂x

∣∣ = ∣∣∣− 2·10−4x
(1+x2+y2)2

∣∣∣ ≤ 10−4,
∣∣∣∂f∂y ∣∣∣ = ∣∣∣− 2·10−4y

(1+x2+y2)2

∣∣∣ ≤ 10−4,∣∣ ∂g
∂x

∣∣ = ∣∣∣− 8·2·10−4x
(1+4x2+y2)2

∣∣∣ ≤ 4 · 10−4,
∣∣∣∂g∂y ∣∣∣ = ∣∣∣− 2·2·10−4y

(1+4x2+y2)2

∣∣∣ ≤ 2 · 10−4.

Thus, the Lipschitz conditions (3.3) and (3.4) become

|f(x, y)− f(x̄, ȳ)| ≤ 10−4|x− x̄|+ 10−4|y − ȳ|,

|g(x, y)− g(x̄, ȳ)| ≤ 4 · 10−4|x− x̄|+ 2 · 10−4|y − ȳ|.

Also, in this case, using (3.1), we have C1 = 2 and C2 = 3. For T = 5, condition

(3.5) is satisfied. In addition, the matrix M given by (3.6) is

M = 100 · 5 ·

[
10−4 10−4

4 · 10−4 2 · 10−4

]
=

[
5 · 10−2 5 · 10−2

20 · 10−2 10−1

]
.

Let us recall the necessary and sufficient condition (1.4) for a matrix

M =

[
a b

c d

]

of order two to converge to zero

tr M < min {2, 1 + detM} , (3.12)

that is

a+ d < 2 şi a+ d < 1 + ad− bc. (3.13)

Note that if M converges to zero, then a < 1 and d < 1. In our case, we have

tr M = 5 · 10−2 + 10−1 < 2,

tr M < 1 + det M = 1 + (5 · 10−2 · 10−1 − 5 · 10−2 · 20 · 10−2).
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Therefore, this condition is satisfied for matrixM.We apply Theorem 3.1 and obtain

that the control problem has a unique solution with ∥x∗∥∞ ≤ 100 and ∥y∗∥∞ ≤ 100.

Example 2

We apply Theorem 3.2 with the following choice of functions f and g:

f (x, y) =
1

10

x

x+ y + 1
lnx+ 1,

g (x, y) =
1

10

y

x+ y + 1
ln y + 1 (x, y > 0) ,

extended by continuity at x = 0 and y = 0, i.e., f (0, y) = g (x, 0) = 1 (x, y ∈ R+) .

Using the logarithmic growth conditions, we obtain the following relation

|f(x, y)| ≤ 1

10

x

x+ y + 1
|ln x|+ 1,

since x, y ∈ R2
+ we have that x

x+y+1
≤ 1. Therefore the first condition from (3.7) is

satisfied with a11 =
1
10
, a12 = 0, b1 = 1. Similarly,

|g(x, y)| ≤ 1

10
|ln y|+ 1

from which it results that a21 = 0, a22 = 1
10
, b2 = 1. We verify if the hypotheses of

Theorem 3.2 are fulfilled for T = 5 and if the matrix M is convergent to zero.

In this case, we have

tr M =
5

10
+

5

10
< 2,

tr M < 1 + det M = 1 +

(
5

10
· 5

10

)
= 3, 5.

Thus the matrix M is convergent to zero. The hypotheses for Theorem 3.2 are

fulfilled for T = 5 and the matrix convergent to zero is

M =

[
0, 5 0

0 0, 5

]
.

We obtain that the corresponding Kolmogorov system is controllable for any values

x and y.
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Example 3

The following functions satisfy the hypotheses of Theorem 3.3

f (x, y) =
1

10
(1 + sin y)

sinx

x
,

g (x, y) =
1

10
(1 + sin x)

sin y

y
.

Here it is understood that f (0, y) = 1
10
(1 + sin y) and g (x, 0) = 1

10
(1 + sin x) . We

have that ∣∣∣∂(xf(x,y))∂x

∣∣∣ = ∣∣∣ cos x·(1+sin y)
10

∣∣∣ ≤ 2
10
,

∣∣∣∂(xf(x,y))∂y

∣∣∣ = ∣∣ sin x·cos y
10

∣∣ ≤ 1
10
,∣∣∣∂(yg(x,y))∂x

∣∣∣ ≤ 1
10
,

∣∣∣∂(yg(x,y))∂y

∣∣∣ ≤ 2
10
.

Therefore, the Lipschitz conditions become

|xf(x, y)− x̄f(x̄, ȳ)| ≤ 2

10
|x− x̄|+ 1

10
|y − ȳ|,

|yg(x, y)− ȳg(x̄, ȳ)| ≤ 1

10
|x− x̄|+ 2

10
|y − ȳ|.

We verify if the hypotheses of Theorem 3.3 are satisfied for T = 3 and that in

this case the matrix M is convergent to zero. Here the matrix M is

M = 3 ·

[
2
10

1
10

1
10

2
10

]
=

[
0, 6 0, 3

0, 3 0, 6

]
.

We verify the necessary and sufficient condition for a matrix of order 2 to be con-

vergent to zero, namely

tr M < min {2, 1 + detM} .

We have that

tr M =
6

10
+

6

10
< 2,

tr M < 1 + det M = 1 + 2, 7 = 3, 7.

The condition is satisfied and therefore it follows that the matrixM is convergent to

zero. We apply Theorem 3.3 and the obtain that the control problem has a unique

solution.
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Example 4

We illustrate Theorem 3.4 by considering the following functions:

f (x, y) =
1

100 (1 + x2 + y2)
,

g (x, y) =
1

100
(1 + sin x)

sin y

y
,

for which a11 = a12 = a21 = 1
100
, a22 = 2

100
and C = 1

100
, independent of ρ. Taking

x0 = 1 and xT = e, we have C1 = 1. Furthermore, taking T = 10 and ρ = e2 all the

hypotheses of Theorem 3.4 are satisfied. Here the matrix M is

M =
1

10

[
e2 1

e2 2

]

and it is immediately observed that it converges to zero. According to Theorem 3.4

the control problem has a unique solution such that x∗ > 0 and ∥x∗∥∞ ≤ ρ.
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Chapter 4

A fixed-point approach to control

problems for Kolmogorov type

second-order equations and

systems

In this chapter, second-order differential equations and systems of the Kolmogorov

type are defined. Unlike first-order equations that express the per capita rate,

second-order equations express the rate of change of the per capita rate. Several

control problems with fixed finite time T and fixed final state xT are studied, with

additive or multiplicative control. Their controllability is demonstrated using fixed-

point methods, the theorems of Banach, Schauder, Krasnoselskii, Avramescu, and

Perov.

This chapter is divided into two sections. Section 4.1 contains two subsections.

In Subsection 4.1.1, we study an additive control problem using Banach’s fixed-

point theorem to demonstrate the existence and uniqueness of the solution. We

investigate the existence of a solution in the following Theorem 4.2 using logarithmic

growth conditions and Schauder’s fixed-point theorem. We continue with the next

result, which combines the two previously mentioned results, using Krasnoselskii’s

fixed-point theorem for a sum of two operators. The last result refers to a problem

with multiplicative control for which Banach’s contraction theorem is used.

We continue with Section 4.2, where we use the fixed-point theorems of Perov,

Schauder, and Avramescu to demonstrate the controllability of second-order Kol-

mogorov systems.

The results in this chapter were published in the work of A. Hofman and

R. Precup [14].
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4.1. Control of second order Kolmogorov equations

4.1 Control of second order Kolmogorov equa-

tions

4.1.1 Problems with additive control

We consider the following control problem of a second-order Kolmogorov equation
(

x′(t)
x(t)

)′
= f(t, x(t))− λ

x(0) = a, x′(0) = 0

x > 0 on [0, T ] , x (T ) = xT ,

(4.1)

where a, xT > 0, and the additive control λ is scalar.

Our first result is an existence and uniqueness theorem of the solution (x, λ) of

the control problem with x in a ball of a given radius ρ of the space C [0, T ] endowed

with the Chebyshev norm ∥x∥∞ = maxt∈[0,T ] |x (t)| . Denote

α = ln a, uT = lnxT , γ = 2
α− uT
T 2

, R = ln ρ

and for a nonnegative number L, in case that L = 0, by 1
L
let it mean +∞.

Theorem 4.1. Let L ∈ R+ and ρ > 0. Assume that

exp (max {|α| , |uT |}+ 1) ≤ ρ <
2

LT 2
(4.2)

and the function f : [0, T ] × [0, ρ] → R is continuous, f (·, 0) ≡ 0 and satisfies the

Lipschitz condition

|f(t, v)− f(t, v)| ≤ L|v − v|, (4.3)

for all t ∈ [0, T ], v, v ∈ [0, ρ]. Then the control problem has a unique solution (x∗, λ∗)

with x∗ > 0, ∥x∗∥∞ ≤ ρ, and

λ∗ =
2

T 2

(
α− lnxT +

∫ T

0

∫ τ

0

f(s, x∗(s))dsdτ

)
. (4.4)

Remark 4.1. Here again, if we do not require for the solution to satisfy ∥x∗∥∞ ≤ ρ,

that is, the radius ρ is not a priori given, but we assume however that f : [0, T ] ×
(0,+∞) → R is continuous and satisfies the growth condition (5.5) for all t ∈ [0, T ],

v ∈ (0,+∞) and some constants l1, l2 ∈ R+ with l1 <
2
T 2 , then the control problem

has at least one solution. This statement is obvious if we use the above result for

any ρ ≥ ρ0 where

ρ0 = exp

(
2max {|α| , |uT |}+ T 2l2

2− T 2l1

)
.
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4.1. Control of second order Kolmogorov equations

Taking in particular ρ = ρ0, we find a solution with ∥x∗∥∞ ≤ ρ0.

Using Schauder’s fixed point theorem, we do not need f to satisfy a Lipschitz

condition. Instead we will assume a logarithmic growth condition.

Theorem 4.2. Assume that the function f : [0, T ] × [0, ρ] → R is continuous and

satisfies the growth condition

|f(t, v)| ≤ l1 |ln v|+ l2, (4.5)

for all t ∈ [0, T ], v ∈ (0, ρ] and some constants l1, l2 ∈ R+ with l1 <
2
T 2 . In addition

assume that

ρ ≥ exp

(
2max {|α| , |uT |}+ T 2l2

2− T 2l1

)
. (4.6)

Then the control problem has at least one solution (x∗, λ∗) with x∗ > 0, ∥x∗∥∞ ≤ ρ,

and λ∗ given by (4.4).

Remark 4.2. Here again, if we do not require for the solution to satisfy ∥x∗∥∞ ≤ ρ,

that is, the radius ρ is not a priori given, but we assume however that f : [0, T ] ×
(0,+∞) → R is continuous and satisfies the growth condition (4.5) for all t ∈ [0, T ],

v ∈ (0,+∞) and some constants l1, l2 ∈ R+ with l1 <
2
T 2 , then the control problem

has at least one solution. This statement is obvious if we use the above result for

any ρ ≥ ρ0 where

ρ0 = exp

(
2max {|α| , |uT |}+ T 2l2

2− T 2l1

)
.

Taking in particular ρ = ρ0, we find a solution with ∥x∗∥∞ ≤ ρ0.

The next result combines the two previous ones assuming that f splits as

f = f1 + f2, where f1 satisfies a Lipschitz condition while f2 satisfies a logaritmic

growth condition. The result is based on Krasnoselskii’s fixed point theorem for a

sum of two operators. Here sign L = 1 if L > 0 and sign L = 0 if L = 0.

Theorem 4.3. Assume that the function f : [0, T ] × [0, ρ] → R is continuous and

splits as f = f1 + f2, where f1 is like in Theorem 4.1 and f2 is like in Theorem 4.2.

In addition assume that

ρ ≥ exp

(
2max {|α| , |uT |}+ T 2l2 + 2sign L

2− T 2l1

)
. (4.7)

Then the control problem has at least one solution (x∗, λ∗) with x∗ > 0, ∥x∗∥∞ ≤ ρ,

and λ∗ given by (4.4).

Since f = f1 + f2, it can be observed that if L > 0 and f2 = 0, then f = f1

and it reduces to Theorem 4.1 (where l1 = l2 = 0), while Theorem 4.2 reduces to

Theorem 4.3 if f1 = 0, when L = 0 and f = f2.
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4.2. Control of second order Kolmogorov systems

4.1.2 Problem with a multiplicative control

We consider the following control problem
(

x′(t)
x(t)

)′
= λf(t, x(t))

x(0) = a, x′(0) = 0

x > 0 on [0, T ] , x (T ) = xT ,

(4.8)

with the multiplicative control parameter λ.

We have the following result on the unique controllability of the problem under

a given bound of the positive solution of the equation.

Theorem 4.4. Let

ρ ≥ exp (|α|+ |uT − α|) ,

α ̸= uT and f : [0, T ] × [0, ρ] → (0,+∞) a continuous function satisfying the

Lipschitz condition

|f (t, x)− f (t, y)| ≤ L |x− y|

for all t ∈ [0, T ] and x, y ∈ (0, ρ]. If

L <
fρ

ρT 2 |uT − α|
,

where fρ :=
∫ T

0

∫ τ

0
minx∈[ 1ρ ,ρ]

f(s, x)dsdτ, then there exists a unique solution (x∗, λ∗)

of the control problem (4.8) with x∗ > 0, ∥x∗∥∞ ≤ ρ, and

λ∗ =
uT − α∫ T

0

∫ τ

0
f(s, x∗)dsdτ

.

4.2 Control of second order Kolmogorov systems

We consider the following control second-order Kolmogorov system

(
x′(t)
x(t)

)′
= f(x(t), y(t))− λ(

y′(t)
y(t)

)′
= g(x(t), y(t))− µ

x(0) = a, x′(0) = 0, y(0) = b, y′(0) = 0

x (T ) = xT , y (T ) = yT ,

(4.9)

where a, b, xT , yT > 0 and the controls λ and µ are constant.
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4.2. Control of second order Kolmogorov systems

Denote

R = ln ρ, uT = lnxT , vT = ln yT , α = ln a, β = ln b,

γ =
2

T 2
(α− uT ) , θ =

2

T 2
(β − vT ) .

The next theorem guarantees the unique controllability of the system in a given

ball.

Theorem 4.5. Let

ρ ≥ exp (1 + max {|α| , |uT | , |β| , |vT |}) (4.10)

and assume that the functions f, g : [0, ρ]2 → R satisfy f (0, ·) ≡ 0, g (·, 0) ≡ 0 and

the Lipschitz conditions

|f(x, y)− f(x, y)| ≤ a11|x− x|+ a12|y − y|,

|g(x, y)− g(x, y)| ≤ a21|x− x|+ a22|y − y|,

for all x, y, x, y ∈ [0, ρ] and some nonnegative constants aij (i, j = 1, 2) , and that

the matrix

M =
ρT 2

2

[
a11 a12

a21 a22

]
is convergent to zero. Then the control problem has a unique solution (x∗, y∗, λ∗, µ∗)

with x∗, y∗ > 0 and ∥x∗∥∞ , ∥y∗∥∞ ≤ ρ.

Here again, if instead of the Lipschitz conditions, f and g only have a logarithmic

growth, then one can prove the existence of a least one solution of the control

problem.

Theorem 4.6. Let f, g : R2
+ → R be continuous and satisfy the logarithmic growth

conditions

|f(x, y)| ≤ a11 |lnx|+ a12 |ln y|+ b1, (4.11)

|g(x, y)| ≤ a21 |lnx|+ a22 |ln y|+ b2,

for all x, y ∈ (0,∞) and some constants aij, bi ∈ R+ (i, j = 1, 2) . Then for each

T > 0 for which the matrix

M =
T 2

2
[aij]1≤i,j≤2

converges to zero, the control problem (4.9) has at least one solution (x∗, y∗, λ∗, µ∗)

with x∗ > 0 and y∗ > 0.
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4.2. Control of second order Kolmogorov systems

Our last result is an application of Avramescu’s fixed point theorem to control

problem (4.9) when f satisfies a Lipschitz condition with respect to the first variable

only, and g has a logarithmic growth in the last variable.

Theorem 4.7. Let ρ be such that

ρ ≥ max

{
exp (1 + max {|α| , |uT |}) , exp

2max {|β| , |vT |}+ T 2c

2− T 2b

}
(4.12)

and f, g : [0, ρ]2 → R be continuous and f (0, ·) ≡ 0. Assume that

|f (x, y)− f (x, y)| ≤ a |x− x| for all x, x, y ∈ [0, ρ] ,

|g (x, y)| ≤ b |ln y|+ c for all x ∈ [0, ρ] , y ∈ (0, ρ],

where a < 2
ρT 2 and b < 2

T 2 . Then problem (4.9) has at least one solution (x∗, y∗, λ∗, µ∗)

with x∗, y∗ > 0 and ∥x∗∥∞ , ∥y∗∥∞ ≤ ρ.
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Chapter 5

Fixed point methods with

multi-valued operators for control

problems

In this chapter, we deal with control problems for first-order Kolmogorov equations,

where the controllability condition is given by an inclusion. We use fixed-point tech-

niques based on Nadler’s, Bohnenblust-Karlin’s theorems, and on the multivalued

version of Krasnoselskii’s theorem for a sum of two operators [9, 18, 25]. For other

fixed-point techniques in control theory, we refer to [7, 30].

This chapter comprises three sections. In Section 5.1, we present the first result

concerning the control of first-order multivalued Kolmogorov equations, where we

used Nadler’s fixed-point theorem, proving the existence of a solution within a ball

of radius ρ in the space C[0, T ] endowed with the Chebyshev norm. In Section

5.2, we used Bohnenblust-Karlin’s fixed-point theorem, considering, instead of the

Lipschitz condition on the function f , a more general condition of at most linear

growth. Finally, in Section 5.3, we presented an application of the multivalued

version of Krasnoselskii’s fixed-point theorem obtained in [25]. This guarantees the

existence of at least one solution to the control problem.

The results in this chapter were published in A. Hofman [12].

In the following we deal with the control problem
x′(t) = x(t)f(t, x(t))− λx

x(0) = x0

x > 0 on [0, T ] , xT := x(T ) ∈ [a, b],

(5.1)

where the controllability condition is of inclusion type, more precisely x(T ) ∈ [a, b].

Here 0 < a < b and λ is a constant parameter.
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5.1. Application of Nadler’s fixed point theorem

5.1 Application of Nadler’s fixed point theorem

Our first result is an existence theorem of solution (x, λ) of the control problem with

x in a ball of a given radius ρ of the space C [0, T ] endowed with the Chebyshev

norm ∥x∥∞ = maxt∈[0,T ] |x (t)| . In what follows we make the notations:

α = ln a, β = ln b, u0 = lnx0, uT = lnxT , R = ln ρ.

To prove our result we need the following lemma.

Lemma 5.1. Let (X, || · ||) be a normed space, x1 and x2 ∈ X and M a bounded

subset of X. Then we have

H(x1 +M,x2 +M) ≤ ||x1 − x2||.

The lemma above is applied when for an operator N, the value N(u) is a sum of

a function and an interval of functions.

Theorem 5.1. Let ρ > 0 and the function f : [0, T ] × [0, ρ] → R be continuous,

f (·, 0) ≡ 0 and the following Lipschitz condition hold

|f(t, v)− f(t, v)| ≤ L|v − v|, (5.2)

for all t ∈ [0, T ], v, v ∈ [0, ρ], with 0 < L < 1
ρT
. In addition, we assume that

ρ ≥ exp (|u0|+max{β, |α|}+ 1) . (5.3)

Then the control problem (5.1) has solutions (x∗, λ∗) with x∗ > 0, ∥x∗∥∞ ≤ ρ and

λ∗ ∈
[
1

T

(
u0 − β +

∫ T

0

f(s, x∗(s))ds

)
,
1

T

(
u0 − α +

∫ T

0

f(s, x∗(s))ds

)]
. (5.4)

5.2 Application of Bohnenblust-Karlin’s fixed point

theorem

Using Bohnenblust-Karlin fixed point theorem, we do not need f to satisfy a Lips-

chitz condition. Instead we will assume a logarithmic growth condition.

Theorem 5.2. Assume that the function f : [0, T ] × [0, ρ] → R is continuous and

satisfies the growth condition

|f(t, v)| ≤ l1 |ln v|+ l2, (5.5)
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5.3. Application of Krasnoselskii’s fixed point
theorem

for all t ∈ [0, T ], v ∈ (0, ρ] and some constants l1, l2 ∈ R+ cu l1 <
1
T
. with l1 <

1
T
.

In addition assume that

ρ ≥ exp

(
C + l2T

1− l1T

)
, (5.6)

where C := |u0| + max{β, |α|}. Then the control problem (5.1) has at least one

solution (x∗, λ∗) with x∗ > 0, ∥x∗∥∞ ≤ ρ, and λ∗ given by (5.4).

Lemma 5.2. Let N be a multi-valued map from D ⊂ C [0, T ] , to the subsets of

C [0, T ] defined as

N (u) (t) = Γ (u) (t) +
t

T
[α, β] ,

where Γ : D → C [0, T ] is a continuous single-valued map and by t
T
[α, β] one means

the set of continuous functions{
z ∈ C [0, T ] : z (t) =

t

T
ζ, ζ ∈ [α, β]

}
.

Then N is upper semicontinuous.

5.3 Application of Krasnoselskii’s fixed point

theorem

Noticing that the expression of Γ(u) contains both Volterra and Fredholm integral

terms, we are led to use Krasnoselskii’s fixed point theorem for a sum of two oper-

ators. Thus we have

Theorem 5.3. Let f : [0, T ]× [0, ρ] → [−C,C] be continuous and

|f(t, v)− f(t, v)| ≤ L|v − v|, (5.7)

for all v, v ∈ [0, ρ], t ∈ [0, T ] and some C,L > 0. In addition assume that

ρ ≥ exp (|u0|+max{β, |α|}+ 2TC) . (5.8)

Then the control problem (5.1) has solutions (x∗, λ∗) with x∗ > 0, ||x∗||∞ ≤ ρ and

λ∗ as in (5.4).

Compared with the result given by Theorem 5.1, in this case, there is no restric-

tion on the Lipschitz constant L.
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Chapter 6

Algorithms for solving control

problems related to Kolmogorov

systems

In this chapter, we will use the method of lower and upper solutions to construct

an iterative algorithm that allows obtaining the solution to the control problem

for Kolmogorov type systems. We will demonstrate that, under the hypothesis

of relatively simple conditions, the proposed algorithm is convergent towards the

solution of the problem. The result regarding the convergence of the algorithm also

represents an existence result for the control problem.

Throughout this chapter, we study two types of Kolmogorov type systems. These

systems depend on a real parameter λ, that represents the control variable, and our

goal is to find a solution (x, y) such that the following control condition is satisfied:

φ(x, y) = 0.

The function φ : C([0, T ];R2) → R is a general continuous function that satisfies

certain specific conditions. A relevant example in practice of choosing φ is the

following

φ(x, y) = αx(T ) + βy(T )− γ, where α, β, γ ∈ R.

The algorithm we propose in what follows requires that the control problem

(the system) satisfies two fundamental requirements: for any value of λ, it admits

a unique solution and that this solution continuously depends on the parameter

λ. These requirements are essential to ensure the stability and convergence of the

proposed method.

The algorithm is applied in the presence of a lower solution (x, y, 0) and upper

solution (x, y, 1) of the control problem.
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The triplet (x, y, 0) is a lower of the control problem if (x, y) is a solution to

the Cauchy problem and φ(x, y) < 0 and (x, y, 1) is a upper solution of the control

problem if (x, y) is a solution to the Cauchy problem and φ(x, y) > 0.

The general form of the algorithm is as follows:

Algorithm 1 (Bisection method).

Step 1. Initialize λ0 := 0, λ0 := 1, x0 := x, y
0
:= y, x0 := x, y0 := y.

Step 2. At any iteration k ≥ 1, define

λk :=
λk−1 + λk−1

2
,

and solve the system for λ := λk, obtaining the solution (xk, yk). If φ(xk, yk) < 0,

then for the next step choose

λk := λk, λk := λk−1, xk := xk, yk := yk, xk := xk−1, yk := yk−1,

otherwise, if φ(xk, yk) > 0, consider

λk := λk−1, λk := λk, xk := xk−1, yk := y
k−1

, xk := xk, yk := yk,

and then repeat Step 2 for k := k + 1.

Step 3 (Stopping condition).

The algorithm stops when

|φ(xk, yk)| < δ,

where δ > 0 represents an acceptable error.

This chapter is structured into two sections. In Section 6.1, we use the bisection

algorithm to determine a solution to a first-order Kolmogorov problem such that

the control condition is satisfied. We will establish the conditions under which

the system admits a unique solution and show that it depends continuously on

the control parameter. We will also demonstrate the convergence of the bisection

algorithm, thus obtaining a solution to the control problem considered.

The results of this section were published in the work of A. Hofman [11].

For Section 6.2, we will proceed in a similar manner to the first section, but for

a second-order Kolmogorov system. In this context, using the method of lower and

upper solutions, we will adapt the bisection algorithm for the considered problem

and demonstrate its convergence. We will also analyze both the algorithm that

obtains an exact solution and the approximate algorithm.
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6.1. The method of lower and upper solutions for first-order Kolmogorov systems

The results of this section were published in the work of A. Hofman [10].

6.1 The method of lower and upper solutions for

first-order Kolmogorov systems

In what follows, we will present the control problem to which we will apply the

bisection algorithm. To begin, we consider a problem with the control of the growth

rate of the first equation, namely the problem
x′(t) = x(t)f(x(t), y(t))− λ

y′(t) = y(t)g(x(t), y(t))

x(0) = x0, y(0) = y0.

(6.1)

Here λ is constant and the controllability condition is

φ(x, y) = 0,

where the function φ is assumed to be continuous.

To be able to use the algorithm above, it is necessary, first of all, to determine

the conditions under which problem (6.1) admits a unique solution and, moreover,

this solution is continuously dependent on the parameter.

Lemma 6.1. Assume that f, g : R2 → R are Lipschitz continuous functions and

that |f | ≤ Cf ,|g| ≤ Cg. Then, for any λ ∈ R, the Cauchy problem (6.1) admits a

unique solution, which depends continuously on the parameter λ.

Alternatively, we have

Lemma 6.2. Let f, g : R2 → R be such that the functions xf(x, y) and yg(x, y)

are Lipschitz continuous on the space R2. Then for any λ ∈ R, the Cauchy problem

(6.1) has a unique solution that depends continuously on the parameter λ.

From Lemmas 6.1 and 6.2, we obtain two convergence results based on Algorithm

1.

Theorem 6.1. Assume that f, g : R2 → R are Lipschitz continuous functions on

R2 and that |f | ≤ Cf , |g| ≤ Cg. In addition, assume that

φ(S1(0), S2(0)) < 0 and φ(S1(1), S2(1)) > 0. (6.2)

Then, Algorithm 1 is convergent to a solution of the control problem.

Similarly, using Lemma 6.2, the following result can be demonstrated.

42



6.2. The method of lower and upper solutions for the control of second-order
Kolmogorov systems

Theorem 6.2. Let f, g : R2 → R such that the functions xf(x, y), yg(x, y) are

Lipschitz continuous on the space R2. If (6.2) holds, then the algorithm is convergent

to a solution of the control problem.

6.2 The method of lower and upper solutions for

the control of second-order Kolmogorov sys-

tems

In this Subsection, using a similar approach to the previous one, we will introduce

a method of sub and super solutions for the control of second-order Kolmogorov

systems. Two iterative algorithms are defined, one exact and one approximate, and

their convergence is studied. The method of work uses the fixed-point technique

based on Perov’s theorem, matrices converging to zero, and Bielecki-type norms.

Thus, we deal with control problems of the type
(

x′(t)
x(t)

)′
= f(x(t), y(t), λ)(

y′(t)
y(t)

)′
= g(x(t), y(t), λ),

(6.3)

for t ∈ [0, T ], with the initial values

x(0) = a, x′(0) = 0, y(0) = b, y′(0) = 0, (6.4)

where a, b > 0. Here λ is a vector from Rm, λ = (λ1, λ2, ...., λm). Such kind of

problems have applications to various domains, particularly in biomathematics. The

controllability condition is

Ψ(x(T ), y(T )) = 0,

where Ψ : R2 → R is a continuous function. For example, we can take

Ψ(s, τ) = s− kτ or Ψ(s, τ) = s− k,

with k a given constant.

First, in the present set-framework, we introduce the notions of lower and upper

solutions the control problem. (see [23], [11]).

Definition 6.1. We call a lower solution of the control problem a triple (x, y, λ)

where (x, y) is a solution of the Cauchy problem with λ = λ and

Ψ(x(T ), y(T )) < 0.
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6.2. The method of lower and upper solutions for the control of second-order
Kolmogorov systems

Definition 6.2. A triple (x, y, λ) is an upper solution of the control problem if (x, y)

is the solution of the Cauchy problem with λ = λ and

Ψ(x(T ), y(T )) > 0.

Lower and upper solutions can be obtained with the aid of the computer by

repeated trials giving various control variable values.

For the convergence of the algorithm, we must guarantee that the Cauchy prob-

lem (6.3)-(6.4) has a unique solution for each λ and that it depends continuously on

the parameter λ.

Theorem 6.3. Let α = ln a, β = ln b and

ρ ≥ exp (1 + max {|α| , |β|}) . (6.5)

Assume that f, g : R2×Rm → R with f(0, y, λ) ≡ 0, g(x, 0, λ) ≡ 0, for any x, y ∈ R,
λ ∈ Rm satisfy the Lipschitz conditions

|f(x, y, λ)− f(x, y, µ)| ≤ a11|x− x|+ a12|y − y|+ a13|λ− µ|,

|g(x, y, λ)− g(x, y, µ)| ≤ a21|x− x|+ a22|y − y|+ a23|λ− µ|,

for all x, y, x, y ∈ R, and λ, µ ∈ Rm. In addition assume that matrix

M =
ρT 2

2

[
a11 a12

a21 a22

]
(6.6)

is convergent to zero. Then for any λ ∈ Rm the Cauchy problem (6.3)-(6.4) has a

unique solution (x, y) satisfying ∥x∥∞ ≤ ρ and ∥y∥∞ ≤ ρ, that depends continuously

on the parameter λ.

In what follows, we present an algorithm that, in the limit, converges towards the

solution of the control problem. We call it an exact algorithm because, by repeating

the process a number of times (possibly infinite), the solution to the problem is

reached.

6.2.1 Exact algorithm.

Let (x, y, λ) and (x, y, λ) be lower and upper solutions of the control problem with

λ < λ.

Step 1. Initialize λ0 := λ, λ0 := λ, x0 := x, y
0
:= y, x0 := x, y0 := y.

Step 2. At any iteration k ≥ 1, define λk :=
λk−1 + λk−1

2
and solve problem
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(6.3)-(6.4) for λ = λk. Obtain the solution

(xk, yk) = (eS1(λk), eS2(λk)).

If Ψ(xk(T ), yk(T )) < 0, then put

λk := λk, λk := λk−1, xk := xk, yk := yk, xk := xk−1, yk := yk−1,

otherwise, for Ψ(xk(T ), yk(T )) > 0, take

λk := λk−1, λk := λk, xk := xk−1, yk := y
k−1

, xk := xk, yk := yk

and we repeat Step 2 for k := k + 1. Obviously, if Ψ(xk(T ), yk(T )) = 0, then we

have the solution and we are finished.

Step 3 (Stopping condition).

The algorithm stops if

|Ψ(xk, yk)| < δ,

for a given error δ > 0.

Using the Theorem 6.3 we can prove obtain the convergence result of the above

algorithm.

Theorem 6.4. Under the assumptions of Theorem 6.3, the algorithm is convergent

to a solution of the control problem.

We assume that the Cauchy problem can be approximately solved with a desired

error ε. In this situation, the algorithm changes as follows.

6.2.2 Approximation algorithm.

Let ε > 0 be an admissible error, (x̃, ỹ, λ̃) and (
≃
x,

≃
y,

≃
λ) be approximate lower and

upper solutions of the Cauchy problem.

Step 1. Initialize λ0 := λ̃, λ0 :=
≃
λ, x̃0 := x̃, ỹ

0
:= ỹ, x̃0 := x̃, ỹ0 := ỹ.

Step 2. At any iteration k ≥ 1, define λk :=
λk−1 + λk−1

2
solve approximatively

the Cauchy problem and find the approximate solution (x̃k, ỹk).

If Ψ(x̃k(T ), ỹk(T )) < 0, then put

λk := λk, λk := λk−1, x̃k := x̃k, ỹk := ỹk, x̃k := x̃k−1, ỹk := ỹk−1,
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otherwise, for Ψ(x̃k(T ), ỹk(T )) > 0, take

λk := λk−1, λk := λk, x̃k := x̃k−1, ỹk := ỹ
k−1

, x̃k := x̃k, ỹk := ỹk,

and we repeat Step 2 for k = k + 1.

Step 3 (Stopping condition).

The algorithm stops if

|Ψ(x̃k, ỹk)| < δ,

for a given error δ > 0.

Theorem 6.5. Under the assumptions of Theorem 6.3, if in addition Ψ satisfies

∣∣Ψ(t, s)−Ψ(t, s)
∣∣ ≤ L(|t− t|+ |s− s|),

for all t, t, s, s ∈ R, then the approximate algorithm provides the triple (x∗, y∗, λ∗),

where λ∗ = limk→∞ λk = limk→∞ λk, and the pair (x∗, y∗) is the exact solution of the

Cauchy problem for λ = λ∗ and

Ψ(x∗(T ), y∗(T )) ∈ [−2εL, 2εL] . (6.7)

Remark 6.1. (a) The estimate (6.7) shows that controllability condition is satisfied

with the error 2εL.

(b) If (x̃∗, ỹ∗) is an approximate solution corresponded to λ = λ∗, with the error ε,

then one has

Ψ(x̃∗(T ), ỹ∗(T )) ∈ [−4εL, 4εL] . (6.8)

Indeed, we have that

|Ψ(x∗(T ), y∗(T ))−Ψ(x̃∗(T ), ỹ∗(T ))| ≤ L(|x∗(T )−x̃∗(T )|+|y∗(T )−ỹ∗(T )|) ≤ 2εL.

We get that

−4εL ≤ Ψ(x∗(T ), y∗(T ))−2εL ≤ Ψ(x̃∗(T ), ỹ∗(T )) ≤ Ψ(x∗(T ), y∗(T ))+2εL ≤ 4εL,

hence the conclusion (6.8).
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